1
|
Harijani AM, Fatahi S, Guimarães NS, Shidfar F. A Comparison of Amino Acid-Based, Hydrolyzed, and Soy-Based Formulas on Growth of Pediatric Patients with Cow's Milk Allergy: A Systematic Review and Meta-Analysis of Clinical Trials. Breastfeed Med 2025; 20:288-295. [PMID: 40322956 DOI: 10.1089/bfm.2024.0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Background: Some studies have explored the effects of amino acid-based formulas (AAF), extensively hydrolyzed formulas (EHF), and soy-based formulas (SF) on growth indices, weight-for-age z-scores, length-for-age z-scores, and weight in children with cow's milk allergy (CMA). Aims: This review aimed to evaluate and differentiate the effectiveness of AAF, EHF, and SF on growth parameters in children with CMA. Methods: A systematic review was conducted in three databases-PubMed, Web of Science, and Scopus-up to March 2023 to identify eligible studies. Eight articles were analyzed in this study. Effect sizes were reported as weighted mean difference with 95% confidence intervals (CI). Statistical heterogeneity between studies was assessed using Cochran's Q-test. The risk of bias was evaluated using the ROBINS-I tool. Results: A total of eight studies, encompassing 469 participants, met the inclusion criteria. The meta-analysis demonstrated a significant positive effect of the AAF and EHF on weight and weight-for-age z-scores, while no significant changes were observed for length-for-age z-scores. Furthermore, pooled effect sizes indicated that AAF had a more pronounced impact in weight-for-age z-scores (+0.30) compared with EHF (+0.25). Soy-based formulas had negligible effects on growth parameters. Conclusion: The findings suggest that AAF and EHF are more effective in improving growth parameters, particularly weight-for-age z-scores, in children with CMA compared with SF. Among the formulas studied, AAF showed the greatest positive impact on weight-for-age z-scores. These results highlight the importance of formula selection for optimizing growth outcomes in children with CMA.
Collapse
Affiliation(s)
- Artemiss Mirdar Harijani
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Somaye Fatahi
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Nutritional Sciences Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Zhang X, Chen H, Wang Y, Xu Q, Qiu X, Cheng L, Xiao Q, Liu Y, Zhang J, Zhang H, Wu H. Gut microbiota signatures in food allergy children without and with malnutrition: a cross-sectional study. BMC Pediatr 2025; 25:220. [PMID: 40108561 PMCID: PMC11924646 DOI: 10.1186/s12887-025-05578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Altered gut microbiota (GM) profiles have been documented in children with food allergies (FA) and experiencing malnutrition. This study explored the GM composition in children with FA across varying degrees of malnutrition including those without malnutrition and those with different severity levels. METHODS Fresh faecal samples were collected from 120 children aged 1-6 years, including 40 FA children with adequate weight (FANM), 40 FA children with malnutrition (FAM), and 40 healthy controls. The hypervariable region of the 16 S rDNA gene was subsequently sequenced to assess bacterial communities. RESULTS Compared with healthy controls, the FANM group displayed a greater increase in the alpha diversity index. The FAM group exhibited an increase in seven genera, including Alistipes and Parabacteroides, compared to the control group, whereas nine genera were enriched in the FANM group. An analysis of clinical characteristics revealed a positive correlation between the relative abundance of the genus Faecalibacterium and the total IgE level. Fourteen pivotal microbial markers demonstrated substantial classification potential (AUC: 89.86%, 95% CI: 76.40-99.73% for FAM; AUC: 88.92%, 95% CI: 73.58-99.65% for FANM). CONCLUSION FA children exhibit distinct GM profiles depending on the presence of malnutrition, which suggests the need for tailored microbiota-targeted therapies.
Collapse
Affiliation(s)
- Xiaojiao Zhang
- Department of Child Health Care, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Hengying Chen
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiyuan Wang
- Department of Child Health Care, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Qiujin Xu
- Cuixiang Community Health Center, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Xinzu Qiu
- Department of Child Health Care, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Li Cheng
- Department of Child Health Care, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Qizhi Xiao
- Department of Medical Genetics and Prenatal Diagnosis, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Yanhong Liu
- Department of Research and Development, BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, Guangdong, China
| | - Jianduan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongzhong Zhang
- Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China.
| | - Hongyuan Wu
- Department of Child Health Care, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China.
| |
Collapse
|
3
|
Cai R, Tan CP, Lai OM, Dang Y, Liu A, Choeng LZ, Pan D, Du L. Cold argon plasma-induced aggregated and non-aggregated structural changes in casein and peptidomic insights into allergenicity. Food Chem 2025; 468:142408. [PMID: 39674013 DOI: 10.1016/j.foodchem.2024.142408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
Casein (CN) is a common allergen that is challenging to avoid in modern foods. The effect of cold argon plasma (CAP) on reducing CN antigenicity was investigated, focusing on alterations in epitope structure and sequence. CAP mainly contains hydroxyl radicals (∙OH). After a 12-min CAP treatment, the result of ELISA demonstrated an 80.46 % reduction in antigenicity. Transmission electron microscopy and electrophoresis revealed that certain CN aggregated, while multispectral analysis indicated that part of CN was fragmented into smaller peptides. The predictive 3D model suggested the disruption of linear epitopes located in the α-helix region might contribute to the reduced allergenicity. The peptide sequences were compared to the linear epitopes predicted by immunoinformatics approaches, revealing some reduction or breakage of key allergic sequences. Meanwhile, amino acids with aromatic side chains and hydrophobic groups were susceptible to CAP-induced modifications. This investigation demonstrated CAP could be beneficial for processing hypoallergenic foods.
Collapse
Affiliation(s)
- Ruiyi Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Oi-Ming Lai
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Aiming Liu
- Medical School of Ningbo University, Ningbo 315211, China
| | - Ling-Zhi Choeng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China.
