1
|
Shinn J, Kwon N, Lee SA, Lee Y. Smart pH-responsive nanomedicines for disease therapy. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022; 52:427-441. [PMID: 35573320 PMCID: PMC9083479 DOI: 10.1007/s40005-022-00573-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/20/2022] [Indexed: 02/06/2023]
Abstract
Background Currently nanomedicines are the focus of attention from researchers and clinicians because of the successes of lipid-nanoparticles-based COVID-19 vaccines. Nanoparticles improve existing treatments by providing a number of advantages including protection of cargo molecules from external stresses, delivery of drugs to target tissues, and sustained drug release. To prevent premature release-related side effects, stable drug loading in nanoformulations is required, but the increased stability of the formulation could also lead to a poor drug-release profile at the target sites. Thus, researchers have exploited differences in a range of properties (e.g., enzyme levels, pH, levels of reduced glutathione, and reactive oxygen species) between non-target and target sites for site-specific release of drugs. Among these environmental stimuli, pH gradients have been widely used to design novel, responsive nanoparticles. Area covered In this review, we assess drug delivery based on pH-responsive nanoparticles at the levels of tissues (tumor microenvironment, pH ~ 6.5) and of intracellular compartments (endosome and lysosome, pH 4.5-6.5). Upon exposure to these pH stimuli, pH-responsive nanoparticles respond with physicochemical changes to their material structure and surface characteristics. These changes include swelling, dissociation, or surface charge switching, in a manner that favors drug release at the target site (the tumor microenvironment region and the cytosol followed by endosomal escape) rather than the surrounding tissues. Expert opinion Lastly, we consider the challenges involved in the development of pH-responsive nanomedicines.
Collapse
Affiliation(s)
- Jongyoon Shinn
- College of Pharmacy, Ewha Womans University, Seoul, 03760 South Korea
| | - Nuri Kwon
- College of Pharmacy, Ewha Womans University, Seoul, 03760 South Korea
| | - Seon Ah Lee
- College of Pharmacy, Ewha Womans University, Seoul, 03760 South Korea
| | - Yonghyun Lee
- College of Pharmacy, Ewha Womans University, Seoul, 03760 South Korea
| |
Collapse
|
2
|
Hooshmand SE, Sabet MJ, Hasanzadeh A, Mousavi SMK, Moghadam NH, Hooshmand SA, Rabiee N, Liu Y, Hamblin MR, Karimi M. Histidine‐enhanced gene delivery systems: The state of the art. J Gene Med 2022; 24:e3415. [DOI: 10.1002/jgm.3415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Seyyed Emad Hooshmand
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Makkieh Jahanpeimay Sabet
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Akbar Hasanzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Seyede Mahtab Kamrani Mousavi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Niloofar Haeri Moghadam
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Seyed Aghil Hooshmand
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics University of Tehran Tehran Iran
| | - Navid Rabiee
- Department of Physics Sharif University of Technology Tehran Iran
- School of Engineering Macquarie University Sydney New South Wales Australia
| | - Yong Liu
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu China
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science University of Johannesburg South Africa
| | - Mahdi Karimi
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
- Oncopathology Research Center Iran University of Medical Sciences Tehran Iran
- Research Center for Science and Technology in Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
3
|
Manouchehri S, Zarrintaj P, Saeb MR, Ramsey JD. Advanced Delivery Systems Based on Lysine or Lysine Polymers. Mol Pharm 2021; 18:3652-3670. [PMID: 34519501 DOI: 10.1021/acs.molpharmaceut.1c00474] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polylysine and materials that integrate lysine form promising drug delivery platforms. As a cationic macromolecule, a polylysine polymer electrostatically interacts with cells and is efficiently internalized, thereby enabling intracellular delivery. Although polylysine is intrinsically pH-responsive, the conjugation with different functional groups imparts smart, stimuli-responsive traits by adding pH-, temperature-, hypoxia-, redox-, and enzyme-responsive features for enhanced delivery of therapeutic agents. Because of such characteristics, polylysine has been used to deliver various cargos such as small-molecule drugs, genes, proteins, and imaging agents. Furthermore, modifying contrast agents with polylysine has been shown to improve performance, including increasing cellular uptake and stability. In this review, the use of lysine residues, peptides, and polymers in various drug delivery systems has been discussed comprehensively to provide insight into the design and robust manufacturing of lysine-based delivery platforms.
