1
|
Structural Similarity with Cholesterol Reveals Crucial Insights into Mechanisms Sustaining the Immunomodulatory Activity of the Mycotoxin Alternariol. Cells 2020; 9:cells9040847. [PMID: 32244540 PMCID: PMC7226804 DOI: 10.3390/cells9040847] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
The proliferation of molds in domestic environments can lead to uncontrolled continuous exposure to mycotoxins. Even if not immediately symptomatic, this may result in chronic effects, such as, for instance, immunosuppression or allergenic promotion. Alternariol (AOH) is one of the most abundant mycotoxins produced by Alternaria alternata fungi, proliferating among others in fridges, as well as in humid walls. AOH was previously reported to have immunomodulatory potential. However, molecular mechanisms sustaining this effect remained elusive. In differentiated THP-1 macrophages, AOH hardly altered the secretion of pro-inflammatory mediators when co-incubated with lipopolysaccharide (LPS), opening up the possibility that the immunosuppressive potential of the toxin could be related to an alteration of a downstream pro-inflammatory signaling cascade. Intriguingly, the mycotoxin affected the membrane fluidity in macrophages and it synergistically reacted with the cholesterol binding agent MβCD. In silico modelling revealed the potential of the mycotoxin to intercalate in cholesterol-rich membrane domains, like caveolae, and immunofluorescence showed the modified interplay of caveolin-1 with Toll-like Receptor (TLR) 4. In conclusion, we identified the structural similarity with cholesterol as one of the key determinants of the immunomodulatory potential of AOH.
Collapse
|
2
|
Salazar PB, Dupuy FG, de Athayde Moncorvo Collado A, Minahk CJ. Membrane order and ionic strength modulation of the inhibition of the membrane-bound acetylcholinesterase by epigallocatechin‑3‑gallate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:170-177. [DOI: 10.1016/j.bbamem.2018.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/01/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
|
3
|
Dubey PS, Sharma VK, Srinivasan H, Mitra S, Sakai VG, Mukhopadhyay R. Effects of NSAIDs on the Dynamics and Phase Behavior of DODAB Bilayers. J Phys Chem B 2018; 122:9962-9972. [PMID: 30351108 DOI: 10.1021/acs.jpcb.8b07093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite well-known side effects, nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the most prescribed drugs worldwide for their anti-inflammatory and antipyretic properties. Here, we report the effects of two NSAIDs, aspirin and indomethacin, on the thermotropic phase behavior and the dynamics of a dioctadecyldimethylammonium bromide (DODAB) lipid bilayer as studied using neutron scattering techniques. Elastic fixed window scans showed that the addition of aspirin and indomethacin affects the phase behavior of a DODAB bilayer in both heating and cooling cycles. Upon heating, there is a change in the coagel- to fluid-phase transition temperature from 327 K for pure DODAB bilayer to 321 and 323 K in the presence of aspirin and indomethacin, respectively. More strikingly, upon cooling, the addition of NSAIDs suppresses the formation of the intermediate gel phase observed in pure DODAB. The suppression of the gel phase on addition of the NSAIDs evidences the synchronous ordering of a lipid headgroup and chain. Analysis of quasi-elastic neutron scattering data showed that only localized internal motion exists in the coagel phase, whereas both internal and lateral motions exist in the fluid phase. The internal motion is described by a fractional uniaxial rotational diffusion model in the coagel phase and by a localized translation diffusion model in the fluid phase. In the coagel phase, the rotational diffusion coefficient of DODAB is found to be almost twice for the addition of the drugs, whereas the mobility fraction did not change for indomethacin but becomes twice for aspirin. In the fluid phase, the lateral motion, described well by a continuous diffusion model, is found to be slower by about ∼30% for indomethacin but almost no change for aspirin. For the internal motion, addition of aspirin leads to enhancement of the internal motion, whereas indomethacin did not show significant effect. This study shows that the effect of different NSAIDs on the dynamics of the lipid membrane is not the same; hence, one must consider these NSAIDs individually while studying their action mechanism on the cell membrane.
