1
|
Ariyanfar A, Bahrami M, Klein K, von Rechenberg B, Darwiche S, Dailey HL. Fast automated creation of digital twins for virtual mechanical testing of ovine fractured tibiae. Comput Biol Med 2025; 192:110268. [PMID: 40318495 DOI: 10.1016/j.compbiomed.2025.110268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/07/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Virtual mechanical testing with image-based digital twins enables subject-specific insights about the mechanical progression of bone fracture healing directly from imaging data. However, this technique is currently limited by the need for commercial software packages that require manual input to create finite element (FE) models from computed tomography (CT) scans. The purpose of this study was to develop automated image analysis algorithms that can create subject-specific models from CT scans without a human in the loop. Two competing techniques were developed and tested on an imaging dataset consisting of 26 intact and 44 osteotomized ovine tibiae. In both techniques, the raw image was cropped to an efficient bounding box, downsampled, segmented by an element-formation threshold, and cleaned up for efficient FE analysis using voxel-based meshes. The key difference between contour-free (CFT) and snake-reliant (SRT) techniques was threshold- and contour-based segmentation of images, respectively, before bounding box detection. The contours were detected using a snake that balanced desired aspects of the contours through energy minimization. Virtual torsion tests were performed and the results were validated by comparison to ground-truth experimental data. The CFT and SRT models produced nearly identical predictions of virtual torsional rigidity and both methods reliably replicated the physical tests. Models generated by SRT were faster to solve, but model preparation and solution combined was faster by CFT. Automatic digital twin creation by CFT is therefore recommended except where other downstream analyses require systematic spatial data sampling of the bone, which is only achieved by SRT.
Collapse
Affiliation(s)
- Alireza Ariyanfar
- Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA, USA
| | - Mehran Bahrami
- Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA, USA
| | - Karina Klein
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland; Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Salim Darwiche
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland; Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Hannah L Dailey
- Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
2
|
Schwarzenberg P, Schlatter J, Ernst M, Windolf M, Dailey HL, Varga P. Prognostic bone fracture healing simulations in an ovine tibia model validated with in vivo sensors. J Orthop Res 2025; 43:370-378. [PMID: 39521730 DOI: 10.1002/jor.26007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Bone fracture healing is a complex physiological process influenced by biomechanical and biomolecular factors. Mechanical stability is crucial for successful healing, and disruptions can lead to delayed healing or nonunion. Bone commonly heals itself through secondary fracture healing, which is governed by the mechanical strain at the fracture site. To investigate these phenomena, a validated methodology for capturing the mechanoregulatory process in specimen-specific models of fracture healing could provide insight into the healing process. This study implemented a prognostic healing simulation framework to predict healing trajectories based on mechanical stimuli. Sixteen sheep were subjected to a 3 mm transverse tibial mid-shaft osteotomy, stabilized with a custom plate, and equipped with displacement transducer sensors to measure interfragmentary motion over 8 weeks. Computed tomography scans were used to create specimen-specific bone geometries for finite element analysis. Virtual mechanical testing was performed iteratively to calculate strains in the callus region, which guided tissue differentiation and consequently, healing. The predicted healing outcomes were compared to continuous in vivo sensor data, providing a unique validation data set. Healing times derived from the in vivo sensor and in silico sensor showed no significant differences, suggesting the potential for these predictive models to inform clinical assessments and improve nonunion risk evaluations. This study represents a crucial step towards establishing trustworthy computational models of bone healing and translating these to the preclinical and clinical setting, enhancing our understanding of fracture healing mechanisms. Clinical significance: Prognostic bone fracture healing simulation could assist in non-union diagnosis and prediction.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter Varga
- AO Research Institute Davos, Davos, Switzerland
| |
Collapse
|
3
|
Bahrami M, Frew K, Hughes J, Dailey HL. Reliable and streamlined model setup for digital twin assessment of fracture healing. J Biomech 2025; 180:112492. [PMID: 39764883 DOI: 10.1016/j.jbiomech.2025.112492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/06/2024] [Accepted: 01/02/2025] [Indexed: 01/29/2025]
Abstract
In large animal models of bone fracture repair, postmortem torsional testing is commonly used to assess healing biomechanics. Bending and axial tests are physiologically relevant, but much less commonly performed. Virtual torsional testing using image-based finite element models has been validated to postmortem bench tests, but its predictive value for capturing whole-bone mechanics and fracture healing quality under other physiologically relevant loading modes has not yet been established. Accordingly, the purpose of this study was to evaluate the association between mechanical biomarkers derived from virtual torsion, axial, and bending tests under strict alignment and malalignment conditions. Computed tomography (CT) scans from 24 intact and operated sheep tibiae and 29 human tibial fractures were used to create digital twins that were subjected to torsion, axial, and bending tests. The results indicated that torsional rigidity is a strong surrogate for bending flexural rigidity in both ovine and human bones. Torsional rigidity and axial stiffness were strongly correlated in the ovine data, but only moderately in human fractures due to the complex fracture patterns. Axial testing was highly prone to stiffness estimation errors as high as 50% if the applied load and anatomic axis were not perfectly aligned. In contrast, torsional rigidity had errors <1.3% for all malalignment scenarios. Based on this study, virtual torsional rigidity is the recommended summary mechanical biomarker of bone healing because it captures variations in healing biomechanics that are present in other loading modes with a simple setup that is insensitive to alignment error.