| |
Collapse
|
4
|
Hu W, Xie F, Wu Y, Meng X, Yang A, Wu Z, Gao J, Li X, Chen H. Identification and Validation of Key Amino Acids in IgE Linear Epitopes of β-Lactoglobulin: Comparison of Recognition Patterns of Chinese Bovine Milk-Allergic Sera with Different Symptoms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5537-5547. [PMID: 39988850 DOI: 10.1021/acs.jafc.4c11999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
β-lactoglobulin (BLG) is the primary allergen in bovine milk allergy. The identification of key amino acids in the BLG epitopes has not been comprehensive due to differences in identification methods, patient symptoms, and population characteristics. In this study, bioinformatics predictions were conducted for key amino acids based on two potential IgE linear epitopes in BLG. Then, the peptide AA30-43 was confirmed as an IgE linear epitope through alanine scanning mutagenesis and peptide microarray assays, with four key amino acids (A34, A37, R40, and V41) common to different symptoms being identified. Moreover, symptom-specific key amino acids were identified. Serine (S30) and aspartic acid (D33) are the key amino acids for cutaneous allergy, while food allergy sera showed a preference for recognizing leucines in different positions (L31 and L39). Additionally, mutant peptides (R40, V41, L39, and D33) showed an obvious decrease in digestive stability compared with the epitope. Finally, the results of the KU812 cell degranulation model validated the critical role of the amino acids in allergenicity. These findings offer significant advantages for advancing both immune tolerance therapies and hypoallergenic milk product development, which hold significant implications for further research, prevention, and treatment of bovine milk allergy.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Fen Xie
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
5
|
Xu J, Sheikh TMM, Shafiq M, Khan MN, Wang M, Guo X, Yao F, Xie Q, Yang Z, Khalid A, Jiao X. Exploring the gut microbiota landscape in cow milk protein allergy: Clinical insights and diagnostic implications in pediatric patients. J Dairy Sci 2025; 108:73-89. [PMID: 39369895 DOI: 10.3168/jds.2024-25455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024]
Abstract
Cow milk protein allergy (CMPA) is a significant health concern characterized by adverse immune reactions to cow milk proteins. Biomarkers for the accurate diagnosis and prognosis of CMPA are lacking. This study analyzed the clinical features of CMPA, and 16S RNA sequencing was used to investigate potential biomarkers through fecal microbiota profiling. Children with CMPA exhibit a range of clinical symptoms, including gastrointestinal (83% of patients), skin (53% of patients), and respiratory manifestations (26% of patients), highlighting the complexity of this condition. Laboratory analysis revealed significant differences in red cell distribution width and inflammatory markers between the CMPA and control groups, suggesting immune activation and inflammatory responses in CMPA. Microbial diversity analysis revealed higher specific diversity indices in the CMPA group compared with those in control group, with significant differences at the genus and species levels. Bacteroides were more abundant in the CMPA group, whereas Bifidobacterium, Ruminococcus, Faecalibacterium, and Parabacteroides were less abundant. The control group exhibited a balanced microbial profile, with a predominant presence of Bifidobacterium bifidum and Akkermansia muciniphila. The significant abundance of Bifidobacterium in the control group (23.19% vs. 9.89% in CMPA) was associated with improved growth metrics such as height and weight, suggesting its potential as a probiotic to prevent CMPA and enhance gut health. Correlation analysis linked specific microbial taxa such as Coprococcus and Bifidobacterium to clinical parameters such as family allergy history, weight, and height, providing insights into CMPA pathogenesis. Significant differences in bacterial abundance suggested diagnostic potential, with a panel of 6 bacteria achieving high predictive accuracy (area under curve = 0.8708). This study emphasizes the complex relationship between the gut microbiota and CMPA, offering valuable insights into disease mechanisms and diagnostic strategies.
Collapse
Affiliation(s)
- Jiaxin Xu
- Precision Medical Lab Center, Chaozhou Central Hospital, Chaozhou 521000, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | | | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Muhammad Nadeem Khan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Meimei Wang
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Guo
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Fen Yao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Qingdong Xie
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Zhe Yang
- Department of Pediatrics, Chaozhou Central Hospital, Chaozhou 521000, China
| | - Areeba Khalid
- Department of Pediatrics, Federal Medical College, Islamabad 44080, Pakistan
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
6
|
Ma Y, Zhang L, Zhou P. Difference in Allergenicity between β-Lactoglobulin in Bovine Milk and Caprine Milk is Related to Their Respective Digestive Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23969-23978. [PMID: 39418592 DOI: 10.1021/acs.jafc.4c05954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The underlying cause of differences in sensitization between bovine and caprine milk β-lactoglobulin (β-LG) remains unclear. In this study, denatured forms of bovine and caprine milk β-LG were obtained through reductive alkylation and evaluated for allergenicity and digestibility in Balb/c mice. Results indicated weaker sensitization to nondenatured caprine milk β-LG compared to nondenatured bovine milk β-LG, with no significant difference in sensitization observed between denatured β-LG from both sources. The nondenatured β-LG of caprine milk and two types of denatured β-LG were degraded more rapidly than nondenatured bovine milk β-LG in the small intestine of mice. In terms of undenatured proteins, mouse intestinal tissues absorbed more bovine milk β-LG than caprine milk β-LG. Overall, structural disparities in β-LG between bovine and caprine milk resulted in varying digestion rates. Moreover, the slower-degraded bovine milk β-LG and its enzymatic fragments facilitated easier absorption by the intestine, disrupting the Th1/Th2 balance and increasing susceptibility to severe allergic reactions in mice.
Collapse
Affiliation(s)
- Ying Ma
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lina Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Zhang Q, Wang H, Zhang S, Chen M, Gao Z, Sun J, Wang J, Fu L. Metabolomics identifies phenotypic biomarkers of amino acid metabolism in milk allergy and sensitized tolerance. J Allergy Clin Immunol 2024; 154:157-167. [PMID: 38522626 DOI: 10.1016/j.jaci.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Accepted: 02/12/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND A substantial proportion of sensitized individuals tolerate suspected foods without developing allergic symptoms; this phenomenon is known as sensitized tolerance. The immunogenic and metabolic features underlying the sensitized-tolerant phenotype remain largely unknown. OBJECTIVE We aimed to uncover the metabolic signatures associated with clinical milk allergy (MA) and sensitized tolerance using metabolomics. METHODS We characterized the serum metabolic and immunologic profiles of children with clinical IgE-mediated MA (n = 30) or milk-sensitized tolerance (n = 20) and healthy controls (n = 21). A comparative analysis was performed to identify dysregulated pathways associated with the clinical manifestations of food allergy. We also analyzed specific biomarkers indicative of different sensitization phenotypes in children with MA. The candidate metabolites were validated in an independent quantification cohort (n = 41). RESULTS Metabolomic profiling confirmed the presence of a distinct metabolic signature that discriminated children with MA from those with milk-sensitized tolerance. Amino acid metabolites generated via arginine, proline, and glutathione metabolism were uniquely altered in children with sensitized tolerance. Arginine depletion and metabolism through the polyamine pathway to fuel glutamate synthesis were closely associated with suppression of clinical symptoms in the presence of allergen-specific IgE. In children with MA, the polysensitized state was characterized by disturbances in tryptophan metabolism. CONCLUSIONS By combining untargeted metabolomics with targeted validation in an independent quantification cohort, we identified candidate metabolites as phenotypic and diagnostic biomarkers of food allergy. Our results provide insights into the pathologic mechanisms underlying childhood allergy and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Hui Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Shenyu Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei, China
| | - Mingwu Chen
- Department of Pediatrics, the First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei, China
| | - Zhongshan Gao
- Allergy Research Center, Zhejiang University, Hangzhou, China
| | - Jinlyu Sun
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jizhou Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei, China.
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
8
|
Yang F, Zhou C, Li L, Wang X, Wang B, Hu Y, Zhang Y, Chen C, Li J, Yu X. A nomogram for predicting food allergy in infants with feeding problems and malnutrition. J Pediatr Gastroenterol Nutr 2024; 78:1161-1170. [PMID: 38374772 DOI: 10.1002/jpn3.12159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND AND OBJECTIVE As oral food challenge (OFC) cannot be performed routinely in the general outpatient, this study aimed to construct a nomogram to predict the odds of food allergy in infants with idiopathic feeding problems and malnutrition. METHODS From August 2018 to December 2021, 289 infants (median age, 6 months; P25-P75, 4-8) with idiopathic feeding problems and malnutrition were enrolled from seven hospitals in Shanghai, China. Food allergy was defined as a positive response to a skin prick test or OFC, with gastrointestinal, dermatologic, or respiratory symptom improvement after 4 weeks of avoidance of the suspected food. Demographic characteristics, Cow's Milk-related Symptom Scores (CoMiSS), and blood eosinophil amounts were evaluated for their associations with food allergy. Multivariable logistic regression analysis was used to identify variables to develop a nomogram model with the bootstrapped-concordance index as an assessment metric. RESULTS Totally 249 of 289 infants had food allergy (86.2%). After logistic regression analysis, the feeding pattern (odds ratio [OR] = 5.28, 95% confidence interval [CI]: 2.13-13.09), a family history of allergy (OR = 1.79, 95% CI: 0.71-4.51), CoMiSS (OR = 1.45, 95% CI: 1.19-1.77), and eosinophil percentage (OR = 1.33, 95% CI: 1.11-1.60) were used to develop the model, which had a good performance with an area under the curve of 0.868 (95% CI: 0.792-0.944) and a bootstrapped-concordance index of 0.868. CONCLUSION Food allergy is common in infants with idiopathic feeding problems and malnutrition. The developed nomogram may help identify infants with food allergy for further diagnosis.