Collapse
Affiliation(s)
- P S Dubey
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
| | - V K Sharma
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
| | - H Srinivasan
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
| | - S Mitra
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India.,Homi Bhabha National Institute , Anushaktinagar , Mumbai 400094 , India
| | - V García Sakai
- ISIS Pulsed Neutron and Muon Facility, Science and Technology Facilities Council , Rutherford Appleton Laboratory , Didcot OX11 0QX , U.K
| | - R Mukhopadhyay
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India.,Homi Bhabha National Institute , Anushaktinagar , Mumbai 400094 , India
| |
Collapse
|
4
|
Lysophosphatidylcholine acyltransferase 3 deficiency impairs 3T3L1 cell adipogenesis through activating Wnt/β-catenin pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:834-843. [PMID: 29673706 DOI: 10.1016/j.bbalip.2018.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/07/2018] [Accepted: 04/15/2018] [Indexed: 11/21/2022]
Abstract
Levels of polyunsaturated phosphatidylcholine (PC) influence plasma membrane structure and function. Phosphatidylcholine (PC) is synthesized de novo in the Kennedy pathway and then undergoes extensive deacylation/reacylation remodeling via Lands' cycle (non-Kennedy pathway). The reacylation is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT), which adds a polyunsaturated fatty acid at the sn-2 position. Four LPCAT isoforms have been described to date, among which we found LPCAT3 to be the major isoform in adipose tissue, but its exact role in adipogenesis is unclear. In this study, we aimed to investigate whether LPCAT3 activity affects 3T3L1 cell adipogenic differentiation potential and its underline mechanism. Lentivirus-mediated LPCAT3 shRNA expression stably knocked down LPCAT3 in 3T3L1 preadipocytes and LPCAT3 deficiency dramatically reduced the levels of cellular polyunsaturated PCs. Importantly, we found that this deficiency activated the β-catenin dependent Wnt signaling pathway, which suppressed the expression of adipogenesis-related genes, thereby inhibiting 3T3L1 preadipocyte differentiation and lipid accumulation. Moreover, three different Wnt/β-catenin pathway inhibitors reversed the effect of LPCAP3 deficiency, suggesting that Wnt/β-catenin pathway activation is one of the causes for the observed phenotypes. To the best of our knowledge, we show here for the first time that PC remodeling is an important regulator of adipocyte differentiation.
Collapse
|
5
|
Salazar PB, de Athayde Moncorvo Collado A, Canal-Martínez V, Minahk CJ. Differential inhibition of human erythrocyte acetylcholinesterase by polyphenols epigallocatechin-3-gallate and resveratrol. Relevance of the membrane-bound form. Biofactors 2017; 43:73-81. [PMID: 27591048 DOI: 10.1002/biof.1322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 01/20/2023]
Abstract
The activity of acetylcholinesterase (AChE) from human erythrocytes was tested in the presence of the phenolic compounds resveratrol and epigallocatechin-3-gallate (EGCG). Even though the stilbene barely changed this enzymatic activity, EGCG did inhibit AChE. Importantly, it preferentially acted on the membrane-bound enzyme rather than on its soluble form. Actually, it was shown that this flavonoid may bind to the red blood cell membrane surface, which may improve the interaction between EGCG and AChE. Therefore, caution should be taken when screening AChE inhibitors. In fact, testing compounds with the soluble form of the enzyme may underestimate the activity of some of these potential inhibitors, hence it would be advisable not to use them as a sole model system for screening. Moreover, erythrocyte AChE is proposed as a good model for these enzymatic assays. © 2016 BioFactors, 43(1):73-81, 2017.
