1
|
Matsushita A, Kudo TA, Tominami K, Hayashi Y, Noguchi T, Tanaka T, Izumi S, Gengyo-Ando K, Matsuzawa A, Hong G, Nakai J. Frequency-Regulated Repeated Micro-Vibration Promotes Osteoblast Differentiation Through BMP Signaling in MC3T3-E1 Cells. Life (Basel) 2025; 15:588. [PMID: 40283143 PMCID: PMC12028574 DOI: 10.3390/life15040588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025] Open
Abstract
Physical stimulation, which is a key factor affecting the metabolism of osteoblasts and their precursor cells, plays an important role in bone remodeling; however, the role of micro-vibrations in osteoblast differentiation is unclear. In the present study, we determined the effects of frequency-regulated repeated micro-vibration (FRMV) on cell proliferation and established a method to induce osteoblast differentiation through FRMV using the mouse pre-osteoblast-like cell line MC3T3-E1, which is widely used in bone metabolism research. The results indicated that FRMV significantly influenced the proliferation of MC3T3-E1 cells in a normal growth medium. FRMV at 42.2 Hz significantly promoted proliferation, whereas FRMV at 92.1 Hz showed no effect on the proliferation rate. Moreover, FRMV at 42.2 Hz significantly increased alkaline phosphatase (ALP) enzyme activity and ALP gene expression in MC3T3-E1 cells. Treatment with LDN193189, a bone morphogenetic protein (BMP) signaling inhibitor, revealed that the FRMV-induced upregulation in ALP enzyme activity and ALP gene expression were significantly suppressed in MC3T3-E1 cells. The results suggest that the FRMV protocol developed in the present study induces osteoblast differentiation through the BMP signaling pathway. Thus, FRMV may contribute to the development of effective bone regeneration technologies.
Collapse
Affiliation(s)
- Ayumu Matsushita
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (A.M.); (K.T.); (S.I.); (K.G.-A.); (J.N.)
| | - Tada-aki Kudo
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (A.M.); (K.T.); (S.I.); (K.G.-A.); (J.N.)
| | - Kanako Tominami
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (A.M.); (K.T.); (S.I.); (K.G.-A.); (J.N.)
| | - Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan;
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (T.N.)
| | - Takakuni Tanaka
- Division for Globalization Initiative, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (T.T.); (G.H.)
| | - Satoshi Izumi
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (A.M.); (K.T.); (S.I.); (K.G.-A.); (J.N.)
| | - Keiko Gengyo-Ando
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (A.M.); (K.T.); (S.I.); (K.G.-A.); (J.N.)
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (T.N.)
| | - Guang Hong
- Division for Globalization Initiative, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (T.T.); (G.H.)
| | - Junichi Nakai
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (A.M.); (K.T.); (S.I.); (K.G.-A.); (J.N.)
| |
Collapse
|
2
|
Chen X, Zhang Y, Deng Z, Song C, Yang L, Zhang R, Zhang P, Xiu Y, Su Y, Luo J, Xu J, Dai H. Keratocan Improves Muscle Wasting in Sarcopenia by Promoting Skeletal Muscle Development and Fast-Twitch Fibre Synthesis. J Cachexia Sarcopenia Muscle 2025; 16:e13724. [PMID: 39962589 PMCID: PMC11832428 DOI: 10.1002/jcsm.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/17/2024] [Accepted: 12/08/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Osteosarcopenia refers to the co-occurrence of osteoporosis and sarcopenia, which are characterized by progressive bone density and muscle mass loss, respectively. Muscle and bone are regulated by many common genes and pathways, enabling potential co-treatment. Because keratocan protects against osteoporosis, we hypothesized it may also protect against sarcopenia, implying a new co-intervention target. This study aimed to elucidate the role and molecular mechanisms of keratocan in skeletal muscle. METHODS We analysed keratocan expression in the muscles of aged mice and patients with osteosarcopenia and during the differentiation of C2C12 myoblasts. The regulatory role of keratocan was assessed by knocking down or overexpressing keratocan in C2C12 cells and examining any effects on myogenic proliferation and differentiation. RNA sequencing analysis was also performed on these cells. The relationship between keratocan and enriched signalling pathways was verified using pathway inhibitors or agonists. Finally, adeno-associated virus-9 containing a muscle-specific promoter was injected into SAMP8 senile mice to observe the effects of keratocan overexpression. RESULTS Keratocan expression was significantly lower in the skeletal muscles of aging mice (-2.02-fold, p < 0.01) and patients with osteosarcopenia (-1.78-fold, p < 0.001) compared with that in controls. Keratocan overexpression resulted in a significant increase in the proliferation indices CCND1 (+1.43-fold, p < 0.001), Ki67 (+2.30-fold, p < 0.001) and PCNA (+1.975-fold, p < 0.01) and the differentiation indices MyoD1 (+2.156-fold, p < 0.001), MyoG (+1.52-fold, p < 0.05) and myosin heavy chain (MyHC; +2.849-fold, p < 0.01); conversely, the muscle atrophy indices MuRF-1 (-30%, p < 0.01), atrogin-1 (-87%, p < 0.01) and myostatin (-24%, p < 0.01) were significantly decreased. PI3K/AKT/mTOR was identified as a potential pathway for keratocan regulation in C2C12 cells. PI3K inhibitor LY294002 reversed the promotion of myogenesis by keratocan overexpression, while PI3K activator 740Y-P reversed the inhibitory effect of keratocan knockdown on myogenesis, promoting myofibre development and ameliorating muscle atrophy in SAMP8 aging mice. This was evidenced by increased mean muscle cross-sectional area (+38%, p < 0.0001) and muscle mass (+7%, p < 0.01) and decreased fibrosis (-40%, p < 0.01). Furthermore, keratocan facilitated the conversion of slow-to-fast muscle fibres through the PI3K/AKT/mTOR pathway, characterized by significantly increased grip strength (+42%, p < 0.01) and maximum running speed (+19%, p < 0.001), and decreased fatigue time (+13%, p < 0.05). CONCLUSIONS Keratocan ameliorates muscle atrophy by activating the PI3K/AKT/mTOR pathway, promoting muscle satellite cell proliferation and myogenic differentiation, and facilitating the conversion of slow-to-fast muscle fibres. Our findings demonstrate the potential of keratocan as a novel therapeutic target for osteosarcopenia.