Collapse
Affiliation(s)
- Mehran Bahrami
- Department of Mechanical Engineering & Mechanics, Lehigh University, 27 Memorial Drive West, Bethlehem, PA 18015, USA.
| | - Kylie Frew
- Department of Mechanical Engineering & Mechanics, Lehigh University, 27 Memorial Drive West, Bethlehem, PA 18015, USA.
| | - John Hughes
- College of Health, Lehigh University, 124 East Morton Street, Bethlehem, PA 18015, USA.
| | - Hannah L Dailey
- Department of Mechanical Engineering & Mechanics, Lehigh University, 27 Memorial Drive West, Bethlehem, PA 18015, USA.
| |
Collapse
|
4
|
Tanveer M, Klein K, von Rechenberg B, Darwiche S, Dailey HL. Don't mind the gap: reframing the Perren strain rule for fracture healing using insights from virtual mechanical testing. Bone Joint Res 2025; 14:5-15. [PMID: 39740681 PMCID: PMC11688128 DOI: 10.1302/2046-3758.141.bjr-2024-0191.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
Aims The "2 to 10% strain rule" for fracture healing has been widely interpreted to mean that interfragmentary strain greater than 10% predisposes a fracture to nonunion. This interpretation focuses on the gap-closing strain (axial micromotion divided by gap size), ignoring the region around the gap where osteogenesis typically initiates. The aim of this study was to measure gap-closing and 3D interfragmentary strains in plated ovine osteotomies and associate local strain conditions with callus mineralization. Methods MicroCT scans of eight female sheep with plated mid-shaft tibial osteotomies were used to create image-based finite element models. Virtual mechanical testing was used to compute postoperative gap-closing and 3D continuum strains representing compression (volumetric strain) and shear deformation (distortional strain). Callus mineralization was measured in zones in and around the osteotomy gap. Results Gap-closing strains averaged 51% (mean) at the far cortex. Peak compressive volumetric strain averaged 32% and only a small tissue volume (average 0.3 cm3) within the gap experienced compressive strains > 10%. Distortional strains were much higher and more widespread, peaking at a mean of 115%, with a mean of 3.3 cm3 of tissue in and around the osteotomy experiencing distortional strains > 10%. Callus mineralization initiated outside the high-strain gap and was significantly lower within the fracture gap compared to around it at nine weeks. Conclusion Ovine osteotomies can heal with high gap strains (> 10%) dominated by shear conditions. High gap strain appears to be a transient local limiter of osteogenesis, not a global inhibitor of secondary fracture repair.
Collapse
Affiliation(s)
- Maham Tanveer
- Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Karina Klein
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Competence Center of Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Salim Darwiche
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Hannah L. Dailey
- Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
5
|
Morgan GT, Low L, Ramasamy A, Masouros SD. A novel strain-based bone-fracture healing algorithm is able to predict a range of healing outcomes. Front Bioeng Biotechnol 2024; 12:1477405. [PMID: 39493303 PMCID: PMC11527658 DOI: 10.3389/fbioe.2024.1477405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Fracture healing is a complex process which sometimes results in non-unions, leading to prolonged disability and high morbidity. Traditional methods of optimising fracture treatments, such as in vitro benchtop testing and in vivo randomised controlled trials, face limitations, particularly in evaluating the entire healing process. This study introduces a novel, strain-based fracture-healing algorithm designed to predict a wide range of healing outcomes, including both successful unions and non-unions. The algorithm uses principal strains as mechanical stimuli to simulate fracture healing in response to local mechanical environments within the callus region. The model demonstrates good agreement with experimental data from ovine metatarsal osteotomies across six fracture cases with varying gap widths and inter-fragmentary strains, replicates physiological bony growth patterns, and is independent of the initial callus geometry. This computational approach provides a framework for developing new fracture-fixation devices, aid in pre-surgical planning, and optimise rehabilitation strategies.
Collapse
Affiliation(s)
- George T. Morgan
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Lucas Low
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Arul Ramasamy
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Academic Department of Military Trauma and Orthopaedics, Royal Centre for Defence Medicine, ICT Centre, Birmingham, United Kingdom
- Trauma and Orthopaedics, Milton Keynes Hospital NHS Foundation Trust, Milton Keynes, United Kingdom
| | - Spyros D. Masouros
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Schwarzenberg P, Colding-Rasmussen T, Hutchinson DJ, San Jacinto Garcia J, Granskog V, Mørk Petersen M, Pastor T, Weis T, Malkoch M, Nai En Tierp-Wong C, Varga P. Determination of the internal loads experienced by proximal phalanx fracture fixations during rehabilitation exercises. Front Bioeng Biotechnol 2024; 12:1388399. [PMID: 39286344 PMCID: PMC11402699 DOI: 10.3389/fbioe.2024.1388399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Phalangeal fractures are common, particularly in younger patients, leading to a large economic burden due to higher incident rates among patients of working age. In traumatic cases where the fracture may be unstable, plate fixation has grown in popularity due to its greater construct rigidity. However, these metal plates have increased reoperation rates due to inflammation of the surrounding soft tissue. To overcome these challenges, a novel osteosynthesis platform, AdhFix, has been developed. This method uses a light-curable polymer that can be shaped in situ around traditional metal screws to create a plate-like structure that has been shown to not induce soft tissue adhesions. However, to effectively evaluate any novel osteosynthesis device, the biomechanical environment must first be understood. In this study, the internal loads in a phalangeal plate osteosynthesis were measured under simulated rehabilitation exercises. In a human hand cadaver study, a plastic plate with known biomechanical properties was used to fix a 3 mm osteotomy and each finger was fully flexed to mimic traditional rehabilitation exercises. The displacements of the bone fragments were tracked with a stereographic camera system and coupled with specimen specific finite element (FE) models to calculate the internal loads in the osteosynthesis. Following this, AdhFix patches were created and monotonically tested under similar conditions to determine survival of the novel technique. The internal bending moment in the osteosynthesis was 6.78 ± 1.62 Nmm and none of the AdhFix patches failed under the monotonic rehabilitation exercises. This study demonstrates a method to calculate the internal loads on an osteosynthesis device during non-load bearing exercises and that the novel AdhFix solution did not fail under traditional rehabilitation protocols in this controlled setting. Further studies are required prior to clinical application.