Collapse
Affiliation(s)
- Fan Yang
- Department of Developmental and Behavioral Pediatrics, Shanghai Jiao Tong University, Shanghai, China
| | - Chunyan Zhou
- Translational Medicine Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Luanluan Li
- Department of Developmental and Behavioral Pediatrics, Shanghai Jiao Tong University, Shanghai, China
| | - Xirui Wang
- Department of Developmental and Behavioral Pediatrics, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Yabin Hu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Centre, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- Department of Developmental and Behavioral Pediatrics, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Chen
- Department of Developmental and Behavioral Pediatrics, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Li
- Department of Developmental and Behavioral Pediatrics, Shanghai Jiao Tong University, Shanghai, China
| | - Xiandan Yu
- Department of Developmental and Behavioral Pediatrics, Shanghai Jiao Tong University, Shanghai, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Ma X, Xia J, Yuan J, Meng X, Chen H, Li X. Blockade of exosome release alleviates the hypersensitive reaction by influencing the T helper cell population in cow's milk allergic mice. Food Funct 2024; 15:3050-3059. [PMID: 38414407 DOI: 10.1039/d3fo05336a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The aim of this work was to evaluate the ameliorative effects of exosome biogenesis in cow's milk allergy (CMA) response. In this context, BALB/c mice were systemically sensitized with cow's milk proteins plus an aluminum adjuvant to induce CMA. The inhibitor GW4869 of exosome biogenesis was added before sensitization and then the anaphylactic reactions were evaluated both in vivo (clinical score and body temperature) and in vitro (serum histamine, allergen-specific antibodies, cytokines by ELISA and cell analysis by flow cytometry) to explore the role of exosomes in the development of CMA. Nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) showed that the size distribution and morphology of CMA-derived exosomes were not changed after GW4869 preconditioning, and the concentration of exosomes was much lower than that of the CMA group. In the GW4869 group, inhibition of release of exosomes modulated the induction of T helper 2 cell (Th2)-related substances, with a decrease in histamine and allergen-specific immunoglobulin (Ig) E, and the expression of Th1, Th2, and Th17 cells all decreased as well. Moreover, the experimental data were integrated by means of principal component analysis (PCA) to give an overview that the percentage of Th cells and concentrations of cytokines were more influenced by GW4869 treatment. These data for the first time demonstrated that exosomes are involved in the development of CMA and the blockade of exosome release with GW4869 suppressed the IgE-mediated immune response in CMA.
Collapse
Affiliation(s)
- Xin Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, 330047, China
- School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang, 330047, China
| | - Jin Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
- Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
- Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| |
Collapse
|
10
|
Huang M, Shao H, Zhang X, Yang F, Wang J, Tan S, Chen H, Li X. Comparison of cow's milk allergy models highlighted higher humoral and Th2 immune responses in BALB/c than C3H/HeNCrl mice. Food Chem Toxicol 2024; 184:114315. [PMID: 38081529 DOI: 10.1016/j.fct.2023.114315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/25/2023]
Abstract
Cow's milk allergy (CMA) is common in early childhood and the incidence is increasing. However, its mechanisms of action are still not fully understood due to the range of different clinical symptoms. So far, the development of different mouse models has been the best choice to study the molecular mechanisms triggering allergy. However, the selection of suitable strains for the establishment of animal models truly representative of associated human pathologies is still a challenge. Hence, we focused on both C3H/HeNCrl and BALB/c mice to characterize their susceptibility to CMA. After intraperitoneal sensitization, BALB/c and C3H/HeNCrl strains were challenged with β-lactoglobulin (BLG), and compared in allergic symptoms and active immune response, which assessed by specific antibody production and cytokine release. At first, both groups exhibited anaphylaxis, showed specific BLG-related IgE, Th2 response and seemed both suitable for the development of CMA models. However, a detailed analysis revealed that BALB/c had both stronger humoral and Th2 immune responses, producing more antibodies (IgE and IgG/IgG1/IgG2a), and releasing higher levels of Th2-associated cytokines (IL-4, IL-5, IL-13) compared to C3H/HeNCrl mice. Therefore, BALB/c strain would represent a preferential choice in the establishment of CMA models. This study highlights the subtle differences and major outcomes in the selection of mouse strains for the development of suitable food allergy models.
Collapse
Affiliation(s)
- Meijia Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Huming Shao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Fan Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Jingshu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Shuijie Tan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, Jiangxi, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, Jiangxi, PR China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, Jiangxi, PR China.
| |
Collapse
|
11
|
Baghlaf MA, Eid NM, Enani S, Kokandi S, Alhussaini B, Waked MS. Prevalence and Risk Factors for IgE and IgG Cow's Milk Protein Allergies in Saudi Arabia. Cureus 2023; 15:e50812. [PMID: 38125695 PMCID: PMC10730981 DOI: 10.7759/cureus.50812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
Cow's milk protein allergies (CMPAs) particularly occur in infancy and early childhood due to an immunological allergic reaction to milk proteins. This issue is increasing in Saudi Arabia and requires research to improve health status and provide alternatives. Our study aims to investigate the important aspects of immunoglobulin E (IgE) and IgG CMPA in Saudi Arabia regarding its prevalence and association with demographic and health-related factors in both adult and pediatric populations. A descriptive retrospective cross-sectional study was conducted on 376 patients, comprising 314 adults aged between 19 and 86 years, and 62 pediatric patients aged between one and 12 years. The study focused on individuals who attended a private medical center in Jeddah city over the past five years. Laboratory results for food allergy of IgE and IgG tests, including cow's milk proteins (CMPs), serum 25-hydroxyvitamin D (25OHD), specific IgE inhalant allergy results, and other health-related factors were collected from an electronic record system. Results have shown that casein was the most common sensitizing allergen of CMPs in adults, whereas α-lactalbumin was the most common sensitizing allergen in pediatrics. The most frequent sensitizing allergen in IgG CMP was cow's milk in 54/92 (58.7%) adults, followed by cow's sour milk products 41 (44.6%). Cow's milk was the most common sensitizing allergen in 20/20 (100%) children. The rate of CMPA was significantly higher in children younger than five years old (P =0.003), while children who interacted with pets had a marginal significantly reduced rate (P = 0.054). Thus, cow's milk is the most sensitizing allergen in IgG CMPs in adults and pediatrics.
