1
|
Nemickaite E, Zlabiene U, Mazurkeviciute A, Marksa M, Bernatoniene J. Formulation of W/O/W Emulsion-Based Chitosan-Alginate Microcapsules for Encapsulation of Cannabidiol and A. annua L. Extract Containing Luteolin and Apigenin: A Response Surface Optimization Approach. Pharmaceutics 2025; 17:309. [PMID: 40142974 PMCID: PMC11945390 DOI: 10.3390/pharmaceutics17030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Chitosan-alginate microcapsules were produced to encapsulate bioactive compounds from Artemisia annua L. extract (apigenin, luteolin) and cannabidiol (CBD). The study aimed to optimize emulsion composition and encapsulation parameters for potential applications in food supplements and pharmaceuticals. Methods: A water-in-oil-in-water (W/O/W) emulsion and a modified coacervation extrusion technique were employed. The study was conducted in two phases using response surface methodology. Key metrics included encapsulation efficiency (EE), yield (EY), cumulative release in vitro, and physicochemical and morphological properties, analyzed via scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), high-performance liquid chromatography with a diode array detector (HPLC-DAD), and gas chromatography with flame ionization detection (GC-FID). Results: The optimal conditions were identified as 0.1% Tween 20, 3.8% Span 80, 3.8% CBD, 19.9% A. annua L. extract, 1.5% outer-phase Tween 20, 48.5% sodium alginate, 200 rpm stirring for 30 min, and a 0.05 mL/min flow rate. The EE values were 80.32 ± 4.11% for CBD, 88.13 ± 3.13% for apigenin, and 88.41 ± 4.17% for luteolin, with respective cumulative releases of 77.18 ± 4.4%, 75.12 ± 4.81%, and 75.32 ± 4.53%. Conclusions: The developed microcapsules demonstrated high encapsulation efficiency and controlled release, highlighting their potential for further development in food supplements and pharmaceuticals. Future studies should focus on refining the formulation for improved bioavailability and stability.
Collapse
Affiliation(s)
- Emilija Nemickaite
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Ugne Zlabiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (U.Z.); (A.M.)
| | - Agne Mazurkeviciute
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (U.Z.); (A.M.)
- Department of Clinical Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (U.Z.); (A.M.)
| |
Collapse
|
2
|
Joshi J, Langwald SV, Kruse O, Patel A. Immobilization of Paenibacillus polymyxa with biopolymers to enhance the production of 2,3-butanediol. Microb Cell Fact 2025; 24:15. [PMID: 39794798 PMCID: PMC11724508 DOI: 10.1186/s12934-024-02633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Paenibacillus polymyxa, is a Gram-positive, plant growth promoting bacterium, known for producing 98% optically pure 2,3-butanediol, an industrially valuable chemical for solvents, plasticizers and resins. Immobilization of Paenibacillus polymyxa has been proposed to improve the cell stability and efficiency of the fermentation process, reduce contamination and provide easy separation of butanediol in the culture broth as compared to conventional bioprocesses. This research aimed to explore the potential of Paenibacillus polymyxa with immobilization technique to produce 2,3-butanediol. RESULTS We investigated different immobilization methods with natural biopolymers like alginate, chitosan and carrageenan-chitosan-based immobilization. These methods were further investigated for their immobilization efficiency and yield in 2,3-butanediol production. Carrageenan-chitosan beads enabled a higher cell concentration and demonstrated superior cell retention to calcium-alginate-chitosan beads. Carrageenan-chitosan immobilization preserved 2,3-butanediol production in bacteria and increased the product formation rate. CONCLUSION Carrageenan-chitosan immobilization enables non-pathogenic Paenibacillus polymyxa to be a capable 2,3-butanediol producer with increased product formation rate, which has not been previously reported. This novel strategy offers promising alternative to traditional fermentation processes using pathogenic strains and can be further applied in co-cultivations for metabolite production, wastewater management and bioremediation.
Collapse
Affiliation(s)
- Jnanada Joshi
- Hochschule Bielefeld - University of Applied Sciences and Arts (HSBI), Bielefeld, Germany
- Bielefeld University, Bielefeld, Germany
| | - Sarah Vanessa Langwald
- Hochschule Bielefeld - University of Applied Sciences and Arts (HSBI), Bielefeld, Germany
| | - Olaf Kruse
- Bielefeld University, Bielefeld, Germany
| | - Anant Patel
- Hochschule Bielefeld - University of Applied Sciences and Arts (HSBI), Bielefeld, Germany.
| |
Collapse
|
3
|
Rakshit P, Giri TK, Mukherjee K. Research progresses on carboxymethyl xanthan gum: Review of synthesis, physicochemical properties, rheological characterization and applications in drug delivery. Int J Biol Macromol 2024; 266:131122. [PMID: 38527676 DOI: 10.1016/j.ijbiomac.2024.131122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Xanthan gum is a nonionic polysaccharide widely explored in biomedical, nutraceutical, and pharmaceutical fields. XG suffers from several drawbacks like poor dissolution, lower bioavailability and an inability to form hydrogels. The carboxymethyl derivative of XG, CMX, has better solubility, dissolution, and bioavailability characteristics. Moreover, due to its anionic character, it forms water insoluble hydrogels upon crosslinking with metal cations. CMX hydrogels are used to prepare matrix tablets, microparticles, beads, and films. CMX hydrogels has been used in drug delivery and tissue engineering fields. CMX hydrogels are used for sustained gastrointestinal, colon targeted, and transdermal delivery of drugs. CMX nanoparticles have been used for targeted delivery of anticancer drugs to tumor cells. CMX hydrogels have already made significant strides in drug delivery and tissue engineering fields. Further understanding of the physicochemical properties and rheological characteristics of CMX would enable researchers to explore newer applications of CMX. This review article thus aims to discuss the synthesis, physicochemical properties, and rheological characteristics of CMX. The article also gives critical insights on the versatility of CMX as a drug delivery carrier and presents prospective trends on applications of CMX.
Collapse
Affiliation(s)
- Pallabita Rakshit
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Tapan Kumar Giri
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Kaushik Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India.
| |
Collapse
|
4
|
El-Salamouni NS, Yakout MA, Labib GS, Farid RM. Preparation and evaluation of vaginal suppo-sponges loaded with benzydamine, in-vitro/in-vivo study. Pharm Dev Technol 2024; 29:86-97. [PMID: 38243554 DOI: 10.1080/10837450.2024.2306803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
This study aimed to design a new Benzydamine HCl (BNZ) suppo-sponge for controlled, mucoadhesive dosage form for vaginal candidiasis treatment, offering advantages over traditional creams, ointments, or gels. BNZ-loaded suppo-sponges were fabricated by simple casting / freeze-drying technique utilizing the cross-linking of chitosan (Cs) with vanillin (V). Vaginal suppo-sponges were prepared based on different vanillin cross-linking ratios (V).n), from 0 to 2%w/w. To best of our knowledge, this is the first study that uses Schiff's base between chitosan and vanillin as a drug delivery system to treat fungal vaginal infections. Schiff's base formation was confirmed by FT-IR. In-vitro appraisal showed acceptable physical and mechanical characteristics. Formulations based on cross-linking of Cs with V showed a more pronounced in-vitro antifungal activity. In-vitro drug release revealed a prolonged release pattern, becoming more noticeable with the higher cross-linked suppo-sponges (22.34% after 8 h). In-vivo testing of CsV2 suppo-sponge indicated a more pronounced reduction in fungal count than both CsV0 and Tantum® Rosa in the first week, with a peak reduction on day 7 and the 10th and 11th days of the second week. Conclusively, Chitosan/vanillin suppo-sponges represent a promising delivery system for drugs intended for local treatment of vaginal candidiasis. than both CsV0 and Tantum® Rosa in the first week, with a peak reduction on day 7 and the 10th and 11th days of the second week. Conclusively, Chitosan/vanillin suppo-sponges represent a promising delivery system for drugs intended for local treatment of vaginal candidiasis.