Collapse
Affiliation(s)
| | - Thomas Colding-Rasmussen
- Department of Orthopedic Surgery, Hvidovre University Hospital, Copenhagen, Denmark
- Department of Orthopedic Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Daniel J Hutchinson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jorge San Jacinto Garcia
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Michael Mørk Petersen
- Department of Orthopedic Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tatjana Pastor
- AO Research Institute Davos, Davos, Switzerland
- Department for Plastic and Hand Surgery, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Tine Weis
- Department of Orthopedic Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Malkoch
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christian Nai En Tierp-Wong
- Department of Orthopedic Surgery, Hvidovre University Hospital, Copenhagen, Denmark
- Department of Orthopedic Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Varga
- AO Research Institute Davos, Davos, Switzerland
| |
Collapse
|
7
|
Ren T, Inglis B, Darwiche S, Dailey HL. Torsion constants and virtual mechanical tests are valid image-based surrogate measures of ovine fracture healing. J Orthop Res 2024; 42:1810-1819. [PMID: 38491964 DOI: 10.1002/jor.25836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 08/30/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
In large animal studies, the mechanical reintegration of the bone fragments is measured using postmortem physical testing, but these assessments can only be performed once, after sacrifice. Image-based virtual mechanical testing is an attractive alternative because it could be used to monitor healing longitudinally. However, the procedures and software required to perform finite element analysis (FEA) on subject-specific models for virtual mechanical testing can be time consuming and costly. Accordingly, the goal of this study was to determine whether a simpler image-based geometric measure-the torsion constant, sometimes known as polar moment of inertia-can be reliably used as a surrogate measure of bone healing in large animals. To achieve this, postmortem biomechanical testing and microCT scans were analyzed for a total of 33 operated and 20 intact ovine tibiae. An image-processing procedure to compute the attenuation-weighted torsion constant from the microCT scans was developed in MATLAB and this code has been made freely available. Linear regression analysis was performed between the postmortem biomechanical data, the results of virtual mechanical testing using FEA, and the torsion constants measured from the scans. The results showed that virtual mechanical testing is the most reliable surrogate measure of postmortem torsional rigidity, having strong correlations and high absolute agreement. However, when FEA is not practical, the torsion constant is a viable alternative surrogate measure that is moderately correlated with postmortem torsional rigidity and can be readily calculated.
Collapse
Affiliation(s)
- Tianyi Ren
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Brendan Inglis
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Salim Darwiche
- Musculoskeltal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Hannah L Dailey
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
8
|
Hetreau C, Mischler D, Schlatter J, Valenti A, Ernst M, Varga P, Schwarzenberg P. Longitudinal CT-based finite element analyses provide objective fracture healing measures in an ovine tibia model. J Orthop Res 2024; 42:1762-1770. [PMID: 38483000 DOI: 10.1002/jor.25838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 07/04/2024]
Abstract
Measuring the healing status of a bone fracture is important to determine the clinical care a patient receives. Implantable devices can directly and continuously assess the healing status of fracture fixation constructs, while subject-specific virtual biomechanical tests can noninvasively determine callus structural integrity at single time points. Despite their potential for objectification, both methods are not yet integrated into clinical practice with further evidence of their benefits required. This study correlated continuous data from an implantable sensor assessing healing status through implant load monitoring with computer tomography (CT) based longitudinal finite element (FE) simulations in a large animal model. Eight sheep were part of a previous preclinical study utilizing a tibial osteotomy model and equipped with such a sensor. Sensor signal was collected over several months, and CT scans were acquired at six interim time points. For each scan, two FE analyses were performed: a virtual torsional rigidity test of the bone and a model of the bone-implant construct with the sensor. The longitudinal simulation results were compared to the sensor data at corresponding time points and a cohort-specific empirical healing rule was employed. Healing status predicted by both in silico simulations correlated significantly with the sensor data at corresponding time points and correctly identified a delayed and a nonunion in the cohort. The methodology is readily translatable with the potential to be applied to further preclinical or clinical cohorts to find generalizable healing criteria. Virtual mechanical tests can objectively measure fracture healing progressing using longitudinal CT scans.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter Varga
- AO Research Institute Davos, Davos, Switzerland
| | | |
Collapse
|
9
|
Reumann MK, Hillrichs H, Menger MM, Herath SC, Rollmann MFR, Stuby F, Histing T, Braun BJ. [Nonunions after intertrochanteric and subtrochanteric femoral fractures]. UNFALLCHIRURGIE (HEIDELBERG, GERMANY) 2024; 127:356-363. [PMID: 38224360 DOI: 10.1007/s00113-023-01402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 01/16/2024]
Abstract
INTRODUCTION The overall frequency of proximal femoral fractures means that we are repeatedly confronted with failed healing and implant failure, despite a relatively low nonunion rate especially in intertrochanteric fractures (< 5%). The aim of this paper is to present our approach to treating these nonunions of the proximal femur and discuss the treatment results. MATERIAL AND METHODS Between 2009 and 2023, patients with nonunion of the proximal femur were retrospectively identified and analyzed. Age, gender, time to revision, the Weber-Cech classification of pseudarthrosis and radiographic imaging before and after revision were analyzed. RESULTS A total of 66 patients were analyzed. The mean age was 58 years (range 25-88 years). The overall healing rate was 88% with a mean consolidation time of 8 months (range 2-29 months). The main osteosynthesis procedures were plate osteosynthesis (n = 45, of which 44 were blade plates), and nail replacement (n = 12). Other procedures included augmentative plate osteosyntheses (n = 4), isolated cancellous bone graft (n = 2), nail dynamization (n = 2), and the use of a dynamic hip screw (n = 1). DISCUSSION The analysis of our treatment data as well as the current literature, revealed a trend towards intramedullary revision procedures. Implants that can be used to correct the CCD angle, such as the blade plate, remain a predictable option to achieve correction, especially in nonunions with an increased degree of varus. Particularly in the subtrochanteric region, fractures can also be treated in a targeted manner by a combination of mechanical and biological methods with a reamed nail change to a larger caliber implant.