Collapse
Affiliation(s)
- Mashail A Baghlaf
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, SAU
| | - Noura M Eid
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, SAU
- King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, SAU
| | - Sumia Enani
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, SAU
- Food, Nutrition, and Lifestyle Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, SAU
| | - Samia Kokandi
- Department of Nutrition, International Medical Center, Jeddah, SAU
| | - Bakr Alhussaini
- Department of Pediatric Gastroenterology, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | | |
Collapse
|
12
|
Wang X, Hu Y, Tan H, Dong X, Zhang S, Fu S, Gao J, Chen H, Liu G, Li X. Glutamine and lysine as common residues from epitopes on α-lactalbumin and β-lactoglobulin from cow milk identified by phage display technology. J Dairy Sci 2023; 106:7382-7395. [PMID: 37641259 DOI: 10.3168/jds.2022-23151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/30/2023] [Indexed: 08/31/2023]
Abstract
Cow milk is an important source of food protein for children; however, it could lead to allergy, especially for infants. α-Lactalbumin (α-LA) and β-lactoglobulin (β-LG) from whey protein make up a relatively high proportion of milk proteins and have received widespread attention as major allergens in milk. However, few studies have identified the epitopes of both proteins simultaneously. In this study, ImmunoCAP and indirect ELISA were first used for detection of sIgE to screen sera from allergic patients with high binding capacity for α-LA and β-LG. Subsequently, the mimotopes was biopanned by phage display technology and bioinformatics and 17 mimic peptide sequences were obtained. Aligned with the sequences of α-LA or β-LG, we identified one linear epitope on α-LA at AA 11-26 and 5 linear epitopes on β-LG at AA 9-29, AA 45-57, AA 77-80, AA 98-101, and AA 121-135, respectively. Meanwhile, the 8 conformational epitopes and their distributions of α-LA and β-LG were located using the Pepitope Server. Finally, glutamine and lysine were determined as common AA residues for the conformational epitopes both on α-LA and β-LG. Moreover, we found the addition of mouse anti-human IgE during the biopanning process did not significantly affect the identification of the epitopes.
Collapse
Affiliation(s)
- Xinyu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yongxin Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hongkai Tan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiang Dong
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shuchen Zhang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Siqi Fu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China; Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang 330047, China
| | - Guanghui Liu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
13
|
Zhang Q, Zhang C, Zhang Y, Liu Y, Wang J, Gao Z, Sun J, Li Q, Sun J, Cui X, Wang Y, Fu L. Early-life risk factors for food allergy: Dietary and environmental factors revisited. Compr Rev Food Sci Food Saf 2023; 22:4355-4377. [PMID: 37679957 DOI: 10.1111/1541-4337.13226] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 09/09/2023]
Abstract
There appears a steep increase in the prevalence of food allergy worldwide in the past few decades. It is believed that, rather than genetic factors, the recently altered dietary and environmental factors are the driving forces behind the rapid increase of this disease. Accumulating evidence has implied that external exposures that occurred in prenatal and postnatal periods could affect the development of oral tolerance in later life. Understanding the potential risk factors for food allergy would greatly benefit the progress of intervention and therapy. In this review, we present updated knowledge on the dietary and environmental risk factors in early life that have been shown to impact the development of food allergy. These predominantly include dietary habits, microbial exposures, allergen exposure routes, environmental pollutants, and so on. The key evidence, conflicts, and potential research topics of each theory are discussed, and associated interventional strategies to prevent the disease development and ameliorate treatment burden are included. Accumulating evidence has supported the causative role of certain dietary and environmental factors in the establishment of oral tolerance in early life, especially the time of introducing allergenic foods, skin barrier function, and microbial exposures. In addition to certain immunomodulatory factors, increasing interest is raised toward modern dietary patterns, where adequately powered studies are required to identify contributions of those modifiable risk factors. This review broadens our understanding of the connections between diet, environment, and early-life immunity, thus benefiting the progress of intervention and therapy of food allergy.
Collapse
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Chi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yong Zhang
- Nutrition Department of the First Medical Centre of PLA General Hospital, Beijing, China
| | - Yinghua Liu
- Nutrition Department of the First Medical Centre of PLA General Hospital, Beijing, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Zhongshan Gao
- Allergy Research Center, Zhejiang University, Hangzhou, China
| | - Jinlyu Sun
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianqian Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jiachen Sun
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xin Cui
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
14
|
Huang KY, Liang BS, Zhang XY, Chen H, Ma N, Lan JL, Li DY, Zhou ZW, Yang M. Molecular characterization of Clostridium perfringens isolates from a tertiary children's hospital in Guangzhou, China, establishing an association between bacterial colonization and food allergies in infants. Gut Pathog 2023; 15:47. [PMID: 37807056 PMCID: PMC10561448 DOI: 10.1186/s13099-023-00572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Cow's milk protein allergy (CMPA) is one of the most common types of food allergy in infants. Faecal pathogen cultures showed that the positive rate of Clostridium perfringens was more than 30%, which was significantly higher than that for other bacteria. Therefore, it is speculated that Clostridium perfringens colonization may be one of the pathogenetic factors for CMPA in infants. We conducted a real-world evidence study. Infants aged 0-6 months with diarrhoea and mucoid and/or bloody stools were recruited from a large tertiary hospital in China. Faecal pathogen cultures for the detection of Clostridium perfringens were confirmed by flight mass spectrometry, and potential toxin genes were identified using PCR. After 12 months of follow-up, the diagnoses of CMPA and food allergy were recorded. The correlation was assessed by Pearson correlation analysis. RESULTS In this study, 358 infants aged 0-6 months with gastrointestinal symptoms and faecal pathogen cultures were recruited. A total of 270 (44.07% girls; mean age, 2.78 ± 2.84 months) infants were followed up for 12 months. Overall, the rate of positivity for Clostridium perfringens in faecal pathogen cultures was 35.75% (128/358) in infants aged ≤ 6 months. The earliest Clostridium perfringens colonization was detected within 2 days after birth. The majority of Clostridium perfringens isolates were classified as type C in 85 stool samples. In the Clostridium perfringens-positive group, 48.21% (54/112) of infants were clinically diagnosed with food allergies after 12 months, including 37.5% (42/112) with CMPA, which was significantly higher than that of the negative group, with 7.59% (12/158) exhibiting food allergies and 5.06% (8/158) presenting CMPA (P < 0.0001). Faecal Clostridium perfringens positivity was significantly correlated with CMPA, food allergy, faecal occult blood, faecal white blood cells, antibiotic use, increased peripheral blood platelet counts, and decreased haemoglobin levels (P < 0.0001). CONCLUSIONS This study demonstrates that intestinal colonization by Clostridium perfringens is common in infants. The majority of Clostridium perfringens isolates are classified as type C. Colonization of the intestine by Clostridium perfringens is associated with the development of CMPA and food allergy in infants.
Collapse
Affiliation(s)
- Kun-Yi Huang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bing-Shao Liang
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Yan Zhang
- Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ni Ma
- Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiao-Li Lan
- Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ding-You Li
- Division of Gastroenterology, Children's Mercy Hospital, University of Missouri Kansas City School of Medicine, Kansas City, USA
| | - Zhen-Wen Zhou
- Clinical Laboratory, Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, China.
| | - Min Yang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
- Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Xu Y, Ahmed I, Zhao Z, Lv L. A comprehensive review on glycation and its potential application to reduce food allergenicity. Crit Rev Food Sci Nutr 2023; 64:12184-12206. [PMID: 37683268 DOI: 10.1080/10408398.2023.2248510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Food allergens are a major concern for individuals who are susceptible to food allergies and may experience various health issues due to allergens in their food. Most allergenic foods are subjected to heat treatment before being consumed. However, thermal processing and prolonged storage can cause glycation reactions to occur in food. The glycation reaction is a common processing method requiring no special chemicals or equipment. It may affect the allergenicity of proteins by altering the structure of the epitope, revealing hidden epitopes, concealing linear epitopes, or creating new ones. Changes in food allergenicity following glycation processing depend on several factors, including the allergen's characteristics, processing parameters, and matrix, and are therefore hard to predict. This review examines how glycation reactions affect the allergenicity of different allergen groups in allergenic foods.