Collapse
Affiliation(s)
- Noha S El-Salamouni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Marwa A Yakout
- Department of Microbiology & Immunology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Gihan S Labib
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Ragwa M Farid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
5
|
Gomte SS, Agnihotri TG, Khopade S, Jain A. Exploring the potential of pH-sensitive polymers in targeted drug delivery. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:228-268. [PMID: 37927045 DOI: 10.1080/09205063.2023.2279792] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
The pH-sensitive polymers have attained significant attention in the arena of targeted drug delivery (TDD) because of their exceptional capability to respond to alteration in pH in various physiological environments. This attribute aids pH-sensitive polymers to act as smart carriers for therapeutic agents, transporting them precisely to target locations while curtailing the release of drugs in off-targeted sites, thereby diminishing side effects. Many pH-responsive polymers in TDD have revealed promising results, with increased therapeutic efficacy and decreased toxic effects. Several pH-sensitive polymers, including, hydroxy-propyl-methyl cellulose, poly (methacrylic acid) (Eudragit series), poly (acrylic acid), and chitosan, have been broadly studied for their myriad applications in the management of various types of diseases. Additionally, the amalgamation of pH-sensitive polymers with, additive manufacturing techniques like 3D printing, has resulted in the progression of novel drug delivery systems that regulate drug release in a controlled manner. Herein, types of pH-sensitive polymers in TDD are systemically reviewed. We have briefly discussed the nanocarriers employed for the delivery of various pH-sensitive polymers in TDD. Finally, miscellaneous applications of pH-sensitive polymers are discussed thoroughly with special attention to the implication of 3D printing in pH-sensitive polymers.
Collapse
Affiliation(s)
- Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| | - Shivani Khopade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| |
Collapse
|
6
|
Yerramathi BB, Muniraj BA, Kola M, Konidala KK, Arthala PK, Sharma TSK. Alginate biopolymeric structures: Versatile carriers for bioactive compounds in functional foods and nutraceutical formulations: A review. Int J Biol Macromol 2023; 253:127067. [PMID: 37748595 DOI: 10.1016/j.ijbiomac.2023.127067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Alginate-based biopolymer products have gained attention for protecting and delivering bioactive components in nutraceuticals and functional foods. These naturally abundant anionic, unbranched, and linear copolymers are also produced commercially by microorganisms. Alone or in combination with other copolymers, they efficiently transport bioactive molecules in food and nutraceutical products. This review aims to provide an in-depth understanding of alginate-based products and structures, emphasizing their role in delivering functional molecules in various formulations and delivery systems. These include edible coatings/films, gels/emulsions, beads/droplets, microspheres/particles, and engineered nanostructures where alginates have been used potentially. By exploring these applications, readers gain insights into the benefits of these products. Because, alginate-based biopolymer products have shown promise in delivering bioactive compounds like vitamin C, vitamin D3, curcumin, β-carotene, resveratrol, folic acid, gliadins, caffeic acid, betanin, limonoids, quercetin, several polyphenols and essential oils, etc., which are chief contributors to treating specific/overall nutritional and chronic metabolic disorders. So, this review summarizes the potential of alginate-based structures/products in various forms for delivering a wide range of functional food ingredients and nutraceutical components that offer promising perspectives for future investigations.
Collapse
Affiliation(s)
- Babu Bhagath Yerramathi
- Food Technology Division, College of Sciences, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | - Beulah Annem Muniraj
- Integrated Food Technology, Sri Padmavathi Mahila Visvavidyalayam, Tirupati 517502, Andhra Pradesh, India
| | - Manjula Kola
- Food Technology Division, College of Sciences, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India.
| | - Kranthi Kumar Konidala
- Bioinformatics, Department of Zoology, College of Sciences, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | - Praveen Kumar Arthala
- Department of Microbiology, Vikrama Simhapuri University, Nellore, Andhra Pradesh, India
| | | |
Collapse
|
7
|
Xiang S, Wang J, Wang X, Ma X, Peng H, Zhu X, Huang J, Ran M, Ma L, Sun X. A chitosan-coated lentinan-loaded calcium alginate hydrogel induces broad-spectrum resistance to plant viruses by activating Nicotiana benthamiana calmodulin-like (CML) protein 3. PLANT, CELL & ENVIRONMENT 2023; 46:3592-3610. [PMID: 37551976 DOI: 10.1111/pce.14681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023]
Abstract
Control of plant virus diseases largely depends on the induced plant defence achieved by the external application of synthetic chemical inducers with the ability to modify defence-signalling pathways. However, most of the molecular mechanisms underlying these chemical inducers remain unknown. Here, we developed a chitosan-coated lentinan-loaded hydrogel and discovered how it protects plants from different virus infections. The hydrogel was synthesized by coating chitosan on the surface of the calcium alginate-lentinan (LNT) hydrogel (SL-gel) to form a CSL-gel. CSL-gels exhibit the capacity to prolong the stable release of lentinan and promote Ca2+ release. Application of CSL-gels on the root of plants induces broad-spectrum resistance against plant viruses (TMV, TRV, PVX and TuMV). RNA-seq analysis identified that Nicotiana benthamiana calmodulin-like protein gene 3 (NbCML3) is upregulated by the sustained release of Ca2+ from the CSL-gel, and silencing and overexpression of NbCML alter the susceptibility and resistance of tobacco to TMV. Our findings provide evidence that this novel and synthetic CSL-gel strongly inhibits the infection of plant viruses by the sustainable release of LNT and Ca2+ . This study uncovers a novel mode of action by which CSL-gels trigger NbCML3 expression through the stable and sustained release of Ca2+ .
