1
|
Chen J, Tamareille S, Chèvremont E, Gimel JC, Calvignac B, Dallerac D, Lautram N, Lay TL, Rapenne C, Verdu I, Saulnier P, Martinez É, Lefebvre G. Distribution of amiodarone between lipid nanocapsules and residual micelles: Tangential flow filtration as a purification method and its impact on cytotoxicity. Int J Pharm 2025; 677:125651. [PMID: 40328342 DOI: 10.1016/j.ijpharm.2025.125651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/08/2025]
Abstract
Amiodarone (AMD) is an anti-arrhythmic drug prescribed for the treatment of atrial fibrillation. Despite its efficiency, AMD causes several extracardiac side effects due to its highly lipophilic nature, limiting its clinical use. Lipid nanocapsules (LNCs) are a promising approach for encapsulating AMD and altering its whole-body biodistribution. It has been established that during the phase inversion composition process to prepare LNCs loaded with AMD (LNC-AMD), some residual micelles will also be formed. These residual micelles could contain AMD and impact the formulation's cytotoxicity. In this study, we present a scalable tangential flow filtration (TFF) process for the separation of micelles from LNCs. Subsequently, dynamic light scattering and asymmetric flow-field flow fractionation in combination with UV and RI detections are subtly associated with a mass balance to assess the efficiency of TFF in removing free polyethylene glycol and surfactant micelles. An encapsulation efficiency of 91 % in the LNCs was calculated with a drug loading of 7.2 mg per gram of dry matter constituting the LNCs. Finally, the cytotoxicity of the LNC vector and LNC-AMD candidate nanomedicines, both purified and non-purified, was evaluated on H9C2, A549, and HepG2 cell lines. It has been demonstrated that the elimination of free polyethylene glycol and residual surfactant micelles results in a substantial enhancement in cell viability. The cytotoxic results raise questions about the cell-specific uptake and distribution of purified LNCs.
Collapse
Affiliation(s)
- Jaspe Chen
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Sophie Tamareille
- Univ Angers, Inserm, CNRS, MITOVASC, SFR ICAT, F-49000 Angers, France
| | | | - Jean-Christophe Gimel
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, SynNanoVect, SFR ICAT, F-49000 Angers, France
| | - Brice Calvignac
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, SynNanoVect, SFR ICAT, F-49000 Angers, France
| | - David Dallerac
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Nolwenn Lautram
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Tanguy Le Lay
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Clara Rapenne
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Isabelle Verdu
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Patrick Saulnier
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, SynNanoVect, SFR ICAT, F-49000 Angers, France
| | - Émilie Martinez
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Guillaume Lefebvre
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, SynNanoVect, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
2
|
Jacob S, Kather FS, Boddu SHS, Shah J, Nair AB. Innovations in Nanoemulsion Technology: Enhancing Drug Delivery for Oral, Parenteral, and Ophthalmic Applications. Pharmaceutics 2024; 16:1333. [PMID: 39458662 PMCID: PMC11510719 DOI: 10.3390/pharmaceutics16101333] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Nanoemulsions (NEs) are submicron-sized heterogeneous biphasic liquid systems stabilized by surfactants. They are physically transparent or translucent, optically isotropic, and kinetically stable, with droplet sizes ranging from 20 to 500 nm. Their unique properties, such as high surface area, small droplet size, enhanced bioavailability, excellent physical stability, and rapid digestibility, make them ideal for encapsulating various active substances. This review focuses on recent advancements, future prospects, and challenges in the field of NEs, particularly in oral, parenteral, and ophthalmic delivery. It also discusses recent clinical trials and patents. Different types of in vitro and in vivo NE characterization techniques are summarized. High-energy and low-energy preparation methods are briefly described with diagrams. Formulation considerations and commonly used excipients for oral, ocular, and ophthalmic drug delivery are presented. The review emphasizes the need for new functional excipients to improve the permeation of large molecular weight unstable proteins, oligonucleotides, and hydrophilic drugs to advance drug delivery rapidly.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Fathima Sheik Kather
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
3
|