Collapse
Affiliation(s)
- Xu Chen
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
- Department of Minimally Invasive Spinal SurgeryThe Affiliated Hospital of Putian UniversityPutianChina
| | - Yanyan Zhang
- Department of Clinical LaboratoryThe Affiliated Hospital of Putian UniversityPutianChina
| | - Zhibo Deng
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
- Department of OrthopedicsFujian Provincial HospitalFujian Medical UniversityFuzhouChina
| | - Chao Song
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
- Department of OrthopedicsFujian Provincial HospitalFujian Medical UniversityFuzhouChina
| | - Linhai Yang
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
| | - Rongsheng Zhang
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
| | - Peng Zhang
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
| | - Yu Xiu
- College of Traditional Chinese MedicineFujian University of Traditional Chinese MedicineFuzhouChina
| | - Yibin Su
- College of Traditional Chinese MedicineFujian University of Traditional Chinese MedicineFuzhouChina
| | - Jun Luo
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
- Department of OrthopedicsFujian Provincial HospitalFujian Medical UniversityFuzhouChina
| | - Jie Xu
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
- Department of OrthopedicsFujian Provincial HospitalFujian Medical UniversityFuzhouChina
| | - Hanhao Dai
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
- Department of OrthopedicsFujian Provincial HospitalFujian Medical UniversityFuzhouChina
| |
Collapse
|
3
|
Songkoomkrong S, Nonkhwao S, Duangprom S, Saetan J, Manochantr S, Sobhon P, Kornthong N, Amonruttanapun P. Investigating the potential effect of Holothuria scabra extract on osteogenic differentiation in preosteoblast MC3T3-E1 cells. Sci Rep 2024; 14:26415. [PMID: 39488645 PMCID: PMC11531581 DOI: 10.1038/s41598-024-77850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
The present medical treatments of osteoporosis come with adverse effects. It leads to the exploration of natural products as safer alternative medical prevention and treatment. The sea cucumber, Holothuria scabra, has commercial significance in Asian countries with rising awareness of its properties as a functional food. This study aims to investigate the effects of the inner wall (IW) extract isolated from H. scabra on extracellular matrix maturation, mineralization, and osteogenic signaling pathways on MC3T3-E1 preosteoblasts. The IW showed the expression of several growth factors. Molecular docking revealed that H. scabra BMP2/4 binds specifically to mammal BMP2 type I receptor (BMPR-IA). After osteogenic induction, the viability of cells treated with IW extract was assessed and designated with treatment of 0.1, 0.5, 1, and 5 µg/ml of IW extract for 21 consecutive days. On days 14 and 21, treatments with IW extract at 1 and 5 µg/ml showed increased alkaline phosphatase (ALP) activity and calcium deposit levels in a dose-dependent manner compared to the control group. Moreover, the transcriptomic analysis of total RNA of cells treated with 5 µg/ml of IW extract exhibited upregulation of TGF-β, PI3K/Akt, MAPK, Wnt and PTH signaling pathways at days 14. This study suggests that IW extract from H. scabra exhibits the potential to enhance osteogenic differentiation and mineralization of MC3T3-E1 preosteoblasts through TGF-β, PI3K/Akt, MAPK, Wnt and PTH signaling pathways. Further investigation into the molecular mechanisms underlying the effect of IW extract on osteogenesis is crucial to support its application as a naturally derived supplement for prevention or treatment of osteoporosis.
Collapse
Affiliation(s)
- Sineenart Songkoomkrong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12121, Thailand
| | - Siriporn Nonkhwao
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
| | - Supawadee Duangprom
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
| | - Jirawat Saetan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Sirikul Manochantr
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12121, Thailand
- Center of Excellence in Stem Cell Research and Innovation, Thammasat University, Pathumthani, 12121, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Napamanee Kornthong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
| | - Prateep Amonruttanapun
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand.