Collapse
Affiliation(s)
- Shunyu Xiang
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| | - Jing Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xiaoyan Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xiaozhou Ma
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| | - Haoran Peng
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xin Zhu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jin Huang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| | - Mao Ran
- Chongqing Tobacco Science Research Institute, Chongqing, China
| | - Lisong Ma
- State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Hendawy OM, Al-Sanea MM, Mohammed Elbargisy R, Ur Rahman H, Hassan YA, Elshaarawy RFM, Khedr AIM. Alginate-chitosan-microencapsulated tyrosols/oleuropein-rich olive mill waste extract for lipopolysaccharide-induced skin fibroblast inflammation treatment. Int J Pharm 2023; 643:123260. [PMID: 37481097 DOI: 10.1016/j.ijpharm.2023.123260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
The Ca2+ ion-driven emulsification-ionotropic gelation method produced chitosan-alginate microspheres (CAMSs) with a narrow particle size distribution (PSD). Particle size distribution and zeta potential studies, as well as spectral electron microscopy, were used to assess the microspheres' physicochemical properties and morphology. The tyrosols (hydroxytyrosol (HT), tyrosol (TY), and oleuropein (OE) were loaded into these microspheres using a polyphenol extract (PPE) from Koroneki olive mill waste (KOMW). The microencapsulation efficiency and loading capacity of microspheres for PPE were 98.8% and 3.9%, respectively. Three simulated fluids, including gastric (pH = 1.2), intestinal (pH = 6.8), and colonic (pH = 7.4), were used to examine how the pH of the releasing medium affected the ability of CAMSs to release bioactive phenols. At a severely acidic pH (1.2, SGF), PPE release is nearly halted, while at pH 6.8 (SCF), release is at its maximum. Additionally, the PPE-CAMPs have ameliorated the endogenous antioxidant content SOD, GST, GPx with significant values from 0.05 to 0.01 in the treated LPS/human skin fibroblast cells. The anti-inflammatory response was appeared through their attenuations activity for the released cytokines TNF-α, IL6, IL1β, and IL 12 with levels significantly from 0.01 to 0.001. Microencapsulation of PPE by CAMPs significantly improved its antioxidant and anti-inflammatory capabilities.
Collapse
Affiliation(s)
- Omnia M Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia.
| | - Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Rehab Mohammed Elbargisy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Hidayat Ur Rahman
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Al-Jouf Province, Sakaka 72341, Saudi Arabia
| | - Yasser A Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Reda F M Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| | - Amgad I M Khedr
- Department of Pharmacognosy, Faculty of Pharmacy, Port Said University, 42526 Port Said, Egypt
| |
Collapse
|
9
|
Ma Y, Chen Q, Li W, Su H, Li S, Zhu Y, Zhou J, Feng Z, Liu Z, Mao S, Qiu Y, Wang H, Zhu Z. Spinal cord conduits for spinal cord injury regeneration. ENGINEERED REGENERATION 2023. [DOI: 10.1016/j.engreg.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
10
|
Effect of oxidized dextran on the stability of gallic acid-modified chitosan-sodium caseinate nanoparticles. Int J Biol Macromol 2021; 192:360-368. [PMID: 34634328 DOI: 10.1016/j.ijbiomac.2021.09.209] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/04/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
We incorporated oxidized dextran (Odex) into nanoparticles composed of gallic acid-modified chitosan (GA-CS) and sodium caseinate (NaCas). The mass ratio of GA-CS to NaCas and the pH of the reaction solution were optimized to obtain nanoparticles with excellent performance and stability. The interactions among various nanomaterials were confirmed by Fourier-transform infrared spectroscopy (FT-IR) and fluorescence spectrometer. The optimized complex nanoparticles had a diameter of approximately 131.2 nm with a polydispersity index (PDI) of 0.14, and a zeta potential of 26.2 mV. Our results showed that Odex enhanced the stability and function of GA-CS/NaCas nanoparticles (NP). At a curcumin loading of 10%, the encapsulation efficiency of Odex-crosslinked GA-CS/NaCas (NP (Odex)) was 96.2%, whereas that for uncrosslinked nanoparticles was 66.9%. Compared to the burst release profile of free curcumin in simulated GI fluids, the sustained release profile of encapsulated curcumin was observed. Radical-scavenging assays confirmed that the nanoparticles had excellent antioxidant activity themselves due to the grafting of phenolic acid on chitosan backbone. Overall, NP (Odex) with good GI stability and antioxidant activity hold promising for the oral delivery of hydrophobic bioactives.
Collapse
|
11
|
Zafar S, Hanif M, Azeem M, Mahmood K, Gondal SA. Role of crosslinkers for synthesizing biocompatible, biodegradable and mechanically strong hydrogels with desired release profile. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03956-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Kupikowska-Stobba B, Grzeczkowicz M, Lewińska D. A one-step in vitro continuous flow assessment of protein release from core-shell polymer microcapsules designed for therapeutic protein delivery. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Endres KJ, Dilla RA, Becker ML, Wesdemiotis C. Poly(ethylene glycol) Hydrogel Crosslinking Chemistries Identified via Atmospheric Solids Analysis Probe Mass Spectrometry. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kevin J. Endres
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Rodger A. Dilla
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L. Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Chrys Wesdemiotis
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
14
|
Seidi F, Khodadadi Yazdi M, Jouyandeh M, Dominic M, Naeim H, Nezhad MN, Bagheri B, Habibzadeh S, Zarrintaj P, Saeb MR, Mozafari M. Chitosan-based blends for biomedical applications. Int J Biol Macromol 2021; 183:1818-1850. [PMID: 33971230 DOI: 10.1016/j.ijbiomac.2021.05.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
Polysaccharides are the most abundant naturally available carbohydrate polymers; composed of monosaccharide units covalently connected together. Chitosan is the most widely used polysaccharides because of its exceptional biocompatibility, mucoadhesion, and chemical versatility. However, it suffers from a few drawbacks, e.g. poor mechanical properties and antibacterial activity for biomedical applications. Blending chitosan with natural or synthetic polymers may not merely improve its physicochemical and mechanical properties, but may also improve its bioactivity-induced properties. This review paper summarizes progress in chitosan blends with biodegradable polymers and polysaccharides and their biomedical applications. Blends of chitosan with alginate, starch, cellulose, pectin and dextran and their applications were particularly addressed. The critical and challenging aspects as well as the future ahead of the use of chitosan-based blends were eventually enlightened.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | | | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Midhun Dominic
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala 682013, India
| | - Haleh Naeim
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | | | - Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran.
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Recent Advances in the Synthesis, Properties, and Applications of Modified Chitosan Derivatives: Challenges and Opportunities. Top Curr Chem (Cham) 2021; 379:19. [DOI: 10.1007/s41061-021-00331-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
|
16
|
Design of New Polyacrylate Microcapsules to Modify the Water-Soluble Active Substances Release. Polymers (Basel) 2021; 13:polym13050809. [PMID: 33800816 PMCID: PMC7961822 DOI: 10.3390/polym13050809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the poor photochemical stability of capsules walls, polyacrylate is one of the most successful polymers for microencapsulation. To improve polyacrylate performance, the combined use of different acrylate-based polymers could be exploited. Herein butyl methacrylate (BUMA)-based lattices were obtained via free radical polymerization in water by adding (i) methacrylic acid (MA)/methyl methacrylate (MMA) and (ii) methacrylamide (MAC) respectively, as an aqueous phase in Pickering emulsions, thanks to both the excellent polymer shells' stability and the high encapsulation efficiency. A series of BUMA_MA_MMA terpolymers with complex macromolecular structures and BUMA_MAC linear copolymers were synthesized and used as dispersing media of an active material. Rate and yield of encapsulation, active substance adsorption onto the polymer wall, capsule morphology, shelf-life and controlled release were investigated. The effectiveness of the prepared BUMA-based microcapsules was demonstrated: BUMA-based terpolymers together with the modified ones (BUMA_MAC) led to slow (within ca. 60 h) and fast (in around 10 h) releasing microcapsules, respectively.