Collapse
Affiliation(s)
- Paula B Salazar
- Instituto Superior de Investigaciones Biológicas (CONICET-UNT) and Instituto de Química Biológica ''Dr. Bernabe Bloj'', Facultad de Bioquímica, Química y Farmacia (UNT), Tucumán, Argentina
| | - Alejandro de Athayde Moncorvo Collado
- Instituto Superior de Investigaciones Biológicas (CONICET-UNT) and Instituto de Química Biológica ''Dr. Bernabe Bloj'', Facultad de Bioquímica, Química y Farmacia (UNT), Tucumán, Argentina
| | - Verónica Canal-Martínez
- Instituto Superior de Investigaciones Biológicas (CONICET-UNT) and Instituto de Química Biológica ''Dr. Bernabe Bloj'', Facultad de Bioquímica, Química y Farmacia (UNT), Tucumán, Argentina
| | - Carlos J Minahk
- Instituto Superior de Investigaciones Biológicas (CONICET-UNT) and Instituto de Química Biológica ''Dr. Bernabe Bloj'', Facultad de Bioquímica, Química y Farmacia (UNT), Tucumán, Argentina
| |
Collapse
|
6
|
Lopes D, Jakobtorweihen S, Nunes C, Sarmento B, Reis S. Shedding light on the puzzle of drug-membrane interactions: Experimental techniques and molecular dynamics simulations. Prog Lipid Res 2017; 65:24-44. [DOI: 10.1016/j.plipres.2016.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/30/2016] [Accepted: 12/03/2016] [Indexed: 12/20/2022]
|
7
|
Caiazzo E, Maione F, Morello S, Lapucci A, Paccosi S, Steckel B, Lavecchia A, Parenti A, Iuvone T, Schrader J, Ialenti A, Cicala C. Adenosine signalling mediates the anti-inflammatory effects of the COX-2 inhibitor nimesulide. Biochem Pharmacol 2016; 112:72-81. [PMID: 27188793 DOI: 10.1016/j.bcp.2016.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022]
Abstract
Extracellular adenosine formation from ATP is controlled by ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) and ecto-5'-nucleotidase (e-5NT/CD73); the latter converts AMP to adenosine and inorganic phosphate, representing the rate limiting step controlling the ratio between extracellular ATP and adenosine. Evidence that cellular expression and activity of CD39 and CD73 may be subject to changes under pathophysiological conditions has identified this pathway as an endogenous modulator in several diseases and was shown to be involved in the molecular mechanism of drugs, such as methotrexate, salicylates , interferon-β. We evaluated whether CD73/adenosine/A2A signalling pathway is involved in nimesulide anti-inflammatory effect, in vivo and in vitro. We found that the adenosine A2A agonist, 4-[2-[[6-amino-9-(N-ethyl-β-d-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS21680, 2mg/kg ip.), inhibited carrageenan-induced rat paw oedema and the effect was reversed by co-administration of the A2A antagonist -(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol (ZM241385; 3mg/kg i.p.). Nimesulide (5mg/kg i.p.) anti-inflammatory effect was inhibited by pre-treatment with ZM241385 (3mg/kg i.p.) and by local administration of the CD73 inhibitor, adenosine 5'-(α,β-methylene)diphosphate (APCP; 400μg/paw). Furthermore, we found increased activity of 5'-nucleotidase/CD73 in paws and plasma of nimesulide treated rats, 4h following oedema induction. In vitro, the inhibitory effect of nimesulide on nitrite and prostaglandin E2 production by lipopolysaccharide-activated J774 cell line was reversed by ZM241385 and APCP. Furthermore, nimesulide increased CD73 activity in J774 macrophages while it did not inhibit nitrite accumulation by lipopolysaccharide-activated SiRNA CD73 silenced J774 macrophages. Our data demonstrate that the anti-inflammatory effect of nimesulide in part is mediated by CD73-derived adenosine acting on A2A receptors.
Collapse
Affiliation(s)
| | - Francesco Maione
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Andrea Lapucci
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Sara Paccosi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Bodo Steckel
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Antonio Lavecchia
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Teresa Iuvone
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Armando Ialenti
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Carla Cicala
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
8
|
How to mechanistically explain the CONDOR study data. Med Hypotheses 2014; 84:14-9. [PMID: 25433956 DOI: 10.1016/j.mehy.2014.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/04/2014] [Accepted: 11/09/2014] [Indexed: 02/02/2023]
Abstract
Results of the CONDOR study suggest that in osteoarthritis and rheumatoid arthritis patients at elevated risk of gastrointestinal (GI) events, treatment with celecoxib, a cyclooxygenase (COX)-2 selective non-steroidal anti-inflammatory drug (NSAID), demonstrated significantly lower toxicity in the upper and lower (GI) tract when compared to the non-selective NSAID diclofenac plus a proton-pump-inhibitor (PPI), omeprazole. According to current knowledge, traditional NSAIDs (tNSAIDs) as non-selective COX-inhibitors exert their damaging effects on the upper GI tract, largely by reduction of the COX-1 related synthesis of gastro-protective prostaglandins. Thus, the question arises, how NSAIDs do exert their damaging effects especially in the lower GI tract and how to explain the reduced risk of a COX-2 selective inhibitor, celecoxib. Here we hypothesize, that the toxicity of celecoxib on enteral mucosa cells is lower than observed with other NSAIDs, and can be explained COX-independently by typical physicochemical properties of the NSAID substances (e.g., acidic, lipophilic, amphiphilic, surfactant properties). As a consequence these features account for differences in (1) uncoupling effects on mitochondria, (2) effects on cell membrane integrity, and/or (3) formation of "toxic micelles" with bile salts. The evidence for these differences is mainly based on experimental findings. However, several phenomena show differences in extent (e.g., uncoupling effects). The reduced toxicity appears to be rather a substance-specific characteristic. This is an unconditional reason to carry on investigating these phenomena in experimental and large-scale clinical trials.