| |
Collapse
|
4
|
Zhu Y, Zeng Q, Shi Y, Qin Y, Liu S, Yang Y, Qiu Y, Pan M, An Z, Li S. Association between sarcopenia and osteoporosis: the cross-sectional study from NHANES 1999-2020 and a bi-directions Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1399936. [PMID: 39439568 PMCID: PMC11493612 DOI: 10.3389/fendo.2024.1399936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Background Osteoporosis (OP) and sarcopenia are prevalent musculoskeletal conditions among the elderly. Nevertheless, the causal relationship between sarcopenia and OP remains a subject of controversy and uncertainty. In this study, we employed cross-sectional analysis and Mendelian randomization (MR) to investigate the intricate relationship between sarcopenia and OP. Methods The cross-sectional study utilized data from the National Health and Nutrition Examination Survey (NHANES) spanning 1999-2020, which involved in 116,876 participants. It assessed the correlation between sarcopenia, osteoporosis (OP), and bone mineral density (BMD) using Chi-square tests, T-tests, and a multiple logistic regression model. Additionally, we conducted Mendelian randomization (MR) analysis to investigate the causal effects of sarcopenia-related characteristics (ALM) on OP. We employed IVW, sensitivity analysis, heterogeneity testing, and other methods for MR. The ALM data was sourced from the UK Biobank (n=450,243), while the aggregated data on OP was obtained from GWAS statistics (n=53,236). Results In this cross-sectional analysis, we observed that in the multivariate logistic regression model, without adjusting for any variables, OP emerged as a risk factor for sarcopenia [OR 95% CI = 1.90 (1.13-3.18), P = 0.02]. Following adjustments for gender, age, BMI, and biochemical variables, OP retained its status as a risk factor for sarcopenia [OR 95% CI = 3.54 (1.91-6.54), P < 0.001]. Moreover, after accounting for all variables, OP emerged as an independent risk factor for sarcopenia [OR 95% CI = 4.57 (1.47-14.22), P = 0.01].In the MR analysis, we uncovered that femoral neck BMD (FN BMD), lumbar spine BMD (LS BMD), and forearm bone mineral density (FA BMD) exerted a direct causal influence on ALM [FA BMD: OR 95% CI = 1.028 (1.008, 1.049), p = 0.006; FN BMD: OR (95% CI) = 1.131 (1.092, 1.170), p = 3.18E-12; LS BMD: OR (95% CI) = 1.080 (1.062, 1.098), p = 2.86E-19]. Conclusion Our study has revealed a positive correlation between OP and the prevalence of sarcopenia. It suggests a potentially robust causal relationship between OP and sarcopenia. Notably, OP appears to be associated with a higher likelihood of losing ALM, and a significant loss of ALM may contribute to a decline in LS BMD.
Collapse
Affiliation(s)
- Yuan Zhu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingyue Zeng
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Shi
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Qin
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Simin Liu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuhao Yang
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Qiu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengjia Pan
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuangqing Li
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- General Practice Medical Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Zhang N, Zhai L, Wong RMY, Cui C, Law SW, Chow SKH, Goodman SB, Cheung WH. Harnessing immunomodulation to combat sarcopenia: current insights and possible approaches. Immun Ageing 2024; 21:55. [PMID: 39103919 DOI: 10.1186/s12979-024-00458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Sarcopenia is a complex age-associated syndrome of progressive loss of muscle mass and strength. Although this condition is influenced by many factors, age-related changes in immune function including immune cell dynamics, and chronic inflammation contribute to its progression. The complex interplay between the immune system, gut-muscle axis, and autophagy further underscores their important roles in sarcopenia pathogenesis. Immunomodulation has emerged as a promising strategy to counteract sarcopenia. Traditional management approaches to treat sarcopenia including physical exercise and nutritional supplementation, and the emerging technologies of biophysical stimulation demonstrated the importance of immunomodulation and regulation of macrophages and T cells and reduction of chronic inflammation. Treatments to alleviate low-grade inflammation in older adults by modulating gut microbial composition and diversity further combat sarcopenia. Furthermore, some pharmacological interventions, nano-medicine, and cell therapies targeting muscle, gut microbiota, or autophagy present additional avenues for immunomodulation in sarcopenia. This narrative review explores the immunological underpinnings of sarcopenia, elucidating the relationship between the immune system and muscle during ageing. Additionally, the review discusses new areas such as the gut-muscle axis and autophagy, which bridge immune system function and muscle health. Insights into current and potential approaches for sarcopenia management through modulation of the immune system are provided, along with suggestions for future research directions and therapeutic strategies. We aim to guide further investigation into clinical immunological biomarkers and identify indicators for sarcopenia diagnosis and potential treatment targets to combat this condition. We also aim to draw attention to the importance of considering immunomodulation in the clinical management of sarcopenia.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Liting Zhai
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Can Cui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheung-Wai Law
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Xu Y, Sun B, Wang H, Cai Y, Chu D, Cao R, Wang Z. Autophagy regulates age-related delayed jawbone regeneration and decreased osteoblast osteogenesis by degrading FABP3. FASEB J 2024; 38:e23824. [PMID: 39012304 DOI: 10.1096/fj.202400549rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
The regenerative ability of limb bones after injury decreases during aging, but whether a similar phenomenon occurs in jawbones and whether autophagy plays a role in this process remain unclear. Through retrospective analysis of clinical data and studies on a mouse model of jawbone defects, we confirmed the presence of delayed or impaired bone regeneration in the jawbones of old individuals and mice. Subsequently, osteoblasts (OBs) derived from mouse jawbones were isolated, showing reduced osteogenesis in senescent osteoblasts (S-OBs). We observed a reduction in autophagy within both aged jawbones and S-OBs. Additionally, pharmacological inhibition of autophagy in normal OBs (N-OBs) led to cell aging and decreased osteogenesis, while autophagic activation reversed the aging phenotype of S-OBs. The activator rapamycin (RAPA) increased the autophagy level and bone regeneration in aged jawbones. Finally, we found that fatty acid-binding protein 3 (FABP3) was degraded by autolysosomes through its interaction with sequestosome 1 (P62/SQSTM1). Autophagy inhibition within senescent jawbones and S-OBs led to the excessive accumulation of FABP3, and FABP3 knockdown partially rescued the decreased osteogenesis in S-OBs and alleviated age-related compromised jawbone regeneration. In summary, we confirmed that autophagy inhibition plays an important role in delaying bone regeneration in aging jawbones. Autophagic activation or FABP3 knockdown can partially rescue the osteogenesis of S-OBs and the regeneration of aging jawbones, providing insight into jawbone aging.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Bin Sun