Collapse
|
17
|
Omer AM, Ahmed MS, El-Subruiti GM, Khalifa RE, Eltaweil AS. pH-Sensitive Alginate/Carboxymethyl Chitosan/Aminated Chitosan Microcapsules for Efficient Encapsulation and Delivery of Diclofenac Sodium. Pharmaceutics 2021; 13:338. [PMID: 33807967 PMCID: PMC7998679 DOI: 10.3390/pharmaceutics13030338] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/22/2022] Open
Abstract
To develop an effective pH-sensitive drug carrier, alginate (Alg), carboxymethyl chitosan (CMCs), and aminated chitosan (AmCs) derivatives were employed in this study. A simple ionic gelation technique was employed to formulate Alg-CMCs@AmCs dual polyelectrolyte complexes (PECs) microcapsules as a pH-sensitive carrier for efficient encapsulation and release of diclofenac sodium (DS) drug. The developed microcapsules were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analyzer (TGA), and scanning electron microscope (SEM). The results clarified that formation of dual PECs significantly protected Alg microcapsules from rapid disintegration at colon conditions (pH 7.4), and greatly reduced their porosity. In addition, the dual PECs microcapsules can effectively encapsulate 95.4% of DS-drug compared to 86.3 and 68.6% for Alg and Alg-CMCs microcapsules, respectively. Higher DS-release values were achieved in simulated colonic fluid [SCF; pH 7.4] compared to those obtained in simulated gastric fluid [SGF; pH 1.2]. Moreover, the drug burst release was prevented and a sustained DS-release was achieved as the AmCs concentration increased. The results confirmed also that the developed microcapsules were biodegradable in the presence of the lysozyme enzyme. These findings emphasize that the formulated pH-sensitive microcapsules could be applied for the delivery of diclofenac sodium.
Collapse
Affiliation(s)
- Ahmed M. Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt;
| | - Maha S. Ahmed
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahimia, Alexandria 21321, Egypt; (M.S.A.); (G.M.E.-S.)
| | - Gehan M. El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahimia, Alexandria 21321, Egypt; (M.S.A.); (G.M.E.-S.)
| | - Randa E. Khalifa
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt;
| | - Abdelazeem S. Eltaweil
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahimia, Alexandria 21321, Egypt; (M.S.A.); (G.M.E.-S.)
| |
Collapse
|
18
|
Akbarzadeh I, Shayan M, Bourbour M, Moghtaderi M, Noorbazargan H, Eshrati Yeganeh F, Saffar S, Tahriri M. Preparation, Optimization and In-Vitro Evaluation of Curcumin-Loaded Niosome@calcium Alginate Nanocarrier as a New Approach for Breast Cancer Treatment. BIOLOGY 2021; 10:173. [PMID: 33652630 PMCID: PMC7996962 DOI: 10.3390/biology10030173] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Cancer is one of the most common causes of mortality, and its various treatment methods can have many challenges for patients. As one of the most widely used cancer treatments, chemotherapy may result in diverse side effects. The lack of targeted drug delivery to tumor tissues can raise the possibility of damage to healthy tissues, with attendant dysfunction. In the present study, an optimum formulation of curcumin-loaded niosomes with a calcium alginate shell (AL-NioC) was developed and optimized by a three-level Box-Behnken design-in terms of dimension and drug loading efficiency. The niosomes were characterized by transmission electron microscopy, Fourier-transform infrared spectroscopy, and dynamic light scattering. The as-formulated niosomes showed excellent stability for up to 1 month at 4 °C. Additionally, the niosomal formulation demonstrated a pH-dependent release; a slow-release profile in physiological pH (7.4), and a more significant release rate at acidic conditions (pH = 3). Cytotoxicity studies showed high compatibility of AL-NioC toward normal MCF10A cells, while significant toxicity was observed in MDA-MB-231 and SKBR3 breast cancer cells. Gene expression studies of the cancer cells showed downregulation of Bcl2, cyclin D, and cyclin E genes, as well as upregulation of P53, Bax, caspase-3, and caspase-9 genes expression following the designed treatment. Flow cytometry studies confirmed a significant enhancement in the apoptosis rate in the presence of AL-NioC in both MDA-MB-231 and SKBR3 cells as compared to other samples. In general, the results of this study demonstrated that-thanks to its biocompatibility toward normal cells-the AL-NioC formulation can efficiently deliver hydrophobic drugs to target cancer cells while reducing side effects.
Collapse
Affiliation(s)
- Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | - Mona Shayan
- Core Facility Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (M.S.); (S.S.)
| | - Mahsa Bourbour
- Department of Biotechnology, Alzahra University, Tehran 1993893973, Iran;
| | - Maryam Moghtaderi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 141556619, Iran;
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Faten Eshrati Yeganeh
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran;
| | - Samaneh Saffar
- Core Facility Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (M.S.); (S.S.)
| | | |
Collapse
|
19
|
Deepak, Afgan S, Pal K, Kumar R. Studies on non-gelatinous & thermo-responsive chitosan with the N-isopropylacrylamide by RAFT methodology for control release of levofloxacin. Int J Biol Macromol 2020; 164:2370-2379. [PMID: 32758607 DOI: 10.1016/j.ijbiomac.2020.07.279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 11/25/2022]
Abstract
The non-gelatinous and thermo-responsive properties were introduced in chitosan by incorporating the chain of poly(N-isopropylacrylamide) via reversible addition-fragmentation chain transfer (RAFT) polymerization. To achieve this, the reaction was carried out at 80 °C by modifying the chitosan(CS) with RAFT agent as a macroinitiator (CS-RAFT), where the amine group of CS was protected with phthalic anhydride and then reacted with 4-cyano-4-[(dodecyl sulfanyl thiocarbonyl)sulfanyl]-pentanoic acid (CDSTSP) to form CS-RAFT agent. Further, the addition of NIPAAm chains onto CS-RAFT was carried out in N,N'-dimethylformamide (DMF) solvent by using 2,2'-azobisisobutyronitrile (AIBN) as an initiator in N2 atmosphere. The controlled addition of NIPAAm chains on to CS was confirmed by 1H NMR spectroscopy, further, a kinetic study was performed to get the characteristic features of the RAFT reaction. The product was characterized by 1H NMR, FT-IR, UV-Visible spectroscopy, XRD, SEM, and TGA analyses. The product in aqueous solution showed LCST at 2.0 mg/mL on 33 ± 0.1 °C. Further, beads were prepared with the sodium alginate and loaded the water-soluble levofloxacin drug (60% w/w loading was achieved). The drug delivery process was studied in-vitro at 37 ± 0.1 °C & pH 7.4, which shown controlled release of drug up to 32 h and it was 71% of the loaded levofloxacin.