Collapse
Affiliation(s)
- Yue Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Ishfaq Ahmed
- Haide College, Ocean University of China, Qingdao, China
| | - Zhengxi Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Liangtao Lv
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
16
|
Huang M, Shao H, Wang Z, Chen H, Li X. Specific and nonspecific nutritional interventions enhance the development of oral tolerance in food allergy. Crit Rev Food Sci Nutr 2023; 64:10303-10318. [PMID: 37313721 DOI: 10.1080/10408398.2023.2222803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The goal of food allergy (FA) prevention and treatment is to induce oral tolerance (OT). Appropriate nutritional interventions are essential to induce OT to food allergens. This review introduces the mechanism of OT and the importance of early nutritional interventions, and then firstly summarizes specific nutritional factors to induce the development of OT of FA, including proteins, vitamins, fatty acids, saccharides and probiotics. The regulatory mechanism mainly induces the development of tolerance by increasing local or systemic protective regulatory T cells (Tregs) to suppress FA, while the gut microbiota may also be changed to maintain intestinal homeostasis. For allergens-specific OT, the disruption to the structure of proteins and epitopes is critical for the induction of tolerance by hydrolyzed and heated proteins. Vitamins (vitamin A, D), fatty acids, saccharides and probiotics as allergens nonspecific OT also induce the development of OT through immunomodulatory effects. This review contributes to our understanding of OT in FA through nutritional interventions. Nutritional interventions play an important role in the induction of OT, and offer promising approaches to reduce allergy risk and alleviate FA. Moreover, due to the importance and diversity of nutrition, it must be the future trend of induction of OT in FA.
Collapse
Affiliation(s)
- Meijia Huang
- School of Food Science and Technology, Nanchang University, Nanchang, P.R. China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P.R. China
| | - Huming Shao
- School of Food Science and Technology, Nanchang University, Nanchang, P.R. China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P.R. China
| | - Zhongliang Wang
- School of Food Science and Technology, Nanchang University, Nanchang, P.R. China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P.R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P.R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, P.R. China
| | - Xin Li
- School of Food Science and Technology, Nanchang University, Nanchang, P.R. China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, P.R. China
| |
Collapse
|
17
|
Xu Z, Bai H, Ma X, Wu Y, Wu Z, Yang A, Mao W, Li X, Chen H. Cytological evaluation by Caco-2 and KU812 of non-allergenic peptides from simulated digestion of infant formula in vitro. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Ye M, Xu Z, Tan H, Yang F, Yuan J, Wu Y, Wu Z, Yang A, Chen H, Li X. Allergenicity reduction of cow milk treated by alkaline protease combined with Lactobacillus Plantarum and Lactobacillus helveticus based on epitopes. Food Chem 2023; 421:136180. [PMID: 37105121 DOI: 10.1016/j.foodchem.2023.136180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
This paper has investigated the residual allergenicity of cow's milk treated by enzymatic hydrolysis combined with Lactobacillus fermentation (Lb. Plantarum and Lb. helveticus). The treated products were comprehensively evaluated by SDS-PAGE, RP-HPLC, ELISA, and Caco-2 models. And the allergenic changes of residual allergenic peptides were explored by DC-T co-culture. The results showed that alkaline protease was the most suitable protease that targeted to destroy epitopes of milk major allergen than trypsin, pepsin, and papain by prediction. And the residual epitopes were reduced to four which was treated by alkaline protease combined with Lb. helveticus. The transport absorption capacity of treated products was almost twice than milk. Meanwhile, the seven residual allergenic peptides were obtained from treated products. Among them, αs1-casein (AA84-90) can be used as an immune tolerance peptide for further study. Lb. helveticus combined with alkaline protease treatment may be considered promising strategy of protect from cow's milk allergy.
Collapse
Affiliation(s)
- Mao Ye
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Zihao Xu
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Hongkai Tan
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Fan Yang
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Juanli Yuan
- School of Pharmacy Science, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| | - Yong Wu
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| | - Zhihua Wu
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| | - Anshu Yang
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| | - Hongbing Chen
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| | - Xin Li
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
19
|
Huang M, Yang F, Wu Y, Meng X, Shi L, Chen H, Li X. Identification of peptides sequence and conformation contributed to potential allergenicity of main allergens in yogurts. Front Nutr 2023; 9:1038466. [PMID: 36687717 PMCID: PMC9849743 DOI: 10.3389/fnut.2022.1038466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 01/07/2023] Open
Abstract
Yogurts provide a good source of nutrition and may induce tolerance in people with cow's milk allergy (CMA). This study aimed to investigate the IgE-binding capacity of main allergens in the different yogurts which provide a reference for people with a high risk of CMA, and analyze the epitopes of major allergen peptides in yogurt. We assessed the degradation and the allergenic properties of major allergens in six commercial yogurts and fresh milk. The degradation of major allergens was analyzed by SDS-PAGE and RP-HPLC. Western blot and ELISA experiments detected allergenic characteristics by using specific sera. The results showed that β-lactoglobulin (Bos d 5) and α-lactalbumin (Bos d 4) were obviously degraded in yogurts but caseins were still present in abundance, which indicated that the proteases in yogurts were specific to whey proteins. IgE and IgG binding ability of major allergens were obviously reduced in yogurts, especially GuMi yogurt. In addition, 17 peptides of major allergens in GuMi yogurt were identified by LC-MS/MS and most of them were located in the interior of the spatial structure of proteins. Among them, 8 peptides had specific biological functions for health benefits, such as antibacterial, antioxidant, and ACE-inhibitory. We also found that 6 and 14 IgE epitopes of Bos d 5 and caseins were destroyed in GuMi yogurt, which could lead to the reduction of IgE-binding capacity. Meanwhile, peptides [Bos d 5 (AA15-40), Bos d 9 (AA120-151, AA125-151)] also preserved T cell epitopes, which might also induce the development of oral tolerance. Therefore, this study suggested that the sequence and conformation of peptides in yogurts contributed to hypoallergenicity.
Collapse
Affiliation(s)
- Meijia Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Fan Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Linbo Shi
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,School of Food Science and Technology, Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China,*Correspondence: Xin Li,
| |
Collapse
|
20
|
A Method for Screening Proteases That Can Specifically Hydrolyze the Epitope AA83-105 of α s1-Casein Allergen. Foods 2022; 11:foods11213322. [PMID: 36359934 PMCID: PMC9655875 DOI: 10.3390/foods11213322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Milk protein hydrolysates are common in infant formula, but some of them retain allergenicity due to incomplete hydrolysis of the epitopes for milk allergens. This study explored a method for screening proteases that could specifically hydrolyze the epitope of αs1-casein allergen. Firstly, the αs1-casein epitope AA83-105 was synthesized by the solid-phase synthesis method. Then, after purification and identification, the complete antigen was prepared through coupling with bovine serum albumin (BSA) and was used to raise monoclonal antibodies (mAb) in BALB/c mice. Additionally, an indirect competitive-enzyme-linked immunosorbent assay (icELISA) was established. The mAb raised against αs1-casein protein was used as a control. The results showed that the purity of the synthetic epitope was >90%, and the coupling rate with BSA was 6.31. The mAb subtype is IgG1, with a titer of 1:320,000. The mAb reacted specifically with αs1-casein but did not cross-react with soybean protein. The linear regression equation of the competitive inhibition curve was y = −9.22x + 100.78 (R2 = 0.9891). The detection limit of icELISA method was more sensitive, and the method showed good accuracy and repeatability. The amounts of antigen residues in papain protease hydrolysates were relatively small, and the epitope fragment was detected in papain hydrolysate via mass spectrometry. This study provides ideas and methods for screening proteases that specifically hydrolyze the epitopes of milk allergens and also provides a superior foundation for the development of an advanced hypoallergenic formula.