- Department of Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Haicheng Wang
- Department of Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yuyi Cai
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Danna Chu
- Department of Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Rongkai Cao
- Department of Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Zuolin Wang
- Department of Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
7
|
Sheng R, Cao M, Song M, Wang M, Zhang Y, Shi L, Xie T, Li Y, Wang J, Rui Y. Muscle-bone crosstalk via endocrine signals and potential targets for osteosarcopenia-related fracture. J Orthop Translat 2023; 43:36-46. [PMID: 38021216 PMCID: PMC10654153 DOI: 10.1016/j.jot.2023.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Osteosarcopenia is a syndrome coexisting sarcopenia and osteopenia/osteoporosis, with a high fracture risk. Recently, skeletal muscle and bone have been recognized as endocrine organs capable of communication through secreting myokines and osteokines, respectively. With a deeper understanding of the muscle-bone crosstalk, these endocrine signals exhibit an important role in osteosarcopenia development and fracture healing. METHODS This review summarizes the role of myokines and osteokines in the development and treatment of osteosarcopenia and fracture, and discusses their potential for osteosarcopenia-related fracture treatment. RESULTS Several well-defined myokines (myostatin and irisin) and osteokines (RANKL and SOST) are found to not only regulate skeletal muscle and bone metabolism but also influence fracture healing processes. Systemic interventions targeting these biochemical signals has shown promising results in improving the mass and functions of skeletal muscle and bone, as well as accelerating fracture healing processes. CONCLUSION The regulation of muscle-bone crosstalk via biochemical signals presents a novel and promising strategy for treating osteosarcopenia and fracture by simultaneously enhancing bone and muscle anabolism. We propose that myostatin, irisin, RANKL, and SOST may serve as potential targets to treat fracture patients with osteosarcopenia. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Osteosarcopenia is an emerging geriatric syndrome where sarcopenia and osteoporosis coexist, with high fracture risk, delayed fracture healing, and increased mortality. However, no pharmacological agent is available to treat fracture patients with osteosarcopenia. This review summarizes the role of several myokines and osteokines in the development and treatment of osteosacropenia and fracture, as well as discusses their potential as intervention targets for osteosarcopenia-related fracture, which provides a novel and promising strategy for future osteosarcopenia-related fracture treatment.
Collapse
Affiliation(s)
- Renwang Sheng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mumin Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mingyuan Song
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mingyue Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yuanwei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Tian Xie
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yingjuan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Jinyu Wang
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| |
Collapse
|
8
|
Cui Y, Yi Q, Sun W, Huang D, Zhang H, Duan L, Shang H, Wang D, Xiong J. Molecular basis and therapeutic potential of myostatin on bone formation and metabolism in orthopedic disease. Biofactors 2023; 49:21-31. [PMID: 32997846 DOI: 10.1002/biof.1675] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a key autocrine/paracrine inhibitor of skeletal muscle growth. Recently, researchers have postulated that myostatin is a negative regulator of bone formation and metabolism. Reportedly, myostatin is highly expressed in the fracture area, affecting the endochondral ossification process during the early stages of fracture healing. Furthermore, myostatin is highly expressed in the synovium of patients with rheumatoid arthritis (RA) and is an effective therapeutic target for interfering with osteoclast formation and joint destruction in RA. Thus, myostatin is a potent anti-osteogenic factor and a direct modulator of osteoclast differentiation. Evaluation of the molecular pathway revealed that myostatin can activate SMAD and mitogen-activated protein kinase signaling pathways, inhibiting the Wnt/β-catenin pathway to synergistically regulate muscle and bone growth and metabolism. In summary, inhibition of myostatin or the myostatin signaling pathway has therapeutic potential in the treatment of orthopedic diseases. This review focused on the effects of myostatin on bone formation and metabolism and discussed the potential therapeutic effects of inhibiting myostatin and its pathways in related orthopedic diseases.
Collapse
Affiliation(s)
- Yinxing Cui
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Qian Yi
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Weichao Sun
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Dixi Huang
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Hui Zhang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
- University of South China, Hengyang, Hunan, China
| | - Li Duan
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Hongxi Shang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Daping Wang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Jianyi Xiong
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Lopas LA, Shen H, Zhang N, Jang Y, Tawfik VL, Goodman SB, Natoli RM. Clinical Assessments of Fracture Healing and Basic Science Correlates: Is There Room for Convergence? Curr Osteoporos Rep 2022; 21:216-227. [PMID: 36534307 DOI: 10.1007/s11914-022-00770-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the clinical and basic science methods used to assess fracture healing and propose a framework to improve the translational possibilities. RECENT FINDINGS Mainstays of fracture healing assessment include clinical examination, various imaging modalities, and assessment of function. Pre-clinical studies have yielded insight into biomechanical progression as well as the genetic, molecular, and cellular processes of fracture healing. Efforts are emerging to identify early markers to predict impaired healing and possibly early intervention to alter these processes. Despite of the differences in clinical and preclinical research, opportunities exist to unify and improve the translational efforts between these arenas to develop and optimize our ability to assess and predict fracture healing, thereby improving the clinical care of these patients.