Collapse
|
9
|
Alsop RJ, Barrett MA, Zheng S, Dies H, Rheinstädter MC. Acetylsalicylic acid (ASA) increases the solubility of cholesterol when incorporated in lipid membranes. SOFT MATTER 2014; 10:4275-4286. [PMID: 24789086 DOI: 10.1039/c4sm00372a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cholesterol has been well established as a mediator of cell membrane fluidity. By interacting with lipid tails, cholesterol causes the membrane tails to be constrained thereby reducing membrane fluidity, well known as the condensation effect. Acetylsalicylic acid (ASA), the main ingredient in aspirin, has recently been shown to increase fluidity in lipid bilayers by primarily interacting with lipid head groups. We used high-resolution X-ray diffraction to study both ASA and cholesterol coexisting in model membranes of dimyristoylphosphatidylcholine (DMPC). While a high cholesterol concentration of 40 mol% cholesterol leads to the formation of immiscible cholesterol bilayers, as was reported previously, increasing the amount of ASA in the membranes between 0 to 12.5 mol% was found to significantly increase the fluidity of the bilayers and dissolve the cholesterol plaques. We, therefore, present experimental evidence for an interaction between cholesterol and ASA on the level of the cell membrane at elevated levels of cholesterol and ASA.
Collapse
Affiliation(s)
- Richard J Alsop
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | | | | | | | | |
Collapse
|
10
|
Piroxicam and c-phycocyanin prevent colon carcinogenesis by inhibition of membrane fluidity and canonical Wnt/β-catenin signaling while up-regulating ligand dependent transcription factor PPARγ. Biomed Pharmacother 2014; 68:537-50. [DOI: 10.1016/j.biopha.2014.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/04/2014] [Indexed: 12/12/2022] Open
|
11
|
Lombardi VC, Khaiboullina SF. Plasmacytoid dendritic cells of the gut: relevance to immunity and pathology. Clin Immunol 2014; 153:165-77. [PMID: 24769378 DOI: 10.1016/j.clim.2014.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 12/15/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are bone marrow-derived immune cells with the ability to express copious amounts of type I and III interferon (IFN) and can differentiate into antigen-presenting dendritic cells as a result of stimulation by pathogen-derived nucleic acid. These powerful combined functionalities allow pDCs to bridge the innate and adaptive immune systems resulting in a concerted pathogen response. The contribution of pDCs to gastrointestinal immunity is only now being elucidated and is proving to be a critical component in systemic immunity. This review will explore the immunology of pDCs and will discuss their involvement in human disease and tolerance with an emphasis on those in the gastrointestinal lymphoid tissue.
Collapse
Affiliation(s)
- Vincent C Lombardi
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, WPI, University of Nevada, Reno, 1664 N Virginia St. MS 0552, Reno, NV 89557, USA.