Collapse
|
21
|
Tang R, Lyu X, Liu Y, Zhu M, Yang X, Wu Z, Han B, Wu S, Sun J. Four clinical phenotypes of cow’s milk protein allergy based on dairy product specific IgE antibody types in North China. Front Immunol 2022; 13:949629. [PMID: 36275773 PMCID: PMC9585381 DOI: 10.3389/fimmu.2022.949629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Cow’s milk protein allergy (CMPA) is a common allergy. Immunoglobulin E (IgE)-mediated cow’s milk allergy is associated with a high mortality risk and poor prognosis. The study aims to investigate whether there are different clinically CMPA phenotypes in China and to explore the association between CMPA phenotypes and specific IgE (sIgE) antibodies against different dairy products. Methods Serum sIgE against different animal milk and cow’s milk products and different milk components was measured by an allergen array. Four CMPA classifications were identified by the presence of serum sIgE: boiled milk-positive, yogurt-positive, buttermilk-positive, and raw milk-positive. Results Among the 234 participants included in the study, 9 were boiled milk sIgE-positive, 50 were yogurt sIgE-positive, 17 were buttermilk sIgE-positive, and 158 were only raw milk sIgE-positive. The boiled milk-positive group had the highest levels of raw milk sIgE and casein sIgE antibodies, followed sequentially by the yogurt-positive, buttermilk-positive, and raw milk-positive groups. The boiled milk group observed the highest levels of sIgE against raw milk, casein, α-lactalbumin, and β-lactoglobulin. These levels differed significantly from those in the other three groups. Allergic symptoms were distributed differently among the four study groups. The percentages of allergic patients with gastrointestinal tract symptoms in the above mentioned four groups ranged from high to low, and the percentages of patients with skin symptoms in the four groups ranged from low to high, respectively. Conclusion Based on dairy product sIgE antibody levels associated with different milk components and various clinical allergic symptom tendencies, we could distinguish four CMPA phenotypes.
Collapse
Affiliation(s)
- Rui Tang
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohong Lyu
- Eight-year program of clinical medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yi Liu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., Ltd., Hangzhou, China
| | - Mingzhi Zhu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., Ltd., Hangzhou, China
| | - Xukai Yang
- Hangzhou Zheda Dixun Biological Gene Engineering Co., Ltd., Hangzhou, China
| | - Zhoujie Wu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., Ltd., Hangzhou, China
| | - Bingnan Han
- Zheda Dixun Anti-Allergy Functional Molecular Laboratory, Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Jinlyu Sun, ; Shandong Wu, ; Bingnan Han,
| | - Shandong Wu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., Ltd., Hangzhou, China
- *Correspondence: Jinlyu Sun, ; Shandong Wu, ; Bingnan Han,
| | - Jinlyu Sun
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Jinlyu Sun, ; Shandong Wu, ; Bingnan Han,
| |
Collapse
|
22
|
Yang F, Ma X, Hu W, Xiong Z, Huang M, Wu Y, Meng X, Wu Z, Yang A, Li X, Chen H. Identification of immunoglobulin E epitopes on major allergens from dairy products after digestion and transportation in vitro. J Dairy Sci 2022; 105:9476-9487. [DOI: 10.3168/jds.2022-22287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/29/2022] [Indexed: 11/05/2022]
|
23
|
Immunomodulatory Role of BLG-Derived Peptides Based on Simulated Gastrointestinal Digestion and DC-T Cell from Mice Allergic to Cow's Milk. Foods 2022; 11:foods11101450. [PMID: 35627020 PMCID: PMC9140701 DOI: 10.3390/foods11101450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Peptides, but not whole protein, elicit an allergic reaction since food allergens should be consumed by digestion. In this study, we explored the remaining peptides after simulated digestion of cow’s milk in order to search for β-lactoglobulin (BLG)-derived peptides that could play an immunomodulatory role. As a major allergen in milk, BLG-derived peptides, 109 in total, were identified both from simulated infant and adult digestion in vitro. These peptides were mainly located in four regions, and they were synthesized as five peptides, namely, BLG1–14, BLG24–35, BLG40–60, BLG82–101, and BLG123–139. Then, the effect of peptides on the Caco-2 cell’s transport absorption, the co-stimulatory molecules of DC, and the T-cell phenotype was explored. The results suggested all peptides showed better transport absorption capacity with the apparent permeability coefficient higher than 2 × 10−6 cm·s−1. The ability of BLG40–60 for promoting lamina propria-derived DC cell (LPDC) maturation was observed by the increase in MHC II. Moreover, BLG1–14 and BLG40–60 directed activation of T lymphocytes towards a Th1 phenotype. This is the first report of the immunomodulatory potential of peptides in the sensitization of allergic reaction, and one peptide, BLG40–60, was regarded as an immunomodulatory peptide, one that should be further explored in an animal model in depth.
Collapse
|
24
|
Vandenplas Y, Zhao ZY, Mukherjee R, Dupont C, Eigenmann P, Kuitunen M, Ribes Koninckx C, Szajewska H, von Berg A, Bajerová K, Meyer R, Salvatore S, Shamir R, Järvi A, Heine RG. Assessment of the Cow's Milk-related Symptom Score (CoMiSS) as a diagnostic tool for cow's milk protein allergy: a prospective, multicentre study in China (MOSAIC study). BMJ Open 2022; 12:e056641. [PMID: 35177461 PMCID: PMC8860045 DOI: 10.1136/bmjopen-2021-056641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The MOSAIC study aimed to evaluate if the Cow's Milk-related Symptom Score (CoMiSS) can be used as a stand-alone diagnostic tool for cow's milk protein allergy (CMPA). DESIGN Single-blinded, prospective, multicentre diagnostic accuracy study. SETTING 10 paediatric centres in China. PARTICIPANTS 300 non-breastfed infants (median age 16.1 weeks) with suspected CMPA. INTERVENTIONS After performing the baseline CoMiSS, infants commenced a cow's milk protein elimination diet with amino acid-based formula for 14 days. CoMiSS was repeated at the end of the elimination trial. Infants then underwent an open oral food challenge (OFC) with cow's milk-based formula (CMF) in hospital. Infants who did not react during the OFC also completed a 14-day home challenge with CMF. A diagnosis of CMPA was made if acute or delayed reactions were reported. PRIMARY OUTCOME MEASURES A logistic regression model for CoMiSS to predict CMPA was fitted and a receiver-operator characteristic (ROC) curve generated. An area under the curve (AUC) of ≥0.75 was deemed adequate to validate CoMiSS as a diagnostic tool (target sensitivity 80%-90% and specificity 60%-70%). RESULTS Of 254 infants who commenced the OFC, 250 completed both challenges, and a diagnosis of CMPA made in 217 (85.4%). The median baseline CoMiSS in this group fell from 8 (IQR 5-10) to 5 (IQR 3-7) at visit 2 (p<0.000000001), with a median change of -3 (IQR -6 to -1). A baseline CoMiSS of ≥12 had a low sensitivity (20.3%), but high specificity (87.9%) and high positive predictive value (91.7%) for CMPA. The ROC analysis with an AUC of 0.67 fell short of the predefined primary endpoint. CONCLUSIONS The present study did not support the use of CoMiSS as a stand-alone diagnostic tool for CMPA. Nevertheless, CoMiSS remains a clinically useful awareness tool to help identify infants with cow's milk-related symptoms. TRIAL REGISTRATION NUMBER NCT03004729; Pre-results.