Collapse
Affiliation(s)
- Saeed Manouchehri
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | | | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
4
|
Zheng M, Pan M, Zhang W, Lin H, Wu S, Lu C, Tang S, Liu D, Cai J. Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: Current advances and perspectives. Bioact Mater 2021; 6:1878-1909. [PMID: 33364529 PMCID: PMC7744653 DOI: 10.1016/j.bioactmat.2020.12.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Poly(α-l-lysine) (PLL) is a class of water-soluble, cationic biopolymer composed of α-l-lysine structural units. The previous decade witnessed tremendous progress in the synthesis and biomedical applications of PLL and its composites. PLL-based polymers and copolymers, till date, have been extensively explored in the contexts such as antibacterial agents, gene/drug/protein delivery systems, bio-sensing, bio-imaging, and tissue engineering. This review aims to summarize the recent advances in PLL-based nanomaterials in these biomedical fields over the last decade. The review first describes the synthesis of PLL and its derivatives, followed by the main text of their recent biomedical applications and translational studies. Finally, the challenges and perspectives of PLL-based nanomaterials in biomedical fields are addressed.
Collapse
Affiliation(s)
- Maochao Zheng
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Miao Pan
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Wancong Zhang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Huanchang Lin
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Shenlang Wu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Shijie Tang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Daojun Liu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
5
|
Salameh JW, Zhou L, Ward SM, Santa Chalarca CF, Emrick T, Figueiredo ML. Polymer-mediated gene therapy: Recent advances and merging of delivery techniques. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1598. [PMID: 31793237 PMCID: PMC7676468 DOI: 10.1002/wnan.1598] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/02/2019] [Accepted: 09/19/2019] [Indexed: 01/01/2023]
Abstract
The ability to safely and precisely deliver genetic materials to target sites in complex biological environments is vital to the success of gene therapy. Numerous viral and nonviral vectors have been developed and evaluated for their safety and efficacy. This study will feature progress in synthetic polymers as nonviral vectors, which benefit from their chemical versatility, biocompatibility, and ability to carry both therapeutic cargo and targeting moieties. The combination of synthetic gene carrying constructs with advanced delivery techniques promises new therapeutic options for treating and curing genetic disorders. This article is characterized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Janelle W. Salameh
- The Weldon School of Biomedical Engineering and the
Interdisciplinary Biomedical Sciences Program, Purdue University, West Lafayette,
Indiana
| | - Le Zhou
- Polymer Science and Engineering Department, University of
Massachusetts, Amherst, Massachusetts
| | - Sarah M. Ward
- Polymer Science and Engineering Department, University of
Massachusetts, Amherst, Massachusetts
| | | | - Todd Emrick
- Polymer Science and Engineering Department, University of
Massachusetts, Amherst, Massachusetts
| | - Marxa L. Figueiredo
- Department of Basic Medical Sciences and the
Interdisciplinary Biomedical Sciences Program, Purdue University, West Lafayette,
Indiana
| |
Collapse
|
6
|
Gomez JP, Tresset G, Pichon C, Midoux P. Improved histidinylated lPEI polyplexes for skeletal muscle cells transfection. Int J Pharm 2019; 559:58-67. [DOI: 10.1016/j.ijpharm.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 01/19/2023]
|
7
|
Histidine and arginine conjugated starch-PEI and its corresponding gold nanoparticles for gene delivery. Int J Biol Macromol 2018; 120:999-1008. [DOI: 10.1016/j.ijbiomac.2018.08.142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/28/2018] [Accepted: 08/26/2018] [Indexed: 12/14/2022]
|
8
|
Ljubimova JY, Sun T, Mashouf L, Ljubimov AV, Israel LL, Ljubimov VA, Falahatian V, Holler E. Covalent nano delivery systems for selective imaging and treatment of brain tumors. Adv Drug Deliv Rev 2017; 113:177-200. [PMID: 28606739 PMCID: PMC5578712 DOI: 10.1016/j.addr.2017.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023]
Abstract
Nanomedicine is a rapidly evolving form of therapy that holds a great promise for superior drug delivery efficiency and therapeutic efficacy than conventional cancer treatment. In this review, we attempt to cover the benefits and the limitations of current nanomedicines with special attention to covalent nano conjugates for imaging and drug delivery in the brain. The improvement in brain tumor treatment remains dismal despite decades of efforts in drug development and patient care. One of the major obstacles in brain cancer treatment is the poor drug delivery efficiency owing to the unique blood-brain barrier (BBB) in the CNS. Although various anti-cancer agents are available to treat tumors outside of the CNS, the majority fails to cross the BBB. In this regard, nanomedicines have increasingly drawn attention due to their multi-functionality and versatility. Nano drugs can penetrate BBB and other biological barriers, and selectively accumulate in tumor cells, while concurrently decreasing systemic toxicity.