Collapse
Affiliation(s)
- Marie K Reumann
- Klinik für Unfall- und Wiederherstellungschirurgie, BG Klinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Deutschland
| | - Hauke Hillrichs
- Klinik für Unfallchirurgie, Orthopädie und Allgemeinchirurgie, BG Unfallklinik Murnau, Murnau, Deutschland
| | - Maximilian M Menger
- Klinik für Unfall- und Wiederherstellungschirurgie, BG Klinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Deutschland
| | - Steven C Herath
- Klinik für Unfall- und Wiederherstellungschirurgie, BG Klinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Deutschland
| | - Mika F R Rollmann
- Klinik für Unfall- und Wiederherstellungschirurgie, BG Klinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Deutschland
| | - Fabian Stuby
- Klinik für Unfallchirurgie, Orthopädie und Allgemeinchirurgie, BG Unfallklinik Murnau, Murnau, Deutschland
| | - Tina Histing
- Klinik für Unfall- und Wiederherstellungschirurgie, BG Klinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Deutschland
| | - Benedikt J Braun
- Klinik für Unfall- und Wiederherstellungschirurgie, BG Klinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Deutschland.
| |
Collapse
|
10
|
Ariyanfar A, Klein K, von Rechenberg B, Darwiche S, Dailey HL. Adaptive Image Segmentation Reveals Substantial Cortical Bone Remodeling During Early Fracture Repair. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING. IMAGING & VISUALIZATION 2024; 12:2345165. [PMID: 39036745 PMCID: PMC11257215 DOI: 10.1080/21681163.2024.2345165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/15/2024] [Indexed: 07/23/2024]
Abstract
The goal of this study was to develop an image analysis algorithm for quantifying the effects of remodeling on cortical bone during early fracture healing. An adaptive thresholding technique with boundary curvature and tortuosity control was developed to automatically identify the endocortical and pericortical boundaries in the presence of high-gradient bone mineral density (BMD) near the healing zone. The algorithm successfully segmented more than 47,000 microCT images from 12 healing ovine osteotomies and intact contralateral tibiae. Resampling techniques were used to achieve data dimensionality reduction on the segmented images, allowing characterization of radial and axial distributions of cortical BMD. Local (transverse slice) and total (whole bone) remodeling scores were produced. These surrogate measures of cortical remodeling derived from BMD revealed that cortical changes were detectable throughout the region covered by callus and that the localized loss of cortical BMD was highest near the osteotomy. Total remodeling score was moderately and significantly correlated with callus volume and mineral composition (r > 0.64, p < 0.05), suggesting that the cortex may be a source of mineral needed to build callus.
Collapse
Affiliation(s)
- Alireza Ariyanfar
- Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA, USA
| | - Karina Klein
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Salim Darwiche
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Hannah L. Dailey
- Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
11
|
Inglis B, Grumbles D, Dailey HL. Dual-zone material assignment method for correcting partial volume effects in image-based bone models. Comput Methods Biomech Biomed Engin 2023; 26:1431-1442. [PMID: 36062947 DOI: 10.1080/10255842.2022.2119383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
Abstract
In image-based finite element analysis of bone, partial volume effects (PVEs) arise from image blur at tissue boundaries and as a byproduct of geometric reconstruction and meshing during model creation. In this study, we developed and validated a material assignment approach to mitigate partial volume effects. Our validation data consisted of physical torsion testing of intact tibiae from N = 20 Swiss alpine sheep. We created finite element models from micro-CT scans of these tibiae using three popular element types (10-node tetrahedral, 8-node hexahedral, and 20-node hexahedral). Without partial volume management, the models over-predicted the torsional rigidity compared to physical biomechanical tests. To address this problem, we implemented a dual-zone material model to treat elements that overlap low-density surface voxels as soft tissue rather than bone. After in situ inverse optimization, the dual-zone material model produced strong correlations and high absolute agreement between the virtual and physical tests. This suggests that with appropriate partial volume management, virtual mechanical testing can be a reliable surrogate for physical biomechanical testing. For maximum flexibility in partial volume management regardless of element type, we recommend the use of the following dual-zone material model for ovine tibiae: soft-tissue cutoff density of 665 mgHA/cm3 with a soft tissue modulus of 50 MPa (below cutoff) and a density-modulus conversion slope of 10,225 MPa-cm3/mgHA for bone (above cutoff).