Jia M, Bai W, Deng J, Li W, Lin Q, Zhong F, Luo F. Enhancing solubility and bioavailability of octacosanol: Development of a green O/W nanoemulsion synthesis process. Int J Pharm 2024; 651:123726. [PMID: 38135259 DOI: 10.1016/j.ijpharm.2023.123726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Octacosanol, a naturally occurring higher fatty alcohol, possessed numerous biological effects. However, octacosanol limited solubility in water due to its lipophilic nature and large structure, resulting in poor absorption and low bioavailability. To overcome this challenge, we developed a simple, environmentally friendly, and energy-efficient O/W nanoemulsion synthesis process. The nanoemulsion achieved an average droplet size of approximately 30 nm, exhibited excellent dispersibility and stability at room temperature for 60 days, and showcased robust storage properties insensitive to ambient temperature, pH, NaCl, and sucrose. Remarkably, the preparation process of the nanoemulsion maintained the biological activity of octacosanol while demonstrating significantly enhancing antioxidant activity compared to octacosanol suspension. Additionally, the nanoemulsion displayed negligible cytotoxic effects on Caco-2 cells. Significantly, the octacosanol nanoemulsion exhibited a 5.4-fold enhancement in transmembrane transport efficiency when compared to the suspension in Caco-2 cell monolayers. Additionally, in an in vivo experiment, there was a notable 2.9-fold increase in rat intestinal absorption. These findings could provide valuable insights into the development of octacosanol nanoemulsion, supporting its future applications and paving the way for the design of stable nanoemulsion systems for other lipophilic and sparingly soluble substances.
Collapse
Affiliation(s)
- Mingxi Jia
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, JiangSu, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, JiangSu, China; Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha 410004, China.
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, JiangSu, China; Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha 410004, China
| | - Feifei Zhong
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Changsha Institute for Food and Drug Control, Changsha 410016, Hunan, China
| | - Feijun Luo
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| |
Collapse
|
4
|
Machado S, Pereira R, Sousa RMOF. Nanobiopesticides: Are they the future of phytosanitary treatments in modern agriculture? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166401. [PMID: 37597566 DOI: 10.1016/j.scitotenv.2023.166401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The world's population is continuously increasing; therefore, food availability will be one of the major concerns of our future. In addition to that, many practices and products used, such as pesticides and fertilizers have been shown harmful to the environment and human health and are assumed as being one of the main factors responsible for the loss of biodiversity. Also, climate change could agravate the problem since it causes unpredictable variation of local and regional climate conditions,which frequently favor the growth of diseases, pathogens and pest growth. The use of natural products, like essential oils, plant extracts, or substances of microbial-origin in combination with nanotechnology is one suitable way to outgrow this problem. The most often employed natural products in research studies to date include pyrethrum extract, neem oil, and various essential oils, which when enclosed shown increased resistance to environmental factors. They also demonstrated insecticidal, antibacterial, and fungicidal properties. However, in order to truly determine if these products, despite being natural, would be hazardous or not, testing in non-target organisms, which are rare, must start to become a common practice. Therefore, this review aims to present the existing literature concerning nanoformulations of biopesticides and a standard definition for nanobiopesticides, their synthesis methods and their possible ecotoxicological impacts, while discussing the regulatory aspects regarding their authorization and commercialization. As a result of this, you will find a critical analysis in this reading. The most obvious findings are that i) there are insufficient reliable ecotoxicological data for risk assessment purposes and to establish safety doses; and ii) the requirements for registration and authorization of these new products are not as straightforward as those for synthetic chemicals and take a lot of time, which is a major challenge/limitation in terms of the goals set by the Farm to Fork initiative.
Collapse
Affiliation(s)
- Sofia Machado
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Ruth Pereira
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rose Marie O F Sousa
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal; CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences & INOV4AGRO, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
5
|
Grijalvo S, Rodriguez-Abreu C. Polymer nanoparticles from low-energy nanoemulsions for biomedical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:339-350. [PMID: 36959976 PMCID: PMC10028572 DOI: 10.3762/bjnano.14.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The formulation of nanoemulsions by low-energy strategies, particularly by the phase inversion composition method, and the use of these nanoemulsions as templates for the preparation of polymer nanoparticles for biomedical applications are reviewed. The methods of preparation, nature of the components in the formulation, and their impact on the physicochemical properties, drug loading, and drug release are discussed. We highlight the utilization of ethyl cellulose, poly(lactic-co-glycolic acid), and polyurethane/polyurea in the field of nanomedicine as potential drug delivery systems. Advances are still needed to achieve better control over size distribution, nanoparticle concentration, surface functionalization, and the type of polymers that can be processed.