Collapse
Affiliation(s)
- Yvan Vandenplas
- Vrije Universiteit Brussel, UZ Brussel, KidZ Health Castle, Brussels, Belgium
| | - Zheng-Yan Zhao
- Children's Hospital Zhejiang, University School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Christophe Dupont
- Department of Paediatrics, Hôpital Necker-Enfants Malades, Paris, France
| | - Philippe Eigenmann
- Department of Infants and Adolescents, University Hospitals Geneva, Geneva, Switzerland
| | - Mikael Kuitunen
- New Children's Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Carmen Ribes Koninckx
- Paediatric Gastroenterology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Hania Szajewska
- Department of Paediatrics, Medical University of Warsaw, Warszawa, Poland
| | - Andrea von Berg
- Research Institute, Department of Paediatrics, Marien-Hospital Wesel, Wesel, Germany
| | - Kateřina Bajerová
- Research Institute, Department of Paediatrics, Marien-Hospital Wesel, Wesel, Germany
| | - Rosan Meyer
- Department of Paediatrics, Imperial College London, London, UK
| | - Silvia Salvatore
- Department of Paediatrics, Hospital 'F. Del Ponte', University of Insubria, Varese, Italy
| | - Raanan Shamir
- Institute for Gastroenterology, Nutrition and Liver Disease, Schneider Children's Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
25
|
Maillard Reaction Induced Changes in Allergenicity of Food. Foods 2022; 11:foods11040530. [PMID: 35206007 PMCID: PMC8870895 DOI: 10.3390/foods11040530] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Food allergy is increasing in prevalence, posing aheavier social and financial burden. At present, there is still no widely accepted treatment for it. Methods to reduce or eliminate the allergenicity of trigger foods are urgently needed. Technological processing contributes to producing some hypoallergenic foods. Among the processing methods, the Maillard reaction (MR) is popular because neither special chemical materials nor sophisticated equipment is needed. MR may affect the allergenicity of proteins by disrupting the conformational epitope, disclosing the hidden epitope, masking the linear epitope, and/or forming a new epitope. Changes in the allergenicity of foods after processing are affected by various factors, such as the characteristics of the allergen, the processing parameters, and the processing matrix, and they are therefore variable and difficult to predict. This paper reviews the effects of MR on the allergenicity of each allergen group from common allergenic foods.
Collapse
|
26
|
A UCMPs@MIL-100 based thermo-sensitive molecularly imprinted fluorescence sensor for effective detection of β-lactoglobulin allergen in milk products. J Nanobiotechnology 2022; 20:51. [PMID: 35078480 PMCID: PMC8787952 DOI: 10.1186/s12951-022-01258-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/11/2022] [Indexed: 12/26/2022] Open
Abstract
In this study, a thermo-sensitive molecularly imprinted fluorescence sensor was developed for the specific detection of β-Lactoglobulin (β-LG) allergen in milk products. The metal–organic frameworks (MIL-100) with a high specific surface area was coated on the surface of upconversion micro-particles (UCMPs). As the core, an imprinted polymer layer allowing for swelling and shrinking with response to temperature was prepared, which exhibited high adsorption and mass transfer capabilities for β-LG allergen. The fluorescence intensity of UCMPs@MIL-100@MIP decreased linearly with the concentration of β-LG in the range of 0.1–0.8 mg mL−1, and the limit of detection was 0.043 mg mL−1. The imprinting factor reached 3.415, which indicated that excellent specificity of the UCMPs@MIL-100@MIP for β-LG allergen. In the analysis of β-LG allergen in actual milk samples, the proposed UCMPs@MIL-100@MIP fluorescence sensor produced reliable and accurate results (recovery: 86.0–98.4%, RSD: 2.8–6.8%), closely related to the results of standard HPLC method (correlation coefficient: 0.9949), indicating that its feasibility in the detection of β-LG allergen.
Collapse
|
27
|
Yang X, Zhou C, Guo C, Wang J, Chen I, Wen SW, Krewski D, Yue L, Xie RH. The prevalence of food allergy in cesarean-born children aged 0-3 years: A systematic review and meta-analysis of cohort studies. Front Pediatr 2022; 10:1044954. [PMID: 36733768 PMCID: PMC9887154 DOI: 10.3389/fped.2022.1044954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Previous studies reported a higher risk of food allergy for cesarean-born children than vaginal-born children. This study aims to systematically compare the prevalence of food allergy among cesarean-born and vaginal-born children aged 0-3 years. METHODS Three English and two Chinese databases were searched using terms related to food allergies and cesarean sections. Cohort studies that reported the prevalence of food allergy in cesarean-born and vaginal-born children aged 0-3 years were included. Two reviewers performed study selection, quality assessment, and data extraction. The pooled prevalence of food allergy in cesarean-born and vaginal-born children was compared by meta-analysis. RESULTS Nine eligible studies, with 9,650 cesarean-born children and 20,418 vaginal-born children aged 0-3 years, were included. Of them, 645 cesarean-born children and 991 vaginal-born children were identified as having food allergies. The pooled prevalence of food allergy was higher in cesarean-born children (7.8%) than in vaginal-born children (5.9%). Cesarean section was associated with an increased risk of food allergy [odds ratio (OR): 1.45; 95% confidence interval (CI): 1.03-2.05] and cow's milk allergy (OR: 3.31; 95% CI: 1.98-5.53). Additionally, cesarean-born children with a parental history of allergy had an increased risk of food allergy (OR: 2.60; 95% CI: 1.28-5.27). CONCLUSION This study suggests that cesarean sections was associated with an increased risk of food and cow's milk allergies in children aged 0-3 years. Cesarean-born children with a parental history of allergy demonstrated a higher risk for food allergy than did vaginal-born children. These results indicate that caregivers should be aware of the risks of food allergies in cesarean-born children, reducing the risk of potentially fatal allergic events. Further research is needed to identify the specific factors affecting food allergies in young children. SYSTEMATIC REVIEW REGISTRATION http://www.crd.york.ac.uk/prospero, identifier: International Prospective Register of Systematic Reviews (NO. CRD42019140748).