Collapse
Affiliation(s)
- Brendan Inglis
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Daniel Grumbles
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Hannah L Dailey
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
12
|
Shariyate MJ, Kheir N, Caro D, Abbasian M, Rodriguez EK, Snyder BD, Nazarian A. Assessment of Bone Healing: Opportunities to Improve the Standard of Care. J Bone Joint Surg Am 2023; 105:1193-1202. [PMID: 37339171 DOI: 10.2106/jbjs.22.01224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
➤ Bone healing is commonly evaluated by clinical examination and serial radiographic evaluation. Physicians should be mindful that personal and cultural differences in pain perception may affect the clinical examination. Radiographic assessment, even with the Radiographic Union Score, is qualitative, with limited interobserver agreement.➤ Physicians may use serial clinical and radiographical examinations to assess bone healing in most patients, but in ambiguous and complicated cases, they may require other methods to provide assistance in decision-making.➤ In complicated instances, clinically available biomarkers, ultrasound, and magnetic resonance imaging may determine initial callus development. Quantitative computed tomography and finite element analysis can estimate bone strength in later callus consolidation phases.➤ As a future direction, quantitative rigidity assessments for bone healing may help patients to return to function earlier by increasing a clinician's confidence in successful progressive healing.
Collapse
Affiliation(s)
- Mohammad Javad Shariyate
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Nadim Kheir
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Daniela Caro
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Mohammadreza Abbasian
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Edward K Rodriguez
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Brian D Snyder
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Orthopaedic Surgery, Yerevan State Medical University Yerevan, Armenia
| |
Collapse
|
13
|
Darwiche SE, Kaczmarek A, Schwarzenberg P, Inglis BJ, Lechmann B, Kronen P, Ferguson SJ, Dailey H, von Rechenberg B, Klein K. Combined electric and magnetic field therapy for bone repair and regeneration: an investigation in a 3-mm and an augmented 17-mm tibia osteotomy model in sheep. J Orthop Surg Res 2023; 18:454. [PMID: 37355696 DOI: 10.1186/s13018-023-03910-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/06/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Therapies using electromagnetic field technology show evidence of enhanced bone regeneration at the fracture site, potentially preventing delayed or nonunions. METHODS Combined electric and magnetic field (CEMF) treatment was evaluated in two standardized sheep tibia osteotomy models: a 3-mm non-critical size gap model and a 17-mm critical size defect model augmented with autologous bone grafts, both stabilized with locking compression plates. CEMF treatment was delivered across the fracture gap twice daily for 90 min, starting 4 days postoperatively (post-OP) until sacrifice (9 or 12 weeks post-OP, respectively). Control groups received no CEMF treatment. Bone healing was evaluated radiographically, morphometrically (micro-CT), biomechanically and histologically. RESULTS In the 3-mm gap model, the CEMF group (n = 6) exhibited higher callus mineral density compared to the Control group (n = 6), two-fold higher biomechanical torsional rigidity and a histologically more advanced callus maturity (no statistically significant differences). In the 17-mm graft model, differences between the Control (n = 6) and CEMF group (n = 6) were more pronounced. The CEMF group showed a radiologically more advanced callus, a higher callus volume (p = 0.003) and a 2.6 × higher biomechanical torsional rigidity (p = 0.024), combined with a histologically more advanced callus maturity and healing. CONCLUSIONS This study showed that CEMF therapy notably enhanced bone healing resulting in better new bone structure, callus morphology and superior biomechanical properties. This technology could transform a standard inert orthopedic implant into an active device stimulating bone tissue for accelerated healing and regeneration.
Collapse
Affiliation(s)
- Salim E Darwiche
- Musculoskeletal Research Unit (MSRU), University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland.
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zürich, Zürich, Switzerland.
| | - Anna Kaczmarek
- Musculoskeletal Research Unit (MSRU), University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
| | | | | | - Beat Lechmann
- Johnson & Johnson Family of Companies, Solothurn, Switzerland
| | - Peter Kronen
- Musculoskeletal Research Unit (MSRU), University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zürich, Zürich, Switzerland
| | - Stephen J Ferguson
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zürich, Zürich, Switzerland
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | - Brigitte von Rechenberg
- Musculoskeletal Research Unit (MSRU), University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zürich, Zürich, Switzerland
| | - Karina Klein
- Musculoskeletal Research Unit (MSRU), University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
| |
Collapse
|
14
|
Buettmann EG, DeNapoli RC, Abraham LB, Denisco JA, Lorenz MR, Friedman MA, Donahue HJ. Reambulation following hindlimb unloading attenuates disuse-induced changes in murine fracture healing. Bone 2023; 172:116748. [PMID: 37001629 DOI: 10.1016/j.bone.2023.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Patients with bone and muscle loss from prolonged disuse have higher risk of falls and subsequent fragility fractures. In addition, fracture patients with continued disuse and/or delayed physical rehabilitation have worse clinical outcomes compared to individuals with immediate weight-bearing activity following diaphyseal fracture. However, the effects of prior disuse followed by physical reambulation on fracture healing cellular processes and adjacent bone and skeletal muscle recovery post-injury remains poorly defined. To bridge this knowledge gap and inform future treatment and rehabilitation strategies for fractures, a preclinical model of fracture healing with a history of prior unloading with and without reambulation was employed. First, skeletally mature male and female C57BL/6J mice (18 weeks) underwent hindlimb unloading by tail suspension (HLU) for 3 weeks to induce significant bone and muscle loss modeling enhanced bone fragility. Next, mice had their right femur fractured by open surgical dissection (stabilized with 24-gauge pin). The, mice were randomly assigned to continued HLU or allowed normal weight-bearing reambulation (HLU + R). Mice given normal cage activity throughout the experiment served as healthy age-matched controls. All mice were sacrificed 4-days (DPF4) or 14-days (DPF14) following fracture to assess healing and uninjured hindlimb musculoskeletal properties (6-10 mice per treatment/biological sex). We found that continued disuse following fracture lead to severely diminished uninjured hindlimb skeletal muscle mass (gastrocnemius and soleus) and femoral bone volume adjacent to the fracture site compared to healthy age-matched controls across mouse sexes. Furthermore, HLU led to significantly decreased periosteal expansion (DPF4) and osteochondral tissue formation by DPF14, and trends in increased osteoclastogenesis (DPF14) and decreased woven bone vascular area (DPF14). In contrast, immediate reambulation for 2 weeks after fracture, even following a period of prolonged disuse, was able to increase hindlimb skeletal tissue mass and increase osteochondral tissue formation, albeit not to healthy control levels, in both mouse sexes. Furthermore, reambulation attenuated osteoclast formation seen in woven bone tissue undergoing disuse. Our results suggest that weight-bearing skeletal loading in both sexes immediately following fracture may improve callus healing and prevent further fall risk by stimulating skeletal muscle anabolism and decreasing callus resorption compared to minimal or delayed rehabilitation regimens.