| | - Svetlana F Khaiboullina
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, WPI, University of Nevada, Reno, 1664 N Virginia St. MS 0552, Reno, NV 89557, USA; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
12
|
Pinheiro M, Arêde M, Caio JM, Moiteiro C, Lúcio M, Reis S. Drug-membrane interaction studies applied to N'-acetyl-rifabutin. Eur J Pharm Biopharm 2013; 85:597-603. [PMID: 23523541 DOI: 10.1016/j.ejpb.2013.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 02/06/2013] [Accepted: 02/28/2013] [Indexed: 12/01/2022]
Abstract
This work aims the systematic study of the biophysical interactions of a novel antimycobacterial compound (N'-acetyl-rifabutin, RFB2) with membrane models of different lipid composition and surface charge. Membrane mimetic models were used to evaluate the RFB2's membrane partition, its preferential location across the membrane, and the effect of RFB2 on the biophysical properties of the membrane, which ultimately might be related with the antimycobacterial compound bioavailability and the membrane toxicity. According to the aforementioned, liposomes of dimyristoyl-sn-glycero-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) were, respectively, used as mimetic models of human and bacterial cell membranes. The antimycobacterial compound lipophilicity was evaluated by spectroscopic methods, which enabled the determination of the partition coefficient (Kp). To study the RFB2 membrane's location, fluorescence quenching studies and lifetime measurements were executed in liposomes labeled with fluorescent probes. In order to evaluate the changes induced by RFB2 on the membrane biophysical properties, dynamic light scattering (DLS) and steady-state anisotropy were performed. The overall results reveal a strong interaction between RFB2 and the membrane models and allowed the evaluation of its lipophilicity, which is a key molecular descriptor in the characterization of novel potential drugs. Moreover, the higher partition of RFB2 and the more pronounced changes in the biophysical parameters of the negatively charged membrane model suggest that RFB2 has more affinity to the bacterial membrane. For the above-mentioned reasons, this work supports that RFB2 has a potential value as a drug in pharmaceutical formulations used to treat mycobacterial infections.
Collapse
Affiliation(s)
- Marina Pinheiro
- REQUIMTE, Departamento de Ciências Química, Universidade do Porto, Portugal
| | | | | | | | | | | |
Collapse
|
13
|
Pereira-Leite C, Nunes C, Reis S. Interaction of nonsteroidal anti-inflammatory drugs with membranes: in vitro assessment and relevance for their biological actions. Prog Lipid Res 2013; 52:571-84. [PMID: 23981364 DOI: 10.1016/j.plipres.2013.08.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/01/2013] [Accepted: 08/16/2013] [Indexed: 12/12/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used drugs in the world due to their anti-inflammatory, analgesic and antipyretic properties. Nevertheless, the consumption of these drugs is still associated with the occurrence of a wide spectrum of adverse effects. Regarding the major role of membranes in cellular events, the hypothesis that the biological actions of NSAIDs may be related to their effect at the membrane level has triggered the in vitro assessment of NSAIDs-membrane interactions. The use of membrane mimetic models, cell cultures, a wide range of experimental techniques and molecular dynamics simulations has been providing significant information about drugs partition and location within membranes and also about their effect on diverse membrane properties. These studies have indeed been providing evidences that the effect of NSAIDs at membrane level may be an additional mechanism of action and toxicity of NSAIDs. In fact, the pharmacokinetic properties of NSAIDs are closely related to the ability of these drugs to interact and overcome biological membranes. Moreover, the therapeutic actions of NSAIDs may also result from the indirect inhibition of cyclooxygenase due to the disturbing effect of NSAIDs on membrane properties. Furthermore, increasing evidences suggest that the disordering effects of these drugs on membranes may be in the basis of the NSAIDs-induced toxicity in diverse organ systems. Overall, the study of NSAIDs-membrane interactions has proved to be not only important for the better understanding of their pharmacological actions, but also for the rational development of new approaches to overcome NSAIDs adverse effects.