Collapse
Affiliation(s)
- Luke A Lopas
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1801 N. Senate Blvd Suite 535, Indianapolis, IN, USA.
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yohan Jang
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1801 N. Senate Blvd Suite 535, Indianapolis, IN, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1801 N. Senate Blvd Suite 535, Indianapolis, IN, USA
| |
Collapse
|
10
|
Coapplication of Magnesium Supplementation and Vibration Modulate Macrophage Polarization to Attenuate Sarcopenic Muscle Atrophy through PI3K/Akt/mTOR Signaling Pathway. Int J Mol Sci 2022; 23:ijms232112944. [PMID: 36361730 PMCID: PMC9654727 DOI: 10.3390/ijms232112944] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia is an age-related geriatric syndrome characterized by the gradual loss of muscle mass and function. Low-magnitude high-frequency vibration (LMHFV) was shown to be beneficial to structural and functional outcomes of skeletal muscles, while magnesium (Mg) is a cofactor associated with better indices of skeletal muscle mass and strength. We hypothesized that LMHFV, Mg and their combinations could suppress inflammation and sarcopenic atrophy, promote myogenesis via PI3k/Akt/mTOR pathway in senescence-accelerated mouse P8 (SAMP8) mice and C2C12 myoblasts. Results showed that Mg treatment and LMHFV could significantly decrease inflammatory expression (C/EBPα and LYVE1) and modulate a CD206-positive M2 macrophage population at month four. Mg treatment also showed significant inhibitory effects on FOXO3, MuRF1 and MAFbx mRNA expression. Coapplication showed a synergistic effect on suppression of type I fiber atrophy, with significantly higher IGF-1, MyoD, MyoG mRNA (p < 0.05) and pAkt protein expression (p < 0.0001) during sarcopenia. In vitro inhibition of PI3K/Akt and mTOR abolished the enhancement effects on myotube formation and inhibited MRF mRNA and p85, Akt, pAkt and mTOR protein expressions. The present study demonstrated that the PI3K/Akt/mTOR pathway is the predominant regulatory mechanism through which LMHFV and Mg enhanced muscle regeneration and suppressed atrogene upregulation.
Collapse
|
11
|
Analysis of the Effects of Ninjin’yoeito on Physical Frailty in Mice. Int J Mol Sci 2022; 23:ijms231911183. [PMID: 36232484 PMCID: PMC9569708 DOI: 10.3390/ijms231911183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Physical frailty is an aging-related clinical syndrome involving decreases in body weight, mobility, activity, and walking speed that occurs in individuals with sarcopenia and is accelerated by increased oxidative stress. Ninjin’yoeito, a traditional Japanese Kampo medicine, is used for treating conditions, including anemia and physical weakness. Here, we investigated whether ninjin’yoeito could improve physical frailty by controlling oxidative stress in the senescence-accelerated mouse prone 8 (SAMP8) model. First, SAMP8 mice were divided into two groups, ninjin’yoeito treated and untreated, with the former consuming a diet containing 3% ninjin’yoeito from 3 months of age. At 7 months of age, body weight, motor function, locomotor activity, and mean walking speed were measured. Subsequently, mice were euthanized and measured for muscle weight, 8-hydroxy-2′-deoxyguanosine levels in muscle and brain, and cleaved caspase-3 expression in brain. The results showed reductions in weight, locomotor function, locomotion, and average walking speed in the untreated group, which were significantly improved by ninjin’yoeito. Furthermore, 8-hydroxy-2′-deoxyguanosine levels were reduced in muscle and brain from ninjin’yoeito-treated mice, compared with the levels in untreated mice; cleaved caspase-3 expression was similarly reduced in brain from the treated mice, indicating reduced apoptosis. Our findings suggest that ninjin’yoeito inhibits sarcopenia-based physical frailty through its antioxidant effects.