Collapse
Affiliation(s)
- Evan G Buettmann
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Rachel C DeNapoli
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Lovell B Abraham
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Joe A Denisco
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Madelyn R Lorenz
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Michael A Friedman
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Henry J Donahue
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America.
| |
Collapse
|
15
|
Moolenaar JZ, Tümer N, Checa S. Computer-assisted preoperative planning of bone fracture fixation surgery: A state-of-the-art review. Front Bioeng Biotechnol 2022; 10:1037048. [PMID: 36312550 PMCID: PMC9613932 DOI: 10.3389/fbioe.2022.1037048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Bone fracture fixation surgery is one of the most commonly performed surgical procedures in the orthopedic field. However, fracture healing complications occur frequently, and the choice of the most optimal surgical approach often remains challenging. In the last years, computational tools have been developed with the aim to assist preoperative planning procedures of bone fracture fixation surgery. Objectives: The aims of this review are 1) to provide a comprehensive overview of the state-of-the-art in computer-assisted preoperative planning of bone fracture fixation surgery, 2) to assess the clinical feasibility of the existing virtual planning approaches, and 3) to assess their clinical efficacy in terms of clinical outcomes as compared to conventional planning methods. Methods: A literature search was performed in the MEDLINE-PubMed, Ovid-EMBASE, Ovid-EMCARE, Web of Science, and Cochrane libraries to identify articles reporting on the clinical use of computer-assisted preoperative planning of bone fracture fixation. Results: 79 articles were included to provide an overview of the state-of-the art in virtual planning. While patient-specific geometrical model construction, virtual bone fracture reduction, and virtual fixation planning are routinely applied in virtual planning, biomechanical analysis is rarely included in the planning framework. 21 of the included studies were used to assess the feasibility and efficacy of computer-assisted planning methods. The reported total mean planning duration ranged from 22 to 258 min in different studies. Computer-assisted planning resulted in reduced operation time (Standardized Mean Difference (SMD): -2.19; 95% Confidence Interval (CI): -2.87, -1.50), less blood loss (SMD: -1.99; 95% CI: -2.75, -1.24), decreased frequency of fluoroscopy (SMD: -2.18; 95% CI: -2.74, -1.61), shortened fracture healing times (SMD: -0.51; 95% CI: -0.97, -0.05) and less postoperative complications (Risk Ratio (RR): 0.64, 95% CI: 0.46, 0.90). No significant differences were found in hospitalization duration. Some studies reported improvements in reduction quality and functional outcomes but these results were not pooled for meta-analysis, since the reported outcome measures were too heterogeneous. Conclusion: Current computer-assisted planning approaches are feasible to be used in clinical practice and have been shown to improve clinical outcomes. Including biomechanical analysis into the framework has the potential to further improve clinical outcome.
Collapse
Affiliation(s)
- Jet Zoë Moolenaar
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Delft, Netherlands
| | - Nazli Tümer
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Delft, Netherlands
| | - Sara Checa
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| |
Collapse
|
16
|
Braun BJ, Histing T, Herath SC, Rollmann MFR, Reumann M, Menger MM, Springer F, Andres A, Diebels S, Roland M. [Movement analysis and musculoskeletal simulation in non-union treatment-Experiences and first clinical results]. UNFALLCHIRURGIE (HEIDELBERG, GERMANY) 2022; 125:619-627. [PMID: 35737004 DOI: 10.1007/s00113-022-01208-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The mechanical boundary conditions of the non-union and osteosynthetic construct are a key determinant of fracture healing after revision surgery. Aim of this study was to introduce a movement analysis and simulation workflow to determine the mechanical conditions during non-union healing in vivo. MATERIAL AND METHODS On an individual case basis after non-union revision surgery we performed an accelerometry-based movement analysis. The results were then used as input for a musculoskeletal simulation of the non-union, osteosynthetic construct as well as adjacent joints mechanical boundary conditions. RESULTS A total of 13 patients were analyzed with our new workflow. The introduced protocol allows an in vivo determination of the mechanical boundary conditions. On clinical follow-up all patients showed radiographic consolidation of the non-union. CONCLUSION The introduced workflow allows a clinically applicable determination of the mechanical boundary conditions of fracture and non-union healing. Further studies can now determine the effect of the introduced technique for mechanically optimized postoperative aftercare regimes as well as biomechanically adapted surgical treatment.