Collapse
Affiliation(s)
- Catarina Pereira-Leite
- REQUIMTE, Laboratório de Química Aplicada, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | | | | |
Collapse
|
14
|
A biophysical approach to menadione membrane interactions: Relevance for menadione-induced mitochondria dysfunction and related deleterious/therapeutic effects. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1899-908. [DOI: 10.1016/j.bbamem.2013.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 03/20/2013] [Accepted: 04/08/2013] [Indexed: 11/23/2022]
|
15
|
Nunes C, Lopes D, Pinheiro M, Pereira-Leite C, Reis S. In vitro assessment of NSAIDs-membrane interactions: significance for pharmacological actions. Pharm Res 2013; 30:2097-2107. [PMID: 23703372 DOI: 10.1007/s11095-013-1066-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE To study interactions between nonsteroidal anti-inflammatory drugs (NSAIDs) and membrane mimetic models. METHODS The interactions of indomethacin and nimesulide with liposomes of dipalmitoylphosphatidylcholine (DPPC) at two physiological pH conditions (pH 7.4 and 5.0) were investigated by time-resolved and steady-state fluorescence techniques and derivative ultraviolet/visible absorption spectrophotometry. Fluorescence quenching studies that assess the location of the drugs interacting with the membrane were carried out using labeled liposomes with trimethylammonium-diphenylhexatriene (TMA-DPH), a fluorescent probe with well-known membrane localization. Partition of the drugs within membranes was determined by calculating their partition coefficients (K p ) between liposomes and water using derivative ultraviolet/visible absorption spectrophotometry in a temperature range of 37-50°C. The Van't Hoff analysis of the temperature dependence of K p values allowed calculating the membrane-water variation of enthalpy (ΔH w→m) and entropy (ΔS w→m) and consequently the Gibbs free energy (ΔG w→m). RESULTS Results indicate that quenching, partitioning and thermodynamic parameters inherent to the interaction of the studied drugs with the membrane mimetic model are deeply dependent on the initial organization of the membrane, on the pH medium and on the physical properties of the drug. CONCLUSIONS The interactions between NSAIDs and membranes are manifested as changes in the physical and thermodynamic properties of the bilayers. Depending on the composition and physical state of the membrane and the chemical structure of the NSAID, the interaction can support or prevent drug activity or toxicity.
Collapse
Affiliation(s)
- Cláudia Nunes
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | | | | | | | | |
Collapse
|
16
|
Monteiro JP, Oliveira PJ, Jurado AS. Mitochondrial membrane lipid remodeling in pathophysiology: a new target for diet and therapeutic interventions. Prog Lipid Res 2013; 52:513-28. [PMID: 23827885 DOI: 10.1016/j.plipres.2013.06.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 12/22/2022]
Abstract
Mitochondria are arbiters in the fragile balance between cell life and death. These organelles present an intricate membrane system, with a peculiar lipid composition and displaying transverse as well as lateral asymmetry. Some lipids are synthesized inside mitochondria, while others have to be imported or acquired in the form of precursors. Here, we review different processes, including external interventions (e.g., diet) and a range of biological events (apoptosis, disease and aging), which may result in alterations of mitochondrial membrane lipid content. Cardiolipin, the mitochondria lipid trademark, whose biosynthetic pathway is highly regulated, will deserve special attention in this review. The modulation of mitochondrial membrane lipid composition, especially by diet, as a therapeutic strategy for the treatment of some pathologies will be also addressed.
Collapse
Affiliation(s)
- João P Monteiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Portugal
| | | | | |
Collapse
|
17
|
Boggara MB, Mihailescu M, Krishnamoorti R. Structural Association of Nonsteroidal Anti-Inflammatory Drugs with Lipid Membranes. J Am Chem Soc 2012; 134:19669-76. [DOI: 10.1021/ja3064342] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohan Babu Boggara
- Department of Chemical and Biomolecular
Engineering, University of Houston, Houston,
Texas 77204, United States
| | - Mihaela Mihailescu
- Institute for Bioscience and
Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
- National Institute for Standard and Technology, Center for Neutron Research,
Gaithersburg, Maryland 20899, United States
| | - Ramanan Krishnamoorti
- Department of Chemical and Biomolecular
Engineering, University of Houston, Houston,
Texas 77204, United States
| |
Collapse
|
18
|
Tavolari S, Munarini A, Storci G, Laufer S, Chieco P, Guarnieri T. The decrease of cell membrane fluidity by the non-steroidal anti-inflammatory drug Licofelone inhibits epidermal growth factor receptor signalling and triggers apoptosis in HCA-7 colon cancer cells. Cancer Lett 2012; 321:187-94. [DOI: 10.1016/j.canlet.2012.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 12/31/2011] [Accepted: 02/06/2012] [Indexed: 10/14/2022]
|
19
|
Nimesulide interaction with membrane model systems: Are membrane physical effects involved in nimesulide mitochondrial toxicity? Toxicol In Vitro 2011; 25:1215-23. [DOI: 10.1016/j.tiv.2011.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 05/11/2011] [Accepted: 05/13/2011] [Indexed: 11/22/2022]
|
20
|
Pignatello R, Musumeci T, Basile L, Carbone C, Puglisi G. Biomembrane models and drug-biomembrane interaction studies: Involvement in drug design and development. J Pharm Bioallied Sci 2011; 3:4-14. [PMID: 21430952 PMCID: PMC3053521 DOI: 10.4103/0975-7406.76461] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/18/2010] [Accepted: 12/11/2010] [Indexed: 12/19/2022] Open
Abstract
Contact with many different biological membranes goes along the destiny of a drug after its systemic administration. From the circulating macrophage cells to the vessel endothelium, to more complex absorption barriers, the interaction of a biomolecule with these membranes largely affects its rate and time of biodistribution in the body and at the target sites. Therefore, investigating the phenomena occurring on the cell membranes, as well as their different interaction with drugs in the physiological or pathological conditions, is important to exploit the molecular basis of many diseases and to identify new potential therapeutic strategies. Of course, the complexity of the structure and functions of biological and cell membranes, has pushed researchers toward the proposition and validation of simpler two- and three-dimensional membrane models, whose utility and drawbacks will be discussed. This review also describes the analytical methods used to look at the interactions among bioactive compounds with biological membrane models, with a particular accent on the calorimetric techniques. These studies can be considered as a powerful tool for medicinal chemistry and pharmaceutical technology, in the steps of designing new drugs and optimizing the activity and safety profile of compounds already used in the therapy.