Collapse
Affiliation(s)
- Julia Y Ljubimova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA.
| | - Tao Sun
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA
| | - Leila Mashouf
- Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Alexander V Ljubimov
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Los Angeles, CA 90048, USA
| | - Liron L Israel
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA
| | - Vladimir A Ljubimov
- Department of Neurosurgery and Brain Repair, University of South Florida, 2 Tampa General Circle, Tampa, FL 33606, USA
| | - Vida Falahatian
- Duke University School of Medicine, Department of Biostatistics and Bioinformatics, Clinical Research Training Program (CRTP), 2424 Erwin Road, Suite 1102, Hock Plaza Box 2721, Durham, NC 27710, USA
| | - Eggehard Holler
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA; Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
9
|
Selby LI, Cortez-Jugo CM, Such GK, Johnston APR. Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [PMID: 28160452 DOI: 10.1002/wnan.1452] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/07/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023]
Abstract
Using nanoparticles to deliver drugs to cells has the potential to revolutionize the treatment of many diseases, including HIV, cancer, and diabetes. One of the major challenges facing this field is controlling where the drug is trafficked once the nanoparticle is taken up into the cell. In particular, if drugs remain localized in an endosomal or lysosomal compartment, the therapeutic can be rendered completely ineffective. To ensure the design of more effective delivery systems we must first develop a better understanding of how nanoparticles and their cargo are trafficked inside cells. This needs to be combined with an understanding of what characteristics are required for nanoparticles to achieve endosomal escape, along with methods to detect endosomal escape effectively. This review is focused into three sections: first, an introduction to the mechanisms governing internalization and trafficking in cells, second, a discussion of methods to detect endosomal escape, and finally, recent advances in controlling endosomal escape from polymer- and lipid-based nanoparticles, with a focus on engineering materials to promote endosomal escape. WIREs Nanomed Nanobiotechnol 2017, 9:e1452. doi: 10.1002/wnan.1452 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Laura I Selby
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Christina M Cortez-Jugo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia.,Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Georgina K Such
- Department of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Iwanaga M, Kodama Y, Muro T, Nakagawa H, Kurosaki T, Sato K, Nakamura T, Kitahara T, Sasaki H. Biocompatible complex coated with glycosaminoglycan for gene delivery. J Drug Target 2017; 25:370-378. [PMID: 28043182 DOI: 10.1080/1061186x.2016.1274996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The purpose of this study was to develop a ternary complex of plasmid DNA (pDNA) electrostatically assembled with dendrigraft poly-l-lysine (DGL) and biodegradable glycosaminoglycan for effective and secure gene delivery. High gene expression of pDNA/DGL complex was confirmed with slight cytotoxicity and erythrocyte agglutination. Anionic ternary complexes of 55.4-223.8 nm were formed by the addition of a glycosaminoglycan such as chondroitin sulfate A (CS-A), chondroitin sulfate B (CS-B), chondroitin sulfate C (CS-C) or hyaluronic acid (HA). Using the cell line B16-F10, most of the ternary complexes showed only weak gene expression and little cytotoxicity, although the pDNA/DGL/CS-A complexes maintained a certain level of gene expression. In particular, the pDNA/DGL/CS-A8 complexes showed significantly higher gene expression than pDNA/DGL complexes in the presence of fetal bovine serum. Gene expression from the pDNA/DGL/CS-A8 complex was inhibited by a high concentration of CS-A and endocytosis inhibitors. After intravenous administration of the pDNA/DGL/CS-A8 complex and the pDNA/DGL complex into ddY mice, high gene expression was observed in the reticuloendothelial systems, the pDNA/DGL/CS-A complex is expected to be useful for gene therapy.
Collapse
Affiliation(s)
- Marie Iwanaga
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan.,b Department of Clinical Pharmacokinetics, Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan
| | - Yukinobu Kodama
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Takahiro Muro
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Hiroo Nakagawa
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Tomoaki Kurosaki
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Kayoko Sato
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Tadahiro Nakamura
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Takashi Kitahara
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Hitoshi Sasaki
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan.,b Department of Clinical Pharmacokinetics, Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan
| |
Collapse
|
11
|
Kodama Y. Development of a Multi-functional Nano-device for Safe and Effective Gene Delivery to Target Organs. YAKUGAKU ZASSHI 2016; 136:1533-1539. [DOI: 10.1248/yakushi.16-00198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukinobu Kodama
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|