Collapse
|
12
|
Li MCM, Chow SKH, Wong RMY, Chen B, Cheng JCY, Qin L, Cheung WH. Osteocyte-specific dentin matrix protein 1 : the role of mineralization regulation in low-magnitude high-frequency vibration enhanced osteoporotic fracture healing. Bone Joint Res 2022; 11:465-476. [PMID: 35787000 PMCID: PMC9350691 DOI: 10.1302/2046-3758.117.bjr-2021-0476.r2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aims There is an increasing concern of osteoporotic fractures in the ageing population. Low-magnitude high-frequency vibration (LMHFV) was shown to significantly enhance osteoporotic fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). Dentin matrix protein 1 (DMP1) in osteocytes is known to be responsible for maintaining the LCN and mineralization. This study aimed to investigate the role of osteocyte-specific DMP1 during osteoporotic fracture healing augmented by LMHFV. Methods A metaphyseal fracture was created in the distal femur of ovariectomy-induced osteoporotic Sprague Dawley rats. Rats were randomized to five different groups: 1) DMP1 knockdown (KD), 2) DMP1 KD + vibration (VT), 3) Scramble + VT, 4) VT, and 5) control (CT), where KD was performed by injection of short hairpin RNA (shRNA) into marrow cavity; vibration treatment was conducted at 35 Hz, 0.3 g; 20 minutes/day, five days/week). Assessments included radiography, micro-CT, dynamic histomorphometry and immunohistochemistry on DMP1, sclerostin, E11, and fibroblast growth factor 23 (FGF23). In vitro, murine long bone osteocyte-Y4 (MLO-Y4) osteocyte-like cells were randomized as in vivo groupings. DMP1 KD was performed by transfecting cells with shRNA plasmid. Assessments included immunocytochemistry on osteocyte-specific markers as above, and mineralized nodule staining. Results Healing capacities in DMP1 KD groups were impaired. Results showed that DMP1 KD significantly abolished vibration-enhanced fracture healing at week 6. DMP1 KD significantly altered the expression of osteocyte-specific markers. The lower mineralization rate in DMP1 KD groups indicated that DMP1 knockdown was associated with poor fracture healing process. Conclusion The blockage of DMP1 would impair healing outcomes and negate LMHFV-induced enhancement on fracture healing. These findings reveal the importance of DMP1 in response to the mechanical signal during osteoporotic fracture healing. Cite this article: Bone Joint Res 2022;11(7):465–476.
Collapse
Affiliation(s)
- Meng C M Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon K-H Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald M Y Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Bailing Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jack C Y Cheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Campos MS, Volpon JB, Ximenez JPB, Franttini AP, Dalloul CE, Sousa-Neto MD, Silva RA, Kacena MA, Zamarioli A. Vibration therapy as an effective approach to improve bone healing in diabetic rats. Front Endocrinol (Lausanne) 2022; 13:909317. [PMID: 36060973 PMCID: PMC9437439 DOI: 10.3389/fendo.2022.909317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate the effects of vibration therapy on fracture healing in diabetic and non-diabetic rats. METHODS 148 rats underwent fracture surgery and were assigned to four groups: (1) SHAM: weight-matched non-diabetic rats, (2) SHAM+VT: non-diabetic rats treated with vibration therapy (VT), (3) DM: diabetic rats, and (4) DM+VT: diabetic rats treated with VT. Thirty days after diabetes induction with streptozotocin, animals underwent bone fracture, followed by surgical stabilization. Three days after bone fracture, rats began VT. Bone healing was assessed on days 14 and 28 post-fracture by serum bone marker analysis, and femurs collected for dual-energy X-ray absorptiometry, micro-computed tomography, histology, and gene expression. RESULTS Our results are based on 88 animals. Diabetes led to a dramatic impairment of bone healing as demonstrated by a 17% reduction in bone mineral density and decreases in formation-related microstructural parameters compared to non-diabetic control rats (81% reduction in bone callus volume, 69% reduction in woven bone fraction, 39% reduction in trabecular thickness, and 45% in trabecular number). These changes were accompanied by a significant decrease in the expression of osteoblast-related genes (Runx2, Col1a1, Osx), as well as a 92% reduction in serum insulin-like growth factor I (IGF-1) levels. On the other hand, resorption-related parameters were increased in diabetic rats, including a 20% increase in the callus porosity, a 33% increase in trabecular separation, and a 318% increase in serum C terminal telopeptide of type 1 collagen levels. VT augmented osteogenic and chondrogenic cell proliferation at the fracture callus in diabetic rats; increased circulating IGF-1 by 668%, callus volume by 52%, callus bone mineral content by 90%, and callus area by 72%; and was associated with a 19% reduction in circulating receptor activator of nuclear factor kappa beta ligand (RANK-L). CONCLUSIONS Diabetes had detrimental effects on bone healing. Vibration therapy was effective at counteracting the significant disruption in bone repair induced by diabetes, but did not improve fracture healing in non-diabetic control rats. The mechanical stimulus not only improved bone callus quality and quantity, but also partially restored the serum levels of IGF-1 and RANK-L, inducing bone formation and mineralization, thus creating conditions for adequate fracture repair in diabetic rats.