Collapse
Affiliation(s)
- Deepak
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shere Afgan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Krishtan Pal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rajesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
20
|
Yang L, Wang S, Ma Q, Song Z, Hou R, Huang S, Cheng D, Zhang Z. Fabrication of sulfoxaflor-loaded natural polysaccharide floating hydrogel microspheres against Nilaparvata lugens (Stal) in rice fields. PEST MANAGEMENT SCIENCE 2020; 76:3046-3055. [PMID: 32279438 DOI: 10.1002/ps.5855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/03/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Nilaparvata lugens (Stal) nymphs and adults aggregate and feed on leaf sheaths at the base of rice plants. It is difficult to apply traditional spray treatments directly onto the plant stems due to the blocking agent produced by leaves. Further, spiders and mirids, the natural enemies of N. lugens (Stal), are directly exposed to the chemicals during spraying. Sulfoxaflor-loaded natural polysaccharide microspheres with good performance were developed and tested in rice fields. The absorption, distribution, and dissipation of sulfoxaflor in rice plants, soil, and water were examined. RESULTS Sulfoxaflor-loaded natural polysaccharide microspheres were prepared through physical embedding and ionic crosslinking, using citronellol as an oil phase to provide floatation. The sustained release of sulfoxaflor was achieved through swelling and dissolution, indicating that these structures could effectively control pesticide release. Field experiments showed that these microspheres were able to float in water and gather around the stem of rice plants and that their insecticidal effect was remarkably improved compared to that achieved using the suspension concentrate. Results also showed that the residual content of stems following treatment with sulfoxaflor-loaded natural polysaccharide microspheres reached 0.331 mg kg-1 , but was reduced in other parts of the plant. CONCLUSION In the present study, sulfoxaflor-loaded natural polysaccharide microspheres with optimized properties were successfully prepared. These microspheres produced a better control effect on N. lugens (Stal) compared to the use of the sulfoxaflor suspension concentrate. Their application may help promote the scientific control of target pests in rice fields. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liupeng Yang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Shiying Wang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Qianli Ma
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Zixia Song
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Ruiquan Hou
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Suqing Huang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dongmei Cheng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhixiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Shamma R, Basha M, Awad G. Biodegradable multifunctional platform for potential treatment of vaginal candidiasis: In-vitro preparation, in-vivo assessment of antifungal efficacy in rats. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Fabrication and Characterization of a Low-Cost Microfluidic System for the Manufacture of Alginate-Lacasse Microcapsules. Polymers (Basel) 2020; 12:polym12051158. [PMID: 32438541 PMCID: PMC7284885 DOI: 10.3390/polym12051158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 11/22/2022] Open
Abstract
The development of microfluidics-based systems in the recent years has provided a rapid and controlled method for the generation of monodisperse microencapsulates for multiple applications. Here, we explore the design, manufacture and characterization of a low-cost microsystem for the encapsulation of the fungal laccase from Pycnoporus sanguineus CS43 in alginate microcapsules. Multiphysics simulations were used to overview the fluid behavior within the device and estimate the resulting capsule size. Polymethylmethacrylate (PMMA) sheets were used for final microsystem manufacture. Different flow rates of the continuous (Qc) and discrete (Qd) phases in the ranges of 83–293 mL/h and 1–5 mL/h, respectively, were evaluated for microcapsule fabrication. Universal Serial Bus (USB) microscope and image analysis was used to measure the final particle size. Laccase encapsulation was evaluated using spectrophotometry and with the aid of fluorescent dyes and confocal microscopy. Results showed microcapsule size was in the range of 203.13–716.00 μm and Qc was found as the dominant parameter to control capsule size. There was an effective enzyme encapsulation of 65.94% with respect to the initial laccase solution.
Collapse
|
23
|
Balaj RV, Cho SW, Singh P, Zarzar LD. Polyelectrolyte hydrogel capsules as stabilizers for reconfigurable complex emulsions. Polym Chem 2020. [DOI: 10.1039/c9py00956f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyelectrolyte capsules stabilize biphasic oil droplets while preserving droplet reconfigurability in the presence of surfactants.
Collapse
Affiliation(s)
- Rebecca V. Balaj
- Department of Chemistry
- The Pennsylvania State University
- University Park
- USA 16802
| | - Seung Wook Cho
- Department of Materials Science and Engineering
- The Pennsylvania State University
- University Park
- USA 16802
| | - Prachi Singh
- Department of Materials Science and Engineering
- The Pennsylvania State University
- University Park
- USA 16802
| | - Lauren D. Zarzar
- Department of Chemistry
- The Pennsylvania State University
- University Park
- USA 16802
- Department of Materials Science and Engineering
| |
Collapse
|
24
|
Martău GA, Mihai M, Vodnar DC. The Use of Chitosan, Alginate, and Pectin in the Biomedical and Food Sector-Biocompatibility, Bioadhesiveness, and Biodegradability. Polymers (Basel) 2019; 11:E1837. [PMID: 31717269 PMCID: PMC6918388 DOI: 10.3390/polym11111837] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022] Open
Abstract
Nowadays, biopolymers as intelligent and active biopolymer systems in the food and pharmaceutical industry are of considerable interest in their use. With this association in view, biopolymers such as chitosan, alginate, pectin, cellulose, agarose, guar gum, agar, carrageenan, gelatin, dextran, xanthan, and other polymers have received significant attention in recent years due to their abundance and natural availability. Furthermore, their versatile properties such as non-toxicity, biocompatibility, biodegradability, and flexibility offer significant functionalities with multifunctional applications. The purpose of this review is to summarize the most compatible biopolymers such as chitosan, alginate, and pectin, which are used for application in food, biotechnological processes, and biomedical applications. Therefore, chitosan, alginate, and pectin are biopolymers (used in the food industry as a stabilizing, thickening, capsular agent, and packaging) with great potential for future developments. Moreover, this review highlights their characteristics, with a particular focus on their potential for biocompatibility, biodegradability, bioadhesiveness, and their limitations on certain factors in the human gastrointestinal tract.
Collapse
Affiliation(s)
- Gheorghe Adrian Martău
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj–Napoca, Romania; (G.A.M.); (M.M.)
| | - Mihaela Mihai
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj–Napoca, Romania; (G.A.M.); (M.M.)
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj–Napoca, Romania; (G.A.M.); (M.M.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj–Napoca, Romania
| |
Collapse
|
25
|
Li T, Teng D, Mao R, Hao Y, Wang X, Wang J. Recent progress in preparation and agricultural application of microcapsules. J Biomed Mater Res A 2019; 107:2371-2385. [PMID: 31161699 DOI: 10.1002/jbm.a.36739] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022]
Abstract
Recent advances in life science technology have prompted the need to develop microcapsule delivery systems that can encapsulate many different functional or active materials such as drugs, peptides, and live cells, etc. The encapsulation technology is now commonly used in medicine, agriculture, food, and other many fields. The application of biodegradable microcapsule systems can not only effectively prevent the degradation of core materials in the body or the biological environment, but also improve the bioavailability, control the release and prolong the halftime or storage of core active materials. Various wall materials, preparation methods, encapsulation processes, and release mechanisms are covered in this review, as well as several main factors including pH values, temperatures, particle sizes, and additives, which can strongly influence the encapsulation efficiency, the strength, and release of microcapsules. The improvement of coating materials, preparation techniques, and challenges are also highlighted, as well as application prospects.
Collapse
Affiliation(s)
- Ting Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Xiumin Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| |
Collapse
|
26
|
Protection effect of sodium alginate against heat-induced structural changes of lactoferrin molecules at neutral pH. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Menin A, Zanoni F, Vakarelova M, Chignola R, Donà G, Rizzi C, Mainente F, Zoccatelli G. Effects of microencapsulation by ionic gelation on the oxidative stability of flaxseed oil. Food Chem 2018; 269:293-299. [DOI: 10.1016/j.foodchem.2018.06.144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/22/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023]
|
28
|
Mittal H, Ray SS, Kaith BS, Bhatia JK, Sukriti, Sharma J, Alhassan SM. Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Encapsulation of Theophylline in Gelatin A-Pectin Complex Coacervates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29785481 DOI: 10.1007/978-981-10-7572-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The present study aims at synthesizing gelatin A-pectin complex coacervates and encapsulation of theophylline in the polymer system. Variation and optimization of different reaction parameters such as pH, ratio between the polymers and cross-linker concentration was carried out to attain higher product yield. Relative viscosity, turbidity and UV-visible measurements were done for optimization. The optimum ratio between gelatin A-pectin was fixed at weight ratio 42:8 and pH=3.5. It was further observed that adhesion between the microcapsules decreased by the use of sodium carboxymethyl cellulose (SCMC) to the coacervate. The synthesized microcapsules were characterized by using spectroscopic techniques to assess their formation, drug loading and chemical interaction between theophylline and coacervate. Scanning electron microscopy (SEM) revealed the formation of microcapsules. Study relating to the encapsulation efficiency and swelling of the complex coacervates were also carried out.
