1
|
Yang Y, Li H, Ma Z, Li Z, Gu J. Lamb1-mediated Wnt/β-catenin signaling pathway drives endothelial angiogenesis for fracture healing. Gene 2025; 959:149481. [PMID: 40221061 DOI: 10.1016/j.gene.2025.149481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/20/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
OBJECTIVES Fractures, usually caused by trauma or osteoporosis, are the most common traumatic injuries to large organs in humans. Osteogenesis and angiogenesis are two crucial parts of fracture healing that work together to promote the repair and regeneration of damaged bone. Endothelial cell migration is critical for angiogenesis. Therefore, it is well worth exploring whether endothelial cells (ECs) can enhance fracture healing. METHODS The public datasets were analyzed by scRNA-seq, and the ECs were subjected to subset analysis and pseudotime analysis. Next, ECs_Lamb1+ cells underwent GO and KEGG pathway enrichment analyses, and were subjected to GSVA. Finally, the mechanism was verified and evaluated via qRT-PCR, cellular immunofluorescence staining, and transwell assay. RESULTS After cell annotations, 9 cell types were obtained, and it was found that the proportions of ECs were significantly reduced. EC subset analysis showed that the ratio of ECs_Lamb1+ cells was significantly up-regulated in the Fracture group; pseudotime analysis showed that ECs_Lamb1- cells were gradually reduced over time, whereas ECs_Lamb1+ cells were gradually expanding along the trajectories to reach a maximum at the end of the trajectory; pathway enrichment analyses revealed that ECs_Lamb1+ cells were mainly associated with several signaling pathways regulating cell proliferation, differentiation, repair, angiogenesis, and inflammatory responses, such as PI3K-Akt signaling pathway, Wnt/β-catenin, and MAPK. The results of basic assays demonstrated that successful knockdown of Lamb1 expression via siRNA-LAMB1 was detrimental to HUVEC proliferation, migration, and tube formation, and could suppress the expression of wnt3a, GSK-3β, β-catenin, and VEGFA; whereas, HY-141873 in combination with siRNA-LAMB1 partially reversed the down-regulated wnt3a, GSK-3β, β-catenin, and VEGFA expression, and HUVEC proliferation, migration, and tube formation were partially improved. CONCLUSION Lamb1 promotes fracture repair and healing by up-regulating VEGFA expression via the activation of Wnt signaling pathway to catalyze EC growth and migration and induce endothelial angiopoiesis.
Collapse
Affiliation(s)
- Yajun Yang
- People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, China.
| | - Hangyu Li
- People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, China
| | - Zhirong Ma
- People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, China
| | | | | |
Collapse
|
2
|
Childress PJ, Nielsen JJ, Bemenderfer TB, Dadwal UC, Chakraborty N, Harris JS, Bethel M, Alvarez MB, Tucker A, Wessel AR, Millikan PD, Wilhite JH, Engle A, Brinker A, Rytlewski JD, Scofield DC, Griffin KS, Shelley WC, Manikowski KJ, Jackson KL, Miller SA, Cheng YH, Ghosh J, Mulcrone PL, Srour EF, Yoder MC, Natoli RM, Shively KD, Gautam A, Hammamieh R, Low SA, Low PS, McKinley TO, Anglen JO, Lowery JW, Chu TMG, Kacena MA. Thrombopoietic agents enhance bone healing in mice, rats, and pigs. J Bone Miner Res 2024; 40:125-139. [PMID: 39566068 DOI: 10.1093/jbmr/zjae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/15/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
Achieving bone union remains a significant clinical dilemma. The use of osteoinductive agents, specifically bone morphogenetic proteins (BMPs), has gained wide attention. However, multiple side effects, including increased incidence of cancer, have renewed interest in investigating alternatives that provide safer, yet effective bone regeneration. Here we demonstrate the robust bone healing capabilities of the main megakaryocyte (MK) growth factor, thrombopoietin (TPO), and second-generation TPO agents using multiple animal models, including mice, rats, and pigs. This bone healing activity is shown in two fracture models (critical-sized defect [CSD] and closed fracture) and with local or systemic administration. Our transcriptomic analyses, cellular studies, and protein arrays demonstrate that TPO enhances multiple cellular processes important to fracture healing, particularly angiogenesis, which is required for bone union. Finally, the therapeutic potential of thrombopoietic agents is high since they are used in the clinic for other indications (eg, thrombocytopenia) with established safety profiles and act upon a narrowly defined population of cells.