Collapse
Affiliation(s)
| | - Carlos Rodriguez-Abreu
- CIBER-BBN, ISCIII, Jordi Girona 18–26, 08034 Barcelona, Spain
- Instituto de Quimica Avanzada de Cataluña (IQAC), CSIC, Jordi Girona 18–26, 08034 Barcelona, Spain
| |
Collapse
|
6
|
Zhang Y, Sun G, Li D, Xu J, McClements DJ, Li Y. Advances in emulsion-based delivery systems for nutraceuticals: Utilization of interfacial engineering approaches to control bioavailability. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:139-178. [DOI: 10.1016/bs.afnr.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Lohmann V, Rolland M, Truong NP, Anastasaki A. Controlling size, shape, and charge of nanoparticles via low-energy miniemulsion and heterogeneous RAFT polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
García-Melero J, López-Mitjavila JJ, García-Celma MJ, Rodriguez-Abreu C, Grijalvo S. Rosmarinic Acid-Loaded Polymeric Nanoparticles Prepared by Low-Energy Nano-Emulsion Templating: Formulation, Biophysical Characterization, and In Vitro Studies. MATERIALS 2022; 15:ma15134572. [PMID: 35806696 PMCID: PMC9267406 DOI: 10.3390/ma15134572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
Rosmarinic acid (RA), a caffeic acid derivative, has been loaded in polymeric nanoparticles made up of poly(lactic-co-glycolic acid) (PLGA) through a nano-emulsion templating process using the phase-inversion composition (PIC) method at room temperature. The obtained RA-loaded nanoparticles (NPs) were colloidally stable exhibiting average diameters in the range of 70–100 nm. RA was entrapped within the PLGA polymeric network with high encapsulation efficiencies and nanoparticles were able to release RA in a rate-controlled manner. A first-order equation model fitted our experimental data and confirmed the prevalence of diffusion mechanisms. Protein corona formation on the surface of NPs was assessed upon incubation with serum proteins. Protein adsorption induced an increase in the hydrodynamic diameter and a slight shift towards more negative surface charges of the NPs. The radical scavenging activity of RA-loaded NPs was also studied using the DPPH·assay and showed a dose–response relationship between the NPs concentration and DPPH inhibition. Finally, RA-loaded NPs did not affect the cellular proliferation of the human neuroblastoma SH-SY5Y cell line and promoted efficient cellular uptake. These results are promising for expanding the use of O/W nano-emulsions in biomedical applications.
Collapse
Affiliation(s)
- Jessica García-Melero
- Institute for Advanced Chemistry of Catalonia (CSIC-IQAC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (J.G.-M.); (J.-J.L.-M.)
| | - Joan-Josep López-Mitjavila
- Institute for Advanced Chemistry of Catalonia (CSIC-IQAC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (J.G.-M.); (J.-J.L.-M.)
| | - María José García-Celma
- Department of Pharmacy, Pharmaceutical Technology, and Physical-Chemistry, R+D Associated Unit to CSIC Pharmaceutical Nanotechnology, IN2UB, University of Barcelona, Joan XXIII 27-31, E-08028 Barcelona, Spain;
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Carlos Rodriguez-Abreu
- Institute for Advanced Chemistry of Catalonia (CSIC-IQAC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (J.G.-M.); (J.-J.L.-M.)
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Correspondence: (C.R.-A.); (S.G.)
| | - Santiago Grijalvo
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Correspondence: (C.R.-A.); (S.G.)
| |
Collapse
|
9
|
|
10
|
Rolland M, Dufresne ER, Truong NP, Anastasaki A. The effect of surface-active statistical copolymers in low-energy miniemulsion and RAFT polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00468b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Study of the composition, lenght and chemical structure of surface-active statistical copolymers in low-energy miniemulsions.