Collapse
|
30
|
Jiang X, Liao K, Xie D, Xie Y, Zhang X. Optimization of microencapsulation of silane coupling agent by spray drying using response surface methodology. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1291508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xiang Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Kai Liao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Delong Xie
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Yuhui Xie
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Xinya Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
31
|
Sakeer K, Ispas-Szabo P, Benyerbah N, Mateescu MA. Ampholytic starch excipients for high loaded drug formulations: Mechanistic insights. Int J Pharm 2017; 535:201-216. [PMID: 29128422 DOI: 10.1016/j.ijpharm.2017.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/12/2023]
Abstract
Ampholytic starch derivatives are proposed as a new class of excipients carrying simultaneously anionic carboxymethyl (CM) and cationic aminoethyl (AE) groups on starch (St) polymeric chains. Three different types of derivatives were obtained by using the same reagents and varying only the order of their addition in the reaction medium: in one step method (OS) the two reactants were added simultaneously, whereas in two steps method (TS) either CMSt or AESt were prepared separately in the first step, followed by subsequent addition of the second reactant. It was found that all ampholytic derivatives were able to generate monolithic tablets by direct compression and allowed 60% loading of acidic (Acetylsalicylic acid), basic (Metformin), zwitterion (Mesalamine) or neutral (Acetaminophen) as drug models. The in vitro dissolution tests followed for 2 h in SGF and then in SIF, showed that the mentioned starch derivatives were stabilized by self-assembling and generated matrices able to control the release of drugs for about 24 h. The addition order of reagents has an impact on ampholytic starch properties offering thus a high versatility of this new class of starch excipients that can be tailored for challenging formulations with high dosages of several drugs.
Collapse
Affiliation(s)
- Khalil Sakeer
- Department of Chemistry and Pharmaqam Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec H3C 3P8, Canada
| | - Pompilia Ispas-Szabo
- Department of Chemistry and Pharmaqam Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec H3C 3P8, Canada
| | - Nassim Benyerbah
- Department of Chemistry and Pharmaqam Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec H3C 3P8, Canada
| | - Mircea Alexandru Mateescu
- Department of Chemistry and Pharmaqam Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
32
|
Martins E, Poncelet D, Rodrigues RC, Renard D. Oil encapsulation in core-shell alginate capsules by inverse gelation II: comparison between dripping techniques using W/O or O/W emulsions. J Microencapsul 2017; 34:522-534. [PMID: 28792267 DOI: 10.1080/02652048.2017.1365963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the first part of this article, it was described an innovative method of oil encapsulation from dripping-inverse gelation using water-in-oil (W/O) emulsions. It was noticed that the method of oil encapsulation was quite different depending on the emulsion type (W/O or oil-in-water (O/W)) used and that the emulsion structure (W/O or O/W) had a high impact on the dripping technique and the capsules characteristics. The objective of this article was to elucidate the differences between the dripping techniques using both emulsions and compare the capsule properties (mechanical resistance and release of actives). The oil encapsulation using O/W emulsions was easier to perform and did not require the use of emulsion destabilisers. However, capsules produced from W/O emulsions were more resistant to compression and showed the slower release of actives over time. The findings detailed here widened the knowledge of the inverse gelation and gave opportunities to develop new techniques of oil encapsulation.
Collapse
Affiliation(s)
| | - Denis Poncelet
- b Process Engineering for Environment and Food Laboratory , ONIRIS , Nantes , France
| | | | - Denis Renard
- c INRA UR 1268 Biopolymères Interactions Assemblages , Nantes , France
| |
Collapse
|
33
|
Singh R, Shitiz K, Singh A. Chitin and chitosan: biopolymers for wound management. Int Wound J 2017; 14:1276-1289. [PMID: 28799228 DOI: 10.1111/iwj.12797] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/02/2017] [Indexed: 12/11/2022] Open
Abstract
Chitin and chitosan are biopolymers with excellent bioactive properties, such as biodegradability, non-toxicity, biocompatibility, haemostatic activity and antimicrobial activity. A wide variety of biomedical applications for chitin and chitin derivatives have been reported, including wound-healing applications. They are reported to promote rapid dermal regeneration and accelerate wound healing. A number of dressing materials based on chitin and chitosan have been developed for the treatment of wounds. Chitin and chitosan with beneficial intrinsic properties and high potential for wound healing are attractive biopolymers for wound management. This review presents an overview of properties, biomedical applications and the role of these biopolymers in wound care.
Collapse
Affiliation(s)
- Rita Singh
- Defence Laboratory, Defence Research and Development Organization, Jodhpur, India
| | - Kirti Shitiz
- Defence Laboratory, Defence Research and Development Organization, Jodhpur, India
| | - Antaryami Singh
- Defence Laboratory, Defence Research and Development Organization, Jodhpur, India
| |
Collapse
|
34
|
Chandrasekar V, Coupland JN, Anantheswaran RC. Characterization of nisin containing chitosan-alginate microparticles. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Kong HJ, Mooney DJ. The Effects of Poly(Ethyleneimine) (PEI) Molecular Weight on Reinforcement of Alginate Hydrogels. Cell Transplant 2017; 12:779-85. [PMID: 14653624 DOI: 10.3727/000000003108747253] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Alginate hydrogels are widely used for cell encapsulation and transplantation, and they are frequently surface reinforced with secondary polymers to enhance their mechanical rigidity and stability. We hypothesized that the molecular weight (MW) of the polymer utilized to reinforce alginate would be an important factor in their stability, particularly when the gel network was homogeneously reinforced with the polymer. This hypothesis was investigated with alginate hydrogels cross-linked with Ca2+, and reinforced throughout the bulk of the gel with poly(ethyleneimine) (PEI) having different MWs. Interactions between the two polymers became significant following gelation, leading to higher elastic moduli (E) than gels with no PEI. The decrease in E of gels incubated in isotonic salt solutions over time, utilized as an indication of gel break down, was ameliorated with an increase in the MW of the PEI. In addition, the dependencies of the moduli and visco-elasticity on the temperature also became smaller with the use of high MW PEI. This is likely due to the limited mobility of high MW PEI, leading to a higher energy for dissociation. The stable interactions between the alginate and PEI prevented alterations of the pore structure in the gels, and slowed the deterioration of gel properties even under continuous agitation in a bioreactor. The results of this study will likely be useful in designing alginate encapsulation strategies for various applications.