Collapse
Affiliation(s)
- Maysa S. Campos
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - José B. Volpon
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - João Paulo B. Ximenez
- Laboratory of Molecular Biology, Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, Ribeirão Preto, SP, Brazil
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Paula Franttini
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Christopher E. Dalloul
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Manoel D. Sousa-Neto
- School of Dentistry of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Raquel A. Silva
- School of Dentistry of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, United States
| | - Ariane Zamarioli
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
- *Correspondence: Ariane Zamarioli,
| |
Collapse
|
14
|
Zhang N, Utsunomiya T, Lin T, Kohno Y, Ueno M, Maruyama M, Huang E, Rhee C, Yao Z, Goodman SB. Mesenchymal Stem Cells and NF-κB Sensing Interleukin-4 Over-Expressing Mesenchymal Stem Cells Are Equally Effective in Mitigating Particle-Associated Chronic Inflammatory Bone Loss in Mice. Front Cell Dev Biol 2021; 9:757830. [PMID: 34722543 PMCID: PMC8551755 DOI: 10.3389/fcell.2021.757830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Wear particles from total joint arthroplasties (TJAs) induce chronic inflammation, macrophage infiltration and lead to bone loss by promoting bone destruction and inhibiting bone formation. Inhibition of particle-associated chronic inflammation and the associated bone loss is critical to the success and survivorship of TJAs. The purpose of this study is to test the hypothesis that polyethylene particle induced chronic inflammatory bone loss could be suppressed by local injection of NF-κB sensing Interleukin-4 (IL-4) over-expressing MSCs using the murine continuous polyethylene particle infusion model. The animal model was generated with continuous infusion of polyethylene particles into the intramedullary space of the femur for 6 weeks. Cells were locally injected into the intramedullary space 3 weeks after the primary surgery. Femurs were collected 6 weeks after the primary surgery. Micro-computational tomography (μCT), histochemical and immunohistochemical analyses were performed. Particle-infusion resulted in a prolonged pro-inflammatory M1 macrophage dominated phenotype and a decrease of the anti-inflammatory M2 macrophage phenotype, an increase in TRAP positive osteoclasts, and lower alkaline phosphatase staining area and bone mineral density, indicating chronic particle-associated inflammatory bone loss. Local injection of MSCs or NF-κB sensing IL-4 over-expressing MSCs reversed the particle-associated chronic inflammatory bone loss and facilitated bone healing. These results demonstrated that local inflammatory bone loss can be effectively modulated via MSC-based treatments, which could be an efficacious therapeutic strategy for periprosthetic osteolysis.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Tzuhua Lin
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Yusuke Kohno
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Masaya Ueno
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Ejun Huang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Claire Rhee
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
15
|
Shen H, Gardner AM, Vyas J, Ishida R, Tawfik VL. Modeling Complex Orthopedic Trauma in Rodents: Bone, Muscle and Nerve Injury and Healing. Front Pharmacol 2021; 11:620485. [PMID: 33597884 PMCID: PMC7882733 DOI: 10.3389/fphar.2020.620485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022] Open
Abstract
Orthopedic injury can occur from a variety of causes including motor vehicle collision, battlefield injuries or even falls from standing. Persistent limb pain is common after orthopedic injury or surgery and presents a unique challenge, as the initiating event may result in polytrauma to bone, muscle, and peripheral nerves. It is imperative that we understand the tissue-specific and multicellular response to this unique type of injury in order to best develop targeted treatments that improve healing and regeneration. In this Mini Review we will first discuss current rodent models of orthopedic trauma/complex orthotrauma. In the second section, we will focus on bone-specific outcomes including imaging modalities, biomechanical testing and immunostaining for markers of bone healing/turnover. In the third section, we will discuss muscle-related pathology including outcome measures of fibrosis, muscle regeneration and tensile strength measurements. In the fourth section, we will discuss nervous system-related pathology including outcome measures of pain-like responses, both reflexive and non-reflexive. In all sections we will consider parallels between preclinical outcome measures and the functional and mechanistic findings of the human condition.
Collapse
Affiliation(s)
- Huaishuang Shen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States.,Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Aysha M Gardner
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Juhee Vyas
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Ryosuke Ishida
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States.,Department of Anesthesiology, Shimane University, Shimane, Japan
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
16
|
Huang Y, Wu B, Shen D, Chen J, Yu Z, Chen C. Ferroptosis in a sarcopenia model of senescence accelerated mouse prone 8 (SAMP8). Int J Biol Sci 2021; 17:151-162. [PMID: 33390840 PMCID: PMC7757032 DOI: 10.7150/ijbs.53126] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/01/2020] [Indexed: 12/20/2022] Open
Abstract
As a systemic syndrome characterized by age-associated degenerative skeletal muscle atrophy, sarcopenia leads to a risk of adverse outcomes in the elderly. Age-related iron accumulation is found in the muscles of sarcopenia animal models and patients, but the role of iron in sarcopenia remains poorly understood. It has been recently found that iron overload in several diseases is involved in ferroptosis, an iron- dependent form of programmed cell death. However, whether this excess iron can result in ferroptosis in muscles is still unclear. In our present study, we found that ferric citrate induced ferroptosis in C2C12 cells, as well as impaired their differentiation from myoblasts to myotubes. Due to the decreased muscle mass and fiber size, 40-week-old senescence accelerated mouse prone 8 (SAMP8) mice were used as a sarcopenia model, in whose muscles the iron content and markers of ferroptosis were found to increase, compared to 8-week- old SAMP8 controls. Moreover, our results showed that iron overload upregulated the expression of P53, which subsequently repressed the protein level of Slc7a11 (solute carrier family 7, member 11), a known ferroptosis-related gene. The downregulation of Slc7a11 then induced the ferroptosis of muscle cells through the accumulation of lipid peroxidation products, which may be one of the causes of sarcopenia. The findings in this study indicate that iron plays a key role in triggering P53- Slc7a11-mediated ferroptosis in muscles, and suggest that targeting iron accumulation and ferroptosis might be a therapeutic strategy for treating sarcopenia.