Collapse
Affiliation(s)
- Paul J Childress
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, United States
| | - Jeffery J Nielsen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Thomas B Bemenderfer
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Ushashi C Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, United States
| | - Nabarun Chakraborty
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States
| | - Jonathan S Harris
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Monique Bethel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Marta B Alvarez
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, United States
| | - Aamir Tucker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Alexander R Wessel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Patrick D Millikan
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jonathan H Wilhite
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Andrew Engle
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Alexander Brinker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jeffrey D Rytlewski
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - David C Scofield
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Kaitlyn S Griffin
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - W Christopher Shelley
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Kelli J Manikowski
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN, 46222, United States
| | - Krista L Jackson
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN, 46222, United States
| | - Stacy-Ann Miller
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States
| | - Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Joydeep Ghosh
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Patrick L Mulcrone
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, United States
| | - Edward F Srour
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Karl D Shively
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States
| | - Stewart A Low
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Philip S Low
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Todd O McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jeffrey O Anglen
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN, 46222, United States
| | - Tien-Min G Chu
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, United States
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, United States
| |
Collapse
|
3
|
Nazzal MK, Battina HL, Tewari NP, Mostardo SL, Nagaraj RU, Zhou D, Awosanya OD, Majety SK, Samson S, Blosser RJ, Dadwal UC, Mulcrone PL, Kacena MA. The effects of young and aged, male and female megakaryocyte conditioned media on angiogenic properties of endothelial cells. Aging (Albany NY) 2024; 16:13181-13200. [PMID: 39578050 PMCID: PMC11719103 DOI: 10.18632/aging.206077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/11/2024] [Indexed: 11/24/2024]
Abstract
With aging, the risk of fractures and compromised healing increases. Angiogenesis plays a significant role in bone healing and is impaired with aging. We have previously shown the impact of megakaryocytes (MKs) in regulating bone healing. Notably, MKs produce factors known to promote angiogenesis. We examined the effects of conditioned media (CM) generated from MKs derived from young (3-4-month-old) and aged (22-24-month-old), male and female C57BL/6J mice on bone marrow endothelial cell (BMEC) growth and function. Female MK CM, regardless of age, caused a >65% increase in BMEC proliferation and improved vessel formation by >115%. Likewise, young male MK CM increased vessel formation by 160%. Although aged male MK CM resulted in >150% increases in the formation of vascular nodes and meshes, 62% fewer vessels formed compared to young male MK CM treatment. Aged female MK CM improved migration by over 2500%. However, aged female and male MK CM caused less wound closure. MK CM treatments also significantly altered the expression of several genes including PDGFRβ, CXCR4, and CD36 relative to controls and between ages. Further testing of mechanisms responsible for age-associated differences may allow for novel strategies to improve MK-mediated angiogenesis and bone healing, particularly within the aging population.
Collapse
Affiliation(s)
- Murad K. Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hanisha L. Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nikhil P. Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah L. Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Rohit U. Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Donghui Zhou
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Olatundun D. Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Saveda K. Majety
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sue Samson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rachel J. Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Ushashi C. Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Patrick L. Mulcrone
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Le T, Salas Sanchez A, Nashawi D, Kulkarni S, Prisby RD. Diabetes and the Microvasculature of the Bone and Marrow. Curr Osteoporos Rep 2024; 22:11-27. [PMID: 38198033 DOI: 10.1007/s11914-023-00841-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight the evidence of microvascular dysfunction in bone and marrow and its relation to poor skeletal outcomes in diabetes mellitus. RECENT FINDINGS Diabetes mellitus is characterized by chronic hyperglycemia, which may lead to microangiopathy and macroangiopathy. Micro- and macroangiopathy have been diagnosed in Type 1 and Type 2 diabetes, coinciding with osteopenia, osteoporosis, enhanced fracture risk and delayed fracture healing. Microangiopathy has been reported in the skeleton, correlating with reduced blood flow and perfusion, vasomotor dysfunction, microvascular rarefaction, reduced angiogenic capabilities, and augmented vascular permeability. Microangiopathy within the skeleton may be detrimental to bone and manifest as, among other clinical abnormalities, reduced mass, enhanced fracture risk, and delayed fracture healing. More investigations are required to elucidate the various mechanisms by which diabetic microvascular dysfunction impacts the skeleton.
Collapse
Affiliation(s)
- Teresa Le
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Amanda Salas Sanchez
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Danyah Nashawi
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Sunidhi Kulkarni
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Rhonda D Prisby
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
5
|
Maisenbacher TC, Ehnert S, Histing T, Nüssler AK, Menger MM. Advantages and Limitations of Diabetic Bone Healing in Mouse Models: A Narrative Review. Biomedicines 2023; 11:3302. [PMID: 38137522 PMCID: PMC10741210 DOI: 10.3390/biomedicines11123302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes represents a major risk factor for impaired fracture healing. Type 2 diabetes mellitus is a growing epidemic worldwide, hence an increase in diabetes-related complications in fracture healing can be expected. However, the underlying mechanisms are not yet completely understood. Different mouse models are used in preclinical trauma research for fracture healing under diabetic conditions. The present review elucidates and evaluates the characteristics of state-of-the-art murine diabetic fracture healing models. Three major categories of murine models were identified: Streptozotocin-induced diabetes models, diet-induced diabetes models, and transgenic diabetes models. They all have specific advantages and limitations and affect bone physiology and fracture healing differently. The studies differed widely in their diabetic and fracture healing models and the chosen models were evaluated and discussed, raising concerns in the comparability of the current literature. Researchers should be aware of the presented advantages and limitations when choosing a murine diabetes model. Given the rapid increase in type II diabetics worldwide, our review found that there are a lack of models that sufficiently mimic the development of type II diabetes in adult patients over the years. We suggest that a model with a high-fat diet that accounts for 60% of the daily calorie intake over a period of at least 12 weeks provides the most accurate representation.