Collapse
Affiliation(s)
- Hyun Joon Kong
- Department of Biologic & Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
36
|
Azizi S, Mohamad R, Abdul Rahim R, Mohammadinejad R, Bin Ariff A. Hydrogel beads bio-nanocomposite based on Kappa-Carrageenan and green synthesized silver nanoparticles for biomedical applications. Int J Biol Macromol 2017; 104:423-431. [PMID: 28591593 DOI: 10.1016/j.ijbiomac.2017.06.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 05/22/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
Abstract
This paper describes the fabrication and characterization of bio-nanocomposite hydrogel beads based on Kappa-Carrageenan (κ-Carrageenan) and bio-synthesized silver nanoparticles (Ag-NPs). The silver nanoparticles were prepared in aqueous Citrullus colocynthis seed extract as both reducing and capping agent. Cross-linked κ-Carrageenan/Ag-NPs hydrogel beads were prepared using potassium chloride as the cross-linker. The hydrogel beads were characterized using XRD and FESEM. Moreover, swelling property of the hydrogel beads was investigated. The Ag release profile of the hydrogels was obtained by fitting the experimental data to power law equation. The direct visualization of the green synthesized Ag-NPs using TEM shows particle size in the range of 23±2nm. The bio-nanocomposite hydrogels showed lesser swelling behavior in comparison with pure κ-Carrageenan hydrogel. Regardless the slow Ag release, κ-Carrageenan/Ag-NPs presented good antibacterial activities against Staphylococcus aureus, Methicilin Resistant Staphylococcus aurous, Peseudomonas aeruginosa and Escherichia coli with maximum zones of inhibition 11±2mm. Cytotoxicity study showed that the bio-nanocomposite hydrogels with non-toxic effect of concentration below 1000μg/mL have great pharmacological potential and a suitable level of safety for use in the biological systems.
Collapse
Affiliation(s)
- Susan Azizi
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Arbakariya Bin Ariff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
37
|
Zhang X, Zhang L, Xu M, Li Q, Miao R. Synthesis of microencapsulated oyster peptides and its effect on inflammatory cytokines and enzyme levels in mice. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-016-9429-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Becerra J, Sudre G, Royaud I, Montserret R, Verrier B, Rochas C, Delair T, David L. Tuning the Hydrophilic/Hydrophobic Balance to Control the Structure of Chitosan Films and Their Protein Release Behavior. AAPS PharmSciTech 2017; 18:1070-1083. [PMID: 27975192 DOI: 10.1208/s12249-016-0678-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/22/2016] [Indexed: 11/30/2022] Open
Abstract
The control over the crystallinity of chitosan and chitosan/ovalbumin films can be achieved via an appropriate balance of the hydrophilic/hydrophobic interactions during the film formation process, which then controls the release kinetics of ovalbumin. Chitosan films were prepared by solvent casting. The presence of the anhydrous allomorph can be viewed as a probe of the hydrophobic conditions at the neutralization step. The semicrystalline structure, the swelling behavior of the films, the protein/chitosan interactions, and the release behavior of the films were impacted by the DA and the film processing parameters. At low DAs, the chitosan films neutralized in the solid state corresponded to the most hydrophobic environment, inducing the crystallization of the anhydrous allomorph with and without protein. The most hydrophilic conditions, leading to the hydrated allomorph, corresponded to non-neutralized films for the highest DAs. For the non-neutralized chitosan acetate (amorphous) films, the swelling increased when the DA decreased, whereas for the neutralized chitosan films, the swelling decreased. The in vitro release of ovalbumin (model protein) from chitosan films was controlled by their swelling behavior. For fast swelling films (DA = 45%), a burst effect was observed. On the contrary, a lag time was evidenced for DA = 2.5% with a limited release of the protein. Furthermore, by blending chitosans (DA = 2.5% and 45%), the release behavior was improved by reducing the burst effect and the lag time. The secondary structure of ovalbumin was partially maintained in the solid state, and the ovalbumin was released under its native form.
Collapse
|
39
|
Zou Q, Li J, Niu L, Zuo Y, Li J, Li Y. Modified n-HA/PA66 scaffolds with chitosan coating for bone tissue engineering: cell stimulation and drug release. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1271-1285. [PMID: 28402219 DOI: 10.1080/09205063.2017.1318029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The dipping-drying procedure and cross-linking method were used to make drug-loaded chitosan (CS) coating on nano-hydroxyapatite/polyamide66 (nHA/PA66) composite porous scaffold, endowing the scaffold controlled drug release functionality. The prefabricated scaffold was immersed into an aqueous drug/CS solution in a vacuum condition and then crosslinked by vanillin. The structure, porosity, composition, compressive strength, swelling ratio, drug release and cytocompatibility of the pristine and coating scaffolds were investigated. After coating, the scaffold porosity and pore interconnection were slightly decreased. Cytocompatibility performance was observed through an in vitro experiment based on cell attachment and the MTT assay by MG63 cells which revealed positive cell viability and increasing proliferation over the 11-day period in vitro. The drug could effectively release from the coated scaffold in a controlled fashion and the release rate was sustained for a long period and highly dependent on coating swelling, suggesting the possibility of a controlled drug release. Our results demonstrate that the scaffold with drug-loaded crosslinked CS coating can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to be a promising high performance biomaterial in bone tissue engineering.
Collapse
Affiliation(s)
- Qin Zou
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| | - Junfeng Li
- b Department of Materials Science & Engineering , Chengdu University of Technology , Chengdu , China
| | - Lulu Niu
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| | - Yi Zuo
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| | - Jidong Li
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| | - Yubao Li
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| |
Collapse
|
40
|
Vaz CM, de Graaf LA, Reis RL, Cunha AM. pH-Sensitive Soy Protein Films For The Controlled Release Of An Ant-Inflammatory Drug. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/14328917.2004.11784852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Chandrasekar V, Coupland JN, Anantheswaran RC. Release Kinetics of Nisin from Chitosan-Alginate Complex Films. J Food Sci 2016; 81:E2503-E2510. [PMID: 27635864 DOI: 10.1111/1750-3841.13443] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 11/29/2022]
Abstract
Understanding the release kinetics of antimicrobials from polymer films is important in the design of effective antimicrobial packaging films. The release kinetics of nisin (30 mg/film) from chitosan-alginate polyelectric complex films prepared using various fractions of alginate (33%, 50%, and 66%) was investigated into an aqueous release medium. Films containing higher alginate fractions showed significantly lower (P < 0.05) degree of swelling in water. Total amount of nisin released from films into an aqueous system decreased significantly (P < 0.05) with an increase in alginate concentration. The mechanism of diffusion of nisin from all films was found to be Fickian, and diffusion coefficients varied from 0.872 × 10-9 to 8.034 ×10-9 cm2 /s. Strong complexation was confirmed between chitosan and alginate polymers within the films using isothermal titration calorimetry and viscosity studies, which affects swelling of films and subsequent nisin release. Complexation was also confirmed between nisin and alginate, which limited the amount of free nisin available for diffusion from films. These low-swelling biopolymer complexes have potential to be used as antimicrobial packaging films with sustained nisin release characteristics.