Collapse
Affiliation(s)
- Xiaoxian Yang
- School of Health and Nursing, Wuxi Taihu University, Wuxi, China
| | - Chuhui Zhou
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China.,School of Nursing, Southern Medical University, Guangzhou, China
| | - Chentao Guo
- Department of Epidemiology, Xishan Center for Disease Control and Prevention, Wuxi, China
| | - Jie Wang
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China.,School of Nursing, Southern Medical University, Guangzhou, China
| | - Innie Chen
- Department of Obstetrics & Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Shi Wu Wen
- Department of Obstetrics & Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada.,Risk Science International, Ottawa, ON, Canada
| | - Liqun Yue
- Department of Nursing, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ri-Hua Xie
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China.,The Telfer School of Management, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
28
|
Vandenplas Y, Dupont C, Eigenmann P, Heine RG, Høst A, Järvi A, Kuitunen M, Mukherjee R, Ribes-Koninckx C, Szajewska H, von Berg A, Zhao ZY. Growth in Infants with Cow's Milk Protein Allergy Fed an Amino Acid-Based Formula. Pediatr Gastroenterol Hepatol Nutr 2021; 24:392-402. [PMID: 34316474 PMCID: PMC8279827 DOI: 10.5223/pghn.2021.24.4.392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/15/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The present study assessed the role of an amino acid-based formula (AAF) in the growth of infants with cow's milk protein allergy (CMPA). METHODS Non-breastfed, term infants aged 0-6 months with symptoms suggestive of CMPA were recruited from 10 pediatric centers in China. After enrollment, infants were started on AAF for two weeks, followed by an open food challenge (OFC) with cow's milk-based formula (CMF). Infants with confirmed CMPA remained on AAF until 9 months of age, in conjunction with a cow's milk protein-free complementary diet. Body weight, length, and head circumference were measured at enrollment and 9 months of age. Measurements were converted to weight-for-age, length-for-age, and head circumference-for-age Z scores (WAZ, LAZ, HCAZ), based on the World Health Organization growth reference. RESULTS Of 254 infants (median age 16.1 weeks, 50.9% male), 218 (85.8%) were diagnosed with non-IgE-mediated CMPA, 33 (13.0%) tolerated CMF, and 3 (1.2%) did not complete the OFC. The mean WAZ decreased from 0.119 to -0.029 between birth and enrollment (p=0.067), with significant catch-up growth to 0.178 at 9 months of age (p=0.012) while being fed the AAF. There were no significant changes in LAZ (0.400 vs. 0.552; p=0.214) or HCAZ (-0.356 vs. -0.284; p=0.705) from the time of enrollment to age 9 months, suggesting normal linear and head growth velocity. CONCLUSION The amino acid-based study formula, in conjunction with a cow's milk protein-free complementary diet, supported normal growth till 9 months of age in a cohort of Chinese infants with challenge-confirmed non-IgE-mediated CMPA.
Collapse
Affiliation(s)
- Yvan Vandenplas
- Kidz Health Castle, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christophe Dupont
- Hôpital Necker-Enfants Malades, Université de Paris Descartes, Paris, France
| | - Philippe Eigenmann
- Paediatric Allergy Unit, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Arne Høst
- Department of Paediatrics, Hans Christian Andersen Children's Hospital, Odense, Denmark
| | | | - Mikael Kuitunen
- Children's Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Carmen Ribes-Koninckx
- Paediatric Gastroenterology and Hepatology Unit, La Fe University Hospital, Valencia, Spain
| | - Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | | | - Zheng-Yan Zhao
- Children's Hospital Zhejiang, University School of Medicine, Hangzhou, China
| | | |
Collapse
|
29
|
Zhang HJ, Dong XL, Zhang YF, Fang YF, Zhang HY. [Effect of maternal immune level at different pregnancy stages on cow's milk protein allergy in infants]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:1221-1225. [PMID: 33172559 PMCID: PMC7666383 DOI: 10.7499/j.issn.1008-8830.2006070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To study the association between maternal Th1/Th2 immune level at different pregnancy stages and cow's milk protein allergy (CMPA) in infants. METHODS The healthy women with a singleton pregnancy, as well as their offspring, who attended Yidu Central Hospital of Weifang and Qingzhou Traditional Chinese Medicine Hospital from July 2016 to December 2018 were enrolled. The maternal levels of interleukin-2 (IL-2), interferon gamma (IFN-γ), interleukin-4 (IL-4), and interleukin-10 (IL-10) at the second and third trimesters of pregnancy were measured. A CMPA questionnaire survey was conducted within one year after birth. Food avoidance and cow's milk oral challenge tests were performed in infants suspected of CMPA. The 48 infants who met the diagnostic criteria for CMPA were included in the observation group, and the remaining 977 normal infants were included in the control group. A univariate analysis was performed on the infants with CMPA. A Poisson regression analysis was used to determine the association between maternal Th1/Th2 immune factors at different pregnancy stages and CMPA. RESULTS The detection rate of CMPA was 4.68%. The clinical manifestations included the symptoms of the digestive system, skin, and respiratory system and other symptoms. The univariate analysis showed that compared with the control group, the observation group had significantly higher incidence rates of maternal food allergy and maternal history of allergic diseases (P<0.05) and a significantly lower breastfeeding rate (P<0.05). The observation group had significantly lower maternal levels of IL-2 (second and third trimesters) and IFN-γ (third trimester) than the control group (P<0.05). Maternal low IFN-γ at the third trimester and maternal low IL-2 at the second and third trimesters were significantly associated with CMPA in infants (P<0.05). After correction of the factors of breastfeeding, maternal food allergy, and maternal history of allergic diseases, it was found that maternal low IL-2 and IFN-γ at the third trimester were still significantly associated with CMPA in infants (P<0.05). CONCLUSIONS The maternal decrease in Th1 level at the third trimester of pregnancy may lead to the change in fetal immunity and thus increase the risk of CMPA in offspring.
Collapse
Affiliation(s)
- Hai-Jun Zhang
- Department of Pediatrics, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, China.
| | | | | | | | | |
Collapse
|
30
|
Zhang JY, Zhou SM, Wang SH, Sui FX, Gao WH, Liu Q, Cai HB, Jiang HY, Li WY, Wang LT, Li L, Zhao W, Ying J, Wu QZ, Weng BX, Zeng YM. [Risk factors for cow's milk protein allergy in infants: a multicenter survey]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:42-46. [PMID: 31948523 PMCID: PMC7389720 DOI: 10.7499/j.issn.1008-8830.2020.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To investigate the risk factors for cow's milk protein allergy (CMPA) among infants through a multicenter clinical study. METHODS A total of 1 829 infants, aged 1-12 months, who attended the outpatient service of the pediatric department in six hospitals in Shenzhen, China from June 2016 to May 2017 were enrolled as subjects. A questionnaire survey was performed to screen out suspected cases of CMPA. Food avoidance and oral food challenge tests were used to make a confirmed diagnosis of CMPA CMPA. A multivariate logistic regression analysis was used to investigate the risk factors for CMPA. RESULTS Among the 1 829 infants, 82 (4.48%) were diagnosed with CMPA. The multivariate logistic regression analysis showed that maternal food allergy (OR=4.91, 95%CI: 2.24-10.76, P<0.05), antibiotic exposure during pregnancy (OR=3.18, 95%CI: 1.32-7.65, P<0.05), and the introduction of complementary food at an age of <4 months (OR=3.55, 95%CI: 1.52-8.27, P<0.05) were risk factors for CMPA, while exclusive breastfeeding (OR=0.21, 95%CI: 0.08-0.58, P<0.05) and the introduction of complementary food at an age of >6 months (OR=0.38, 95%CI: 0.17-0.86, P<0.05) were protective factors. CONCLUSIONS The introduction of complementary food at an age of <4 months, maternal food allergy, and antibiotic exposure during pregnancy are risk factors for CMPA in infants.
Collapse
Affiliation(s)
- Ji-Yong Zhang
- Department of Pediatrics, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong 518017, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|