Collapse
Affiliation(s)
- Benedikt J Braun
- Klinik für Unfall- und Wiederherstellungschirurgie, Eberhard Karls Universität Tübingen, BG Klinik Tübingen, Schnarrenbergstr. 95, 72072, Tübingen, Deutschland.
| | - Tina Histing
- Klinik für Unfall- und Wiederherstellungschirurgie, Eberhard Karls Universität Tübingen, BG Klinik Tübingen, Schnarrenbergstr. 95, 72072, Tübingen, Deutschland
| | - Steven C Herath
- Klinik für Unfall- und Wiederherstellungschirurgie, Eberhard Karls Universität Tübingen, BG Klinik Tübingen, Schnarrenbergstr. 95, 72072, Tübingen, Deutschland
| | - Mika F R Rollmann
- Klinik für Unfall- und Wiederherstellungschirurgie, Eberhard Karls Universität Tübingen, BG Klinik Tübingen, Schnarrenbergstr. 95, 72072, Tübingen, Deutschland
| | - Marie Reumann
- Klinik für Unfall- und Wiederherstellungschirurgie, Eberhard Karls Universität Tübingen, BG Klinik Tübingen, Schnarrenbergstr. 95, 72072, Tübingen, Deutschland
| | - Maximilian M Menger
- Klinik für Unfall- und Wiederherstellungschirurgie, Eberhard Karls Universität Tübingen, BG Klinik Tübingen, Schnarrenbergstr. 95, 72072, Tübingen, Deutschland
| | - Fabian Springer
- Klinik für Diagnostische und Interventionelle Radiologie, Eberhard Karls Universität Tübingen, Tübingen, Deutschland
| | - Annchristin Andres
- Lehrstuhl für Technische Mechanik, Universität des Saarlandes, Saarbrücken, Deutschland
| | - Stefan Diebels
- Lehrstuhl für Technische Mechanik, Universität des Saarlandes, Saarbrücken, Deutschland
| | - Michael Roland
- Lehrstuhl für Technische Mechanik, Universität des Saarlandes, Saarbrücken, Deutschland
| |
Collapse
|
17
|
Peña Fernández M, Sasso SJ, McPhee S, Black C, Kanczler J, Tozzi G, Wolfram U. Nonlinear micro finite element models based on digital volume correlation measurements predict early microdamage in newly formed bone. J Mech Behav Biomed Mater 2022; 132:105303. [PMID: 35671669 DOI: 10.1016/j.jmbbm.2022.105303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/21/2022]
Abstract
Bone regeneration in critical-sized defects is a clinical challenge, with biomaterials under constant development aiming at enhancing the natural bone healing process. The delivery of bone morphogenetic proteins (BMPs) in appropriate carriers represents a promising strategy for bone defect treatment but optimisation of the spatial-temporal release is still needed for the regeneration of bone with biological, structural, and mechanical properties comparable to the native tissue. Nonlinear micro finite element (μFE) models can address some of these challenges by providing a tool able to predict the biomechanical strength and microdamage onset in newly formed bone when subjected to physiological or supraphysiological loads. Yet, these models need to be validated against experimental data. In this study, experimental local displacements in newly formed bone induced by osteoinductive biomaterials subjected to in situ X-ray computed tomography compression in the apparent elastic regime and measured using digital volume correlation (DVC) were used to validate μFE models. Displacement predictions from homogeneous linear μFE models were highly correlated to DVC-measured local displacements, while tissue heterogeneity capturing mineralisation differences showed negligible effects. Nonlinear μFE models improved the correlation and showed that tissue microdamage occurs at low apparent strains. Microdamage seemed to occur next to large cavities or in biomaterial-induced thin trabeculae, independent of the mineralisation. While localisation of plastic strain accumulation was similar, the amount of damage accumulated in these locations was slightly higher when including material heterogeneity. These results demonstrate the ability of the nonlinear μFE model to capture local microdamage in newly formed bone tissue and can be exploited to improve the current understanding of healing bone and mechanical competence. This will ultimately aid the development of BMPs delivery systems for bone defect treatment able to regenerate bone with optimal biological, mechanical, and structural properties.
Collapse
Affiliation(s)
- Marta Peña Fernández
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, EH14 4AS, UK.
| | - Sebastian J Sasso
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, EH14 4AS, UK
| | - Samuel McPhee
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, EH14 4AS, UK
| | - Cameron Black
- Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Development Sciences, University of Southampton, SO16 6YD, UK
| | - Janos Kanczler
- Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Development Sciences, University of Southampton, SO16 6YD, UK
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, UK
| | - Uwe Wolfram
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, EH14 4AS, UK.
| |
Collapse
|
18
|
Inglis B, Schwarzenberg P, Klein K, von Rechenberg B, Darwiche S, Dailey HL. Biomechanical duality of fracture healing captured using virtual mechanical testing and validated in ovine bones. Sci Rep 2022; 12:2492. [PMID: 35169187 PMCID: PMC8847550 DOI: 10.1038/s41598-022-06267-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/17/2022] [Indexed: 01/08/2023] Open
Abstract
Bone fractures commonly repair by forming a bridging structure called callus, which begins as soft tissue and gradually ossifies to restore rigidity to the bone. Virtual mechanical testing is a promising technique for image-based assessment of structural bone healing in both preclinical and clinical settings, but its accuracy depends on the validity of the material model used to assign tissue mechanical properties. The goal of this study was to develop a constitutive model for callus that captures the heterogeneity and biomechanical duality of the callus, which contains both soft tissue and woven bone. To achieve this, a large-scale optimization analysis was performed on 2363 variations of 3D finite element models derived from computed tomography (CT) scans of 33 osteotomized sheep under normal and delayed healing conditions. A piecewise material model was identified that produced high absolute agreement between virtual and physical tests by differentiating between soft and hard callus based on radiodensity. The results showed that the structural integrity of a healing long bone is conferred by an internal architecture of mineralized hard callus that is supported by interstitial soft tissue. These findings suggest that with appropriate material modeling, virtual mechanical testing is a reliable surrogate for physical biomechanical testing.