Collapse
Affiliation(s)
- Manon Rolland
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Eric R. Dufresne
- Laboratory of Soft and Living Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Nghia P. Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3152, Australia
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
11
|
Kadukkattil Ramanunny A, Singh SK, Wadhwa S, Gulati M, Kapoor B, Khursheed R, Kuppusamy G, Dua K, Dureja H, Chellappan DK, Jha NK, Gupta PK, Vishwas S. Overcoming hydrolytic degradation challenges in topical delivery: non-aqueous nano-emulsions. Expert Opin Drug Deliv 2021; 19:23-45. [PMID: 34913772 DOI: 10.1080/17425247.2022.2019218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Non-aqueous nano-emulsions (NANEs) are colloidal lipid-based dispersions with nano-sized droplets formed by mixing two immiscible phases, none of which happens to be an aqueous phase. Their ability to incorporate water and oxygen sensitive drugs without any susceptibility to degradation makes them the optimum dosage form for such candidates. In NANEs, polar liquids or polyols replace the aqueous phase while surfactants remain same as used in conventional emulsions. They are a part of the nano-emulsion family albeit with substantial difference in composition and application. AREAS COVERED The present review provides a brief insight into the strategies of loading water-sensitive drugs into NANEs. Further advancement in these anhydrous systems with the use of solid particulate surfactants in the form of Pickering emulsions is also discussed. EXPERT OPINION NANEs offer a unique platform for delivering water-sensitive drugs by loading them in anhydrous formulation. The biggest advantage of NANEs vis-à-vis the other nano-cargos is that they can also be prepared without using equipment-intensive techniques. However, the use of NANEs in drug delivery is quite limited. Looking at the small number of studies available in this direction, a need for further research in this field is required to explore this delivery system further.
Collapse
Affiliation(s)
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India.,Centre of Excellence in Nanoscience & Technology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (Set), Sharda University, Greater Noida, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
12
|
Rolland M, Truong NP, Parkatzidis K, Pilkington EH, Torzynski AL, Style RW, Dufresne ER, Anastasaki A. Shape-Controlled Nanoparticles from a Low-Energy Nanoemulsion. JACS AU 2021; 1:1975-1986. [PMID: 34841413 PMCID: PMC8611665 DOI: 10.1021/jacsau.1c00321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Nanoemulsion technology enables the production of uniform nanoparticles for a wide range of applications. However, existing nanoemulsion strategies are limited to the production of spherical nanoparticles. Here, we describe a low-energy nanoemulsion method to produce nanoparticles with various morphologies. By selecting a macro-RAFT agent (poly(di(ethylene glycol) ethyl ether methacrylate-co-N-(2-hydroxypropyl) methacrylamide) (P(DEGMA-co-HPMA))) that dramatically lowers the interfacial tension between monomer droplets and water, we can easily produce nanoemulsions at room temperature by manual shaking for a few seconds. With the addition of a common ionic surfactant (SDS), these nanoscale droplets are robustly stabilized at both the formation and elevated temperatures. Upon polymerization, we produce well-defined block copolymers forming nanoparticles with a wide range of controlled morphologies, including spheres, worm balls, worms, and vesicles. Our nanoemulsion polymerization is robust and well-controlled even without stirring or external deoxygenation. This method significantly expands the toolbox and availability of nanoemulsions and their tailor-made polymeric nanomaterials.