Collapse
Affiliation(s)
- Tanja C. Maisenbacher
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Sabrina Ehnert
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
| | - Andreas K. Nüssler
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Maximilian M. Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
| |
Collapse
|
6
|
Moraes de Lima Perini M, Valuch CR, Dadwal UC, Awosanya OD, Mostardo SL, Blosser RJ, Knox AM, McGuire AC, Battina HL, Nazzal M, Kacena MA, Li J. Characterization and assessment of lung and bone marrow derived endothelial cells and their bone regenerative potential. Front Endocrinol (Lausanne) 2022; 13:935391. [PMID: 36120459 PMCID: PMC9470942 DOI: 10.3389/fendo.2022.935391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Angiogenesis is important for successful fracture repair. Aging negatively affects the number and activity of endothelial cells (ECs) and subsequently leads to impaired bone healing. We previously showed that implantation of lung-derived endothelial cells (LECs) improved fracture healing in rats. In this study, we characterized and compared neonatal lung and bone marrow-derived endothelial cells (neonatal LECs and neonatal BMECs) and further asses3sed if implantation of neonatal BMECs could enhance bone healing in both young and aged mice. We assessed neonatal EC tube formation, proliferation, and wound migration ability in vitro in ECs isolated from the bone marrow and lungs of neonatal mice. The in vitro studies demonstrated that both neonatal LECs and neonatal BMECs exhibited EC traits. To test the function of neonatal ECs in vivo, we created a femoral fracture in young and aged mice and implanted a collagen sponge to deliver neonatal BMECs at the fracture site. In the mouse fracture model, endochondral ossification was delayed in aged control mice compared to young controls. Neonatal BMECs significantly improved endochondral bone formation only in aged mice. These data suggest BMECs have potential to enhance aged bone healing. Compared to LECs, BMECs are more feasible for translational cell therapy and clinical applications in bone repair. Future studies are needed to examine the fate and function of BMECs implanted into the fracture sites.
Collapse
Affiliation(s)
| | - Conner R. Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| | - Ushashi C. Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Olatundun D. Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sarah L. Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rachel J. Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Adam M. Knox
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anthony C. McGuire
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hanisha L. Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Murad Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Richard L. Roudebush Veterans Affairs (VA) Medical Center, Indianapolis, IN, United States
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
- *Correspondence: Jiliang Li,
| |
Collapse
|
7
|
Dadwal UC, Bhatti FUR, Awosanya OD, de Andrade Staut C, Nagaraj RU, Perugini AJ, Tewari NP, Valuch CR, Sun S, Mendenhall SK, Zhou D, Mostardo SL, Blosser RJ, Li J, Kacena MA. The Effects of SRT1720 Treatment on Endothelial Cells Derived from the Lung and Bone Marrow of Young and Aged, Male and Female Mice. Int J Mol Sci 2021; 22:11097. [PMID: 34681756 PMCID: PMC8540697 DOI: 10.3390/ijms222011097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/10/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is critical for successful fracture healing. Age-related alterations in endothelial cells (ECs) may cause impaired bone healing. Therefore, examining therapeutic treatments to improve angiogenesis in aging may enhance bone healing. Sirtuin 1 (SIRT1) is highly expressed in ECs and its activation is known to counteract aging. Here, we examined the effects of SRT1720 treatment (SIRT1 activator) on the growth and function of bone marrow and lung ECs (BMECs and LECs, respectively), derived from young (3-4 month) and old (20-24 month) mice. While aging did not alter EC proliferation, treatment with SRT1720 significantly increased proliferation of all LECs. However, SRT1720 only increased proliferation of old female BMECs. Vessel-like tube assays showed similar vessel-like structures between young and old LECs and BMECs from both male and female mice. SRT1720 significantly improved vessel-like structures in all LECs. No age, sex, or treatment differences were found in migration related parameters of LECs. In males, old BMECs had greater migration rates than young BMECs, whereas in females, old BMECs had lower migration rates than young BMECs. Collectively, our data suggest that treatment with SRT1720 appears to enhance the angiogenic potential of LECs irrespective of age or sex. However, its role in BMECs is sex- and age-dependent.
Collapse
Affiliation(s)
- Ushashi Chand Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Fazal Ur Rehman Bhatti
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Olatundun Dupe Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Caio de Andrade Staut
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Rohit U. Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Anthony Joseph Perugini
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Nikhil Prasad Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Conner Riley Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (C.R.V.); (J.L.)
| | - Seungyup Sun
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Stephen Kyle Mendenhall
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Donghui Zhou
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Sarah Lyn Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Rachel Jean Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (C.R.V.); (J.L.)
| | - Melissa Ann Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|