Collapse
Affiliation(s)
- R Pignatello
- Department of Drug Sciences, University of Catania, viale A. Doria, 6 - 95125 Catania, Italy
| | | | | | | | | |
Collapse
|
21
|
Nunes C, Brezesinski G, Lima JLFC, Reis S, Lúcio M. Synchrotron SAXS and WAXS Study of the Interactions of NSAIDs with Lipid Membranes. J Phys Chem B 2011; 115:8024-32. [DOI: 10.1021/jp2025158] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Cláudia Nunes
- REQUIMTE, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha, Porto, Portugal
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - José L. F. C. Lima
- REQUIMTE, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha, Porto, Portugal
| | - Salette Reis
- REQUIMTE, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha, Porto, Portugal
| | - Marlene Lúcio
- REQUIMTE, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha, Porto, Portugal
| |
Collapse
|
22
|
Interaction of carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) with lipid membrane systems: a biophysical approach with relevance to mitochondrial uncoupling. J Bioenerg Biomembr 2011; 43:287-98. [DOI: 10.1007/s10863-011-9359-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/24/2011] [Indexed: 10/18/2022]
|
23
|
Wemhöner A, Hackspiel I, Hobi N, Ravasio A, Haller T, Rüdiger M. Effects of perfluorocarbons on surfactant exocytosis and membrane properties in isolated alveolar type II cells. Respir Res 2010; 11:52. [PMID: 20459693 PMCID: PMC2876085 DOI: 10.1186/1465-9921-11-52] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 05/09/2010] [Indexed: 01/05/2023] Open
Abstract
Background Perfluorocarbons (PFC) are used to improve gas exchange in diseased lungs. PFC have been shown to affect various cell types. Thus, effects on alveolar type II (ATII) cells and surfactant metabolism can be expected, data, however, are controversial. Objective The study was performed to test two hypotheses: (I) the effects of PFC on surfactant exocytosis depend on their respective vapor pressures; (II) different pathways of surfactant exocytosis are affected differently by PFC. Methods Isolated ATII cells were exposed to two PFC with different vapor pressures and spontaneous surfactant exocytosis was measured. Furthermore, surfactant exocytosis was stimulated by either ATP, PMA or Ionomycin. The effects of PFC on cell morphology, cellular viability, endocytosis, membrane permeability and fluidity were determined. Results The spontaneous exocytosis was reduced by PFC, however, the ATP and PMA stimulated exocytosis was slightly increased by PFC with high vapor pressure. In contrast, Ionomycin-induced exocytosis was decreased by PFC with low vapor pressure. Cellular uptake of FM 1-43 - a marker of membrane integrity - was increased. However, membrane fluidity, endocytosis and viability were not affected by PFC incubation. Conclusions We conclude that PFC effects can be explained by modest, unspecific interactions with the plasma membrane rather than by specific interactions with intracellular targets.
Collapse
Affiliation(s)
- Andreas Wemhöner
- University Hospital Dresden, Department for Pediatric Intensive Care and Neonatology, Technical University Dresden, Germany
| | | | | | | | | | | |
Collapse
|