Collapse
Affiliation(s)
- Manon Rolland
- Laboratory
for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Nghia P. Truong
- Laboratory
for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Kostas Parkatzidis
- Laboratory
for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Emily H. Pilkington
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Alexandre L. Torzynski
- Laboratory
of Soft and Living Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Robert W. Style
- Laboratory
of Soft and Living Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Eric R. Dufresne
- Laboratory
of Soft and Living Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Athina Anastasaki
- Laboratory
for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
13
|
Dhaval M, Vaghela P, Patel K, Sojitra K, Patel M, Patel S, Dudhat K, Shah S, Manek R, Parmar R. Lipid-based emulsion drug delivery systems - a comprehensive review. Drug Deliv Transl Res 2021; 12:1616-1639. [PMID: 34609731 DOI: 10.1007/s13346-021-01071-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/26/2022]
Abstract
Lipid-based emulsion system - a subcategory of emulsion technology, has emerged as an enticing option to improve the solubility of the steadily rising water-insoluble candidates. Along with enhancing solubility, additional advantages such as improvement in permeability, protection against pre-systemic metabolism, ease of manufacturing, and easy to scale-up have made lipid-based emulsion technology very popular among academicians and manufacturers. The present article provides a comprehensive review regarding various critical properties of lipid-based emulsion systems, such as microemulsion, nanoemulsion, SMEDDS (self microemulsifying drug delivery system), and SNEDDS (self nanoemulsifying drug delivery system). The present article also explains in detail the similarities and differences between them, the stabilization mechanism, methods of preparation, excipients used to prepare them, and evaluation techniques. Subtle differences between nearly related terminologies such as microemulsion and nanoemulsion, SMEDDS, and SNEDDS are also explained in detail to clarify the basic differences. The present article also gives in-depth information regarding the chemical structure of various lipidic excipients, various possible chemical modifications to modify their inherent properties, and their regulatory status for rational selection.
Collapse
Affiliation(s)
- Mori Dhaval
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India.
| | - Poonam Vaghela
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Kajal Patel
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Keshvi Sojitra
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Mohini Patel
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Sushma Patel
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Kiran Dudhat
- K. V. Virani Institute of Pharmacy and Research Centre, Badhada, Gujarat, India
| | - Sunny Shah
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Ravi Manek
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Ramesh Parmar
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| |
Collapse
|
14
|
Bai L, Huan S, Rojas OJ, McClements DJ. Recent Innovations in Emulsion Science and Technology for Food Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8944-8963. [PMID: 33982568 DOI: 10.1021/acs.jafc.1c01877] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Emulsion technology has been used for decades in the food industry to create a diverse range of products, including homogenized milk, creams, dips, dressings, sauces, desserts, and toppings. Recently, however, there have been important advances in emulsion science that are leading to new approaches to improving food quality and functionality. This article provides an overview of a number of these advanced emulsion technologies, including Pickering emulsions, high internal phase emulsions (HIPEs), nanoemulsions, and multiple emulsions. Pickering emulsions are stabilized by particle-based emulsifiers, which may be synthetic or natural, rather than conventional molecular emulsifiers. HIPEs are emulsions where the concentration of the disperse phase exceeds the close packing limit (usually >74%), which leads to novel textural properties and high resistance to gravitational separation. Nanoemulsions contain very small droplets (typically d < 200 nm), which leads to useful functional attributes, such as high optical clarity, resistance to gravitational separation and aggregation, rapid digestion, and high bioavailability. Multiple emulsions contain droplets that have smaller immiscible droplets inside them, which can be used for reduced-calorie, encapsulation, and delivery purposes. This new generation of advanced emulsions may lead to food and beverage products with improved quality, health, and sustainability.
Collapse
Affiliation(s)
- Long Bai
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Siqi Huan
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Orlando J Rojas
- Bioproducts Institute, Departments of Chemical & Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Post Office Box 16300, FI-00076 Aalto, Espoo, Finland
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
15
|
Design, Preparation, and Characterization of Effective Dermal and Transdermal Lipid Nanoparticles: A Review. COSMETICS 2021. [DOI: 10.3390/cosmetics8020039] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Limited permeability through the stratum corneum (SC) is a major obstacle for numerous skin care products. One promising approach is to use lipid nanoparticles as they not only facilitate penetration across skin but also avoid the drawbacks of conventional skin formulations. This review focuses on solid lipid nanoparticles (SLNs), nanostructured lipid nanocarriers (NLCs), and nanoemulsions (NEs) developed for topical and transdermal delivery of active compounds. A special emphasis in this review is placed on composition, preparation, modifications, structure and characterization, mechanism of penetration, and recent application of these nanoparticles. The presented data demonstrate the potential of these nanoparticles for dermal and transdermal delivery.