Collapse
Affiliation(s)
- Yan Huang
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, People's Republic of China
| | - Beiling Wu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, People's Republic of China
| | - Dingzhu Shen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, People's Republic of China
| | - Jiulin Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, People's Republic of China
| | - Zhihua Yu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, People's Republic of China
| | - Chuan Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, People's Republic of China
| |
Collapse
|
17
|
He C, He W, Hou J, Chen K, Huang M, Yang M, Luo X, Li C. Bone and Muscle Crosstalk in Aging. Front Cell Dev Biol 2020; 8:585644. [PMID: 33363144 PMCID: PMC7758235 DOI: 10.3389/fcell.2020.585644] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis and sarcopenia are two age-related diseases that affect the quality of life in the elderly. Initially, they were thought to be two independent diseases; however, recently, increasing basic and clinical data suggest that skeletal muscle and bone are both spatially and metabolically connected. The term "osteosarcopenia" is used to define a condition of synergy of low bone mineral density with muscle atrophy and hypofunction. Bone and muscle cells secrete several factors, such as cytokines, myokines, and osteokines, into the circulation to influence the biological and pathological activities in local and distant organs and cells. Recent studies reveal that extracellular vesicles containing microRNAs derived from senescent skeletal muscle and bone cells can also be transported and aid in regulating bone-muscle crosstalk. In this review, we summarize the age-related changes in the secretome and extracellular vesicle-microRNAs secreted by the muscle and bone, and discuss their interactions between muscle and bone cells during aging.
Collapse
Affiliation(s)
- Chen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Kaixuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
18
|
Steppe L, Liedert A, Ignatius A, Haffner-Luntzer M. Influence of Low-Magnitude High-Frequency Vibration on Bone Cells and Bone Regeneration. Front Bioeng Biotechnol 2020; 8:595139. [PMID: 33195165 PMCID: PMC7609921 DOI: 10.3389/fbioe.2020.595139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Bone is a mechanosensitive tissue for which mechanical stimuli are crucial in maintaining its structure and function. Bone cells react to their biomechanical environment by activating molecular signaling pathways, which regulate their proliferation, differentiation, and matrix production. Bone implants influence the mechanical conditions in the adjacent bone tissue. Optimizing their mechanical properties can support bone regeneration. Furthermore, external biomechanical stimulation can be applied to improve implant osseointegration and accelerate bone regeneration. One promising anabolic therapy is vertical whole-body low-magnitude high-frequency vibration (LMHFV). This form of vibration is currently extensively investigated to serve as an easy-to-apply, cost-effective, and efficient treatment for bone disorders and regeneration. This review aims to provide an overview of LMHFV effects on bone cells in vitro and on implant integration and bone fracture healing in vivo. In particular, we review the current knowledge on cellular signaling pathways which are influenced by LMHFV within bone tissue. Most of the in vitro experiments showed that LMHFV is able to enhance mesenchymal stem cell (MSC) and osteoblast proliferation. Furthermore, osteogenic differentiation of MSCs and osteoblasts was shown to be accelerated by LMHFV, whereas osteoclastogenic differentiation was inhibited. Furthermore, LMHFV increased bone regeneration during osteoporotic fracture healing and osseointegration of orthopedic implants. Important mechanosensitive pathways mediating the effects of LMHFV might be the Wnt/beta-catenin signaling pathway, the estrogen receptor (ER) signaling pathway, and cytoskeletal remodeling.
Collapse
Affiliation(s)
- Lena Steppe
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
19
|
Scheuren AC, Vallaster P, Kuhn GA, Paul GR, Malhotra A, Kameo Y, Müller R. Mechano-Regulation of Trabecular Bone Adaptation Is Controlled by the Local in vivo Environment and Logarithmically Dependent on Loading Frequency. Front Bioeng Biotechnol 2020; 8:566346. [PMID: 33154964 PMCID: PMC7591723 DOI: 10.3389/fbioe.2020.566346] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
It is well-established that cyclic, but not static, mechanical loading has anabolic effects on bone. However, the function describing the relationship between the loading frequency and the amount of bone adaptation remains unclear. Using a combined experimental and computational approach, this study aimed to investigate whether trabecular bone mechano-regulation is controlled by mechanical signals in the local in vivo environment and dependent on loading frequency. Specifically, by combining in vivo micro-computed tomography (micro-CT) imaging with micro-finite element (micro-FE) analysis, we monitored the changes in microstructural as well as the mechanical in vivo environment [strain energy density (SED) and SED gradient] of mouse caudal vertebrae over 4 weeks of either cyclic loading at varying frequencies of 2, 5, or 10 Hz, respectively, or static loading. Higher values of SED and SED gradient on the local tissue level led to an increased probability of trabecular bone formation and a decreased probability of trabecular bone resorption. In all loading groups, the SED gradient was superior in the determination of local bone formation and resorption events as compared to SED. Cyclic loading induced positive net (re)modeling rates when compared to sham and static loading, mainly due to an increase in mineralizing surface and a decrease in eroded surface. Consequently, bone volume fraction increased over time in 2, 5, and 10 Hz (+15%, +21% and +24%, p ≤ 0.0001), while static loading led to a decrease in bone volume fraction (-9%, p ≤ 0.001). Furthermore, regression analysis revealed a logarithmic relationship between loading frequency and the net change in bone volume fraction over the 4 week observation period (R 2 = 0.74). In conclusion, these results suggest that trabecular bone adaptation is regulated by mechanical signals in the local in vivo environment and furthermore, that mechano-regulation is logarithmically dependent on loading frequency with frequencies below a certain threshold having catabolic effects, and those above anabolic effects. This study thereby provides valuable insights toward a better understanding of the mechanical signals influencing trabecular bone formation and resorption in the local in vivo environment.
Collapse
Affiliation(s)
| | - Paul Vallaster
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Gisela A. Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Graeme R. Paul
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Angad Malhotra
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Yoshitaka Kameo
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|