Collapse
Affiliation(s)
- Brendan Inglis
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, 18015, USA.
| | - Peter Schwarzenberg
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, 18015, USA
| | - Karina Klein
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland.,Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, 8057, Zurich, Switzerland
| | - Salim Darwiche
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland.,Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, 8057, Zurich, Switzerland
| | - Hannah L Dailey
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, 18015, USA.
| |
Collapse
|
19
|
Image-based radiodensity profilometry measures early remodeling at the bone-callus interface in sheep. Biomech Model Mechanobiol 2022; 21:615-626. [PMID: 34997398 DOI: 10.1007/s10237-021-01553-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/21/2021] [Indexed: 11/02/2022]
Abstract
Bone healing has been traditionally described as a four-phase process: inflammatory response, soft callus formation, hard callus development, and remodeling. The remodeling phase has been largely neglected in most numerical mechanoregulation models of fracture repair in favor of capturing early healing using a pre-defined callus domain. However, in vivo evidence suggests that remodeling occurs concurrently with repair and causes changes in cortical bone adjacent to callus that are typically neglected in numerical models of bone healing. The objective of this study was to use image processing techniques to quantify this early-stage remodeling in ovine osteotomies. To accomplish this, we developed a numerical method for radiodensity profilometry with optimization-based curve fitting to mathematically model the bone density gradients in the radial direction across the cortical wall and callus. After assessing data from 26 sheep, we defined a dimensionless density fitting function that revealed significant remodeling occurring in the cortical wall adjacent to callus during early healing, a 23% average reduction in density compared to intact. This fitting function is robust for modeling radial density gradients in both intact bone and fracture repair scenarios and can capture a wide variety of the healing responses. The fitting function can also be scaled easily for comparison to numerical model predictions and may be useful for validating future mechanoregulatory models of coupled fracture repair and remodeling.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Fracture fixation aims to provide stability and promote healing, but remains challenging in unstable and osteoporotic fractures with increased risk of construct failure and nonunion. The first part of this article reviews the clinical motivation behind finite element analysis of fracture fixation, its strengths and weaknesses, how models are developed and validated, and how outputs are typically interpreted. The second part reviews recent modeling studies of the femur and proximal humerus, areas with particular relevance to fragility fractures. RECENT FINDINGS There is some consensus in the literature around how certain modeling aspects are pragmatically formulated, including bone and implant geometries, meshing, material properties, interactions, and loads and boundary conditions. Studies most often focus on predicted implant stress, bone strain surrounding screws, or interfragmentary displacements. However, most models are not rigorously validated. With refined modeling methods, improved validation efforts, and large-scale systematic analyses, finite element analysis is poised to advance the understanding of fracture fixation failure, enable optimization of implant designs, and improve surgical guidance.
Collapse
Affiliation(s)
- Gregory S Lewis
- Department of Orthopaedics and Rehabilitation, Pennsylvania State University, Hershey, PA, USA.
| | | | - Hwabok Wee
- Department of Orthopaedics and Rehabilitation, Pennsylvania State University, Hershey, PA, USA
| | - J Spence Reid
- Department of Orthopaedics and Rehabilitation, Pennsylvania State University, Hershey, PA, USA
| | - Peter Varga
- AO Research Institute Davos, Davos, Switzerland
| |
Collapse
|
21
|
Domain-independent simulation of physiologically relevant callus shape in mechanoregulated models of fracture healing. J Biomech 2021; 118:110300. [PMID: 33601180 DOI: 10.1016/j.jbiomech.2021.110300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/14/2021] [Accepted: 01/23/2021] [Indexed: 01/08/2023]
Abstract
Mechanoregulatory models have been used to predict the progression of bone fracture healing for more than two decades. However, many published studies share the same fundamental limitation: callus development proceeds within a pre-defined domain that both restricts and directs healing and leads to some non-physiologic healing patterns. To address this limitation, we added two spatial proximity functions to an existing mechanoregulatory model of fracture healing to control the localization of callus within the healing domain. We tested the performance of the new model in an idealized ovine tibial osteotomy with medial plate fixation using three sizes of healing domains and multiple variations of the spatial proximity functions. All model variations produced outward callus growth and bridging weighted toward the far cortex, which is consistent with in vivo healing. With and without the proximity functions, there were marked differences in the predicted callus volume and shape. With no proximity functions, the callus produced was strongly domain dependent, with a 15% difference in volume between the smallest and largest initialization domains. With proximity function control, callus growth was restricted to near the fracture line and there was only 2% difference in volume between domain sizes. Superimposing both proximity functions - one to control outward growth and one representing a decay in periosteal activity away from the fracture - produced a predicted callus size that was within the physiologic range for sheep and had a realistic morphology when compared with fluorescent dye co-localization with calcium deposition over time and histology.
Collapse
|