Collapse
|
16
|
Li G, Zhang Z, Liu H, Hu L. Nanoemulsion-based delivery approaches for nutraceuticals: fabrication, application, characterization, biological fate, potential toxicity and future trends. Food Funct 2021; 12:1933-1953. [PMID: 33596279 DOI: 10.1039/d0fo02686g] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the modern food industry, people are paying more and more attention to the use of edible nanoemulsions to encapsulate, protect and deliver lipophilic functional ingredients, such as volatile additives, polyphenols, aromas, pigments, proteins, vitamins, oil-soluble flavors, preservatives, etc., which are the current global needs. Nanoemulsions are constructed with droplets of nano range size and they offer many potential advantages over conventional emulsions including the delivery of both hydrophilic and hydrophobic compounds, higher stability, better antibacterial properties, good taste experience, higher affinity, longer shelf-life and improvement of the bioavailability of components. Moreover, they are highly capable of improving the wettability and/or solubility of poorly water-soluble compounds, which may result in better pharmacokinetic and pharmacodynamic properties of nutraceutical compounds. On the other hand, oral nanoemulsions also have certain risks, such as their ability to change the biological fate of biologically active ingredients in the gastrointestinal tract and the potential toxicity of certain ingredients used in their production. This review article summarizes the manufacturing, application, characterization, biological fate, potential toxicity, and future challenges and trends of nanoemulsions, and focuses on nanoemulsion-based nutraceutical delivery approaches suitable for the food industry.
Collapse
Affiliation(s)
- Guotao Li
- School of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071000, China. and Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Zhengyu Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071000, China. and Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Haofan Liu
- College of Quality and Technical Supervision, Hebei University, Baoding, China and Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Liandong Hu
- School of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071000, China. and College of Quality and Technical Supervision, Hebei University, Baoding, China and Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
17
|
Yang W, Li L, Zhang B, Yang Q, Zou H, Zheng W, Chen S. Optimization and Preparation of a Gel Polymer Electrolyte Membrane for Supercapacitors. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wei Yang
- Guangzhou University School of Chemistry and Chemical Engineering 510006 Guangzhou China
| | - Linlin Li
- Guangzhou University School of Chemistry and Chemical Engineering 510006 Guangzhou China
| | - Biao Zhang
- Guangzhou University School of Chemistry and Chemical Engineering 510006 Guangzhou China
| | - Qianyun Yang
- Environmental Monitoring Station of Guangzhou Development Zone 510700 Guangzhou China
| | - Hanbo Zou
- Guangzhou University School of Chemistry and Chemical Engineering 510006 Guangzhou China
| | - Wenzhi Zheng
- Guangzhou University Guangzhou Key Laboratory for New Energy and Green Catalysis 510006 Guangzhou China
| | - Shengzhou Chen
- Guangzhou University School of Chemistry and Chemical Engineering 510006 Guangzhou China
| |
Collapse
|
18
|
Tarhan O, Spotti MJ. Nutraceutical delivery through nano-emulsions: General aspects, recent applications and patented inventions. Colloids Surf B Biointerfaces 2021; 200:111526. [PMID: 33517153 DOI: 10.1016/j.colsurfb.2020.111526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/24/2020] [Accepted: 12/07/2020] [Indexed: 01/09/2023]
Abstract
Nanostructured emulsions have a significant potential for encasing, transport and delivery of hydrophilic and lipophilic nutraceuticals and other bioactive compounds by providing enhanced stability and functionality in food and pharmaceutical applications. As highlighted in recent researches, essential fatty acids (EFA) and oils (EO), antioxidants, vitamins, minerals, pro and prebiotics, and co-enzymes, are common bioactives encapsulated in nanoscale delivery systems in order to protect them from degradation during processing and storage, and to improve bioavailability after their consumption. Nanoemulsions (NEs) as delivery systems for nutraceuticals comprise either oil-in-water (O/W) or water-in-oil (W/O) biphasic dispersion with nano-sized droplets, which are stabilized through an active surfactant. Both high- and low- energy methods are used to produce well-structured and stable NEs with advanced structural and rheological features. The in vitro and in vivo studies are focused to assess the nutraceutical releasing profile, gastrointestinal transportation and cytotoxicity of nutraceutical loaded NE. Within the last three decades, a number of NE systems have been developed for certain purposes and submitted for patent approval. Currently, there are many issued patents published as well as and applications under process. This review focus on the current status of food-grade NEs in terms of formation, characterization, relevant applications of nutraceutical delivery, and the recent developments including patented systems.
Collapse
Affiliation(s)
- Ozgur Tarhan
- Food Engineering Department, Uşak University, 1 Eylül Campus, 64100, Uşak, Turkey.
| | - Maria Julia Spotti
- Food Technology Institute, Faculty of Chemical Engineering, National University of Litoral, 1 de Mayo 3250, 3000, Santa Fe, Argentina
| |
Collapse
|
19
|
de Medeiros ASA, Torres-Rêgo M, Lacerda AF, Rocha HAO, do Egito EST, Cornélio AM, Tambourgi DV, Fernandes-Pedrosa MDF, da Silva-Júnior AA. Self-Assembled Cationic-Covered Nanoemulsion as A Novel Biocompatible Immunoadjuvant for Antiserum Production Against Tityus serrulatus Scorpion Venom. Pharmaceutics 2020; 12:pharmaceutics12100927. [PMID: 33003322 PMCID: PMC7599857 DOI: 10.3390/pharmaceutics12100927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022] Open
Abstract
This study assesses the efficacy of different nanoemulsion formulations as new and innovative adjuvants for improving the in vivo immunization against the Tityus serrulatus scorpion venom. Nanoemulsions were designed testing key-variables such as surfactants, co-solvents, and the influence of the temperature, which would be able to induce the phase transition from a liquid crystal to a stable nanoemulsion, assessed for four months. Additionally, cationic-covered nanoemulsion with hyper-branched poly(ethyleneimine) was prepared and its performance was compared to the non-cationic ones. The physicochemical properties of the selected nanoemulsions and the interactions among their involved formulation compounds were carefully monitored. The cytotoxicity studies in murine macrophages (RAW 264.7) and red blood cells were used to compare different formulations. Moreover, the performance of the nanoemulsion systems as biocompatible adjuvants was evaluated using mice immunization protocol. The FTIR shifts and the zeta potential changes (from -18.3 ± 1.0 to + 8.4 ± 1.4) corroborated with the expected supramolecular anchoring of venom proteins on the surface of the nanoemulsion droplets. Cell culture assays demonstrated the non-toxicity of the formulations at concentrations less than 1.0 mg/mL, which were able to inhibit the hemolytic effect of the scorpion venom. The cationic-covered nanoemulsion has shown superior adjuvant activity, revealing the highest IgG titer in the immunized animals compared to both the non-cationic counterpart and the traditional aluminum adjuvant. In this approach, we demonstrate the incredible potential application of nanoemulsions as adjuvants, using a nanotechnology platform for antigen delivery system on immune cells. Additionally, the functionalization with hyper-branched poly(ethyleneimine) enhances this recognition and improves its action in immunization.
Collapse
Affiliation(s)
- Arthur Sérgio Avelino de Medeiros
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59010-180, Brazil; (A.S.A.d.M.); (M.T.-R.); (A.F.L.); (E.S.T.d.E.)
| | - Manoela Torres-Rêgo
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59010-180, Brazil; (A.S.A.d.M.); (M.T.-R.); (A.F.L.); (E.S.T.d.E.)
- Laboratory of Immunochemistry, Butantan Institute, Av. Vital Brasil, 1500, São Paulo 05503-900, Brazil;
| | - Ariane Ferreira Lacerda
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59010-180, Brazil; (A.S.A.d.M.); (M.T.-R.); (A.F.L.); (E.S.T.d.E.)
| | - Hugo Alexandre Oliveira Rocha
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Avenue Senador Salgado Filho, 3000, Lagoa Nova, Natal 59072-970, Brazil
| | - Eryvaldo Sócrates Tabosa do Egito
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59010-180, Brazil; (A.S.A.d.M.); (M.T.-R.); (A.F.L.); (E.S.T.d.E.)
| | - Alianda Maira Cornélio