Collapse
Affiliation(s)
- Vaishnavi Chandrasekar
- Dept. of Food Science, 202 Rodney A. Erickson Food Science Building, Pennsylvania State Univ, University Park, PA, 16802, U.S.A.
| | - John N Coupland
- Dept. of Food Science, 202 Rodney A. Erickson Food Science Building, Pennsylvania State Univ, University Park, PA, 16802, U.S.A
| | - Ramaswamy C Anantheswaran
- Dept. of Food Science, 202 Rodney A. Erickson Food Science Building, Pennsylvania State Univ, University Park, PA, 16802, U.S.A
| |
Collapse
|
42
|
Bioethanol production by reusable Saccharomyces cerevisiae immobilized in a macroporous monolithic hydrogel matrices. J Biotechnol 2016; 233:56-65. [DOI: 10.1016/j.jbiotec.2016.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/02/2016] [Accepted: 07/07/2016] [Indexed: 11/24/2022]
|
43
|
Tan TW, Hu B, Jin XH, Zhang M. Release Behavior of Ketoprofen from Chitosan/Alginate Microcapsules. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911503035384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chitosan/alginate microcapsules were prepared continuously by an air extrusion method. The influences on loading efficiency and release, such as air flow-rate, chitosan molecular weight and concentration, alginate concentration, pH of chitosan solution, ethyl cellulose, and freezing drying the capsules were studied. Freezing drying chitosan/alginate microcapsules was important for controlled release of ketoprofen. High molecular weight and high concentration of chitosan did not increase loading of ketoprofen, but reduced the release of the ketoprofen. The addition of ethyl cellulose increased the loading of ketoprofen and the release time was prolonged. Increasing sodium alginate concentration reduced the loading efficiency with no clear distinction on the release of ketoprofen. The ketoprofen entrapped in the pH sensitive chitosan/alginate microcapsules gave controlled release in intestinal fluid.
Collapse
Affiliation(s)
- Tian-Wei Tan
- Bioprocess Key Lab of Beijing Beijing University of Chemical Technology Beijing 100029, P.R. China
| | - Bo Hu
- Bioprocess Key Lab of Beijing Beijing University of Chemical Technology Beijing 100029, P.R. China
| | - Xian-Hua Jin
- Bioprocess Key Lab of Beijing Beijing University of Chemical Technology Beijing 100029, P.R. China
| | - Mu Zhang
- Bioprocess Key Lab of Beijing Beijing University of Chemical Technology Beijing 100029, P.R. China
| |
Collapse
|
44
|
Bekhit M, Sánchez-González L, Ben Messaoud G, Desobry S. Encapsulation of Lactococcus lactis subsp. lactis on alginate/pectin composite microbeads: Effect of matrix composition on bacterial survival and nisin release. J FOOD ENG 2016. [DOI: 10.1016/j.jfoodeng.2016.01.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
45
|
Jain A, Thakur D, Ghoshal G, Katare O, Shivhare U. Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth. Int J Biol Macromol 2016; 87:101-13. [DOI: 10.1016/j.ijbiomac.2016.01.117] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 10/22/2022]
|
46
|
Levofloxacin hemihydrate ocular semi-sponges for topical treatment of bacterial conjunctivitis: Formulation and in-vitro/in-vivo characterization. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Sáez M, Barros A, Vizcaíno A, López G, Alarcón F, Martínez T. Effect of alginate and chitosan encapsulation on the fate of BSA protein delivered orally to gilthead sea bream (Sparus aurata). Anim Feed Sci Technol 2015. [DOI: 10.1016/j.anifeedsci.2015.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Dual Cross-Linked Carboxymethyl Sago Pulp-Gelatine Complex Coacervates for Sustained Drug Delivery. Polymers (Basel) 2015. [DOI: 10.3390/polym7061088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
49
|
Kassem MAA, ElMeshad AN, Fares AR. Lyophilized sustained release mucoadhesive chitosan sponges for buccal buspirone hydrochloride delivery: formulation and in vitro evaluation. AAPS PharmSciTech 2015; 16:537-47. [PMID: 25370025 PMCID: PMC4444631 DOI: 10.1208/s12249-014-0243-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/23/2014] [Indexed: 11/30/2022] Open
Abstract
This work aims to prepare sustained release buccal mucoadhesive lyophilized chitosan sponges of buspirone hydrochloride (BH) to improve its systemic bioavailability. Chitosan sponges were prepared using simple casting/freeze-drying technique according to 3(2) factorial design where chitosan grade was set at three levels (low, medium, and high molecular weight), and concentration of chitosan solution at three levels (0.5, 1, and 2%). Mucoadhesion force, ex vivo mucoadhesion time, percent BH released after 8 h (Q8h), and time for release of 50% BH (T50%) were chosen as dependent variables. Additional BH cup and core buccal chitosan sponge were prepared to achieve uni-directional BH release toward the buccal mucosa. Sponges were evaluated in terms of drug content, surface pH, scanning electron microscopy, swelling index, mucoadhesion strength, ex vivo mucoadhesion time, and in vitro drug release. Cup and core sponge (HCH 0.5E) were able to adhere to the buccal mucosa for 8 h. It showed Q8h of 68.89% and exhibited a uni-directional drug release profile following Higuchi diffusion model.
Collapse
Affiliation(s)
- Mohamed A. A. Kassem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562 Egypt
| | - Aliaa N. ElMeshad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562 Egypt
| | - Ahmed R. Fares
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562 Egypt
| |
Collapse
|
50
|
Straccia MC, d'Ayala GG, Romano I, Oliva A, Laurienzo P. Alginate hydrogels coated with chitosan for wound dressing. Mar Drugs 2015; 13:2890-908. [PMID: 25969981 PMCID: PMC4446611 DOI: 10.3390/md13052890] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/02/2015] [Accepted: 04/29/2015] [Indexed: 01/21/2023] Open
Abstract
In this work, a coating of chitosan onto alginate hydrogels was realized using the water-soluble hydrochloride form of chitosan (CH-Cl), with the dual purpose of imparting antibacterial activity and delaying the release of hydrophilic molecules from the alginate matrix. Alginate hydrogels with different calcium contents were prepared by the internal setting method and coated by immersion in a CH-Cl solution. Structural analysis by cryo-scanning electron microscopy was carried out to highlight morphological alterations due to the coating layer. Tests in vitro with human mesenchymal stromal cells (MSC) were assessed to check the absence of toxicity of CH-Cl. Swelling, stability in physiological solution and release characteristics using rhodamine B as the hydrophilic model drug were compared to those of relative uncoated hydrogels. Finally, antibacterial activity against Escherichia coli was tested. Results show that alginate hydrogels coated with chitosan hydrochloride described here can be proposed as a novel medicated dressing by associating intrinsic antimicrobial activity with improved sustained release characteristics.
Collapse
Affiliation(s)
- Maria Cristina Straccia
- Institute for Polymers, Composites and Biomaterials (IPCB), CNR, via Campi Flegrei 34, Pozzuoli 80078, Italy.
| | - Giovanna Gomez d'Ayala
- Institute for Polymers, Composites and Biomaterials (IPCB), CNR, via Campi Flegrei 34, Pozzuoli 80078, Italy.
| | - Ida Romano
- Institute of Biomolecular Chemistry, CNR, via Campi Flegrei 34, Pozzuoli 80078, Italy.
| | - Adriana Oliva
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. De Crecchio 7, Naples 80138, Italy.
| | - Paola Laurienzo
- Institute for Polymers, Composites and Biomaterials (IPCB), CNR, via Campi Flegrei 34, Pozzuoli 80078, Italy.
| |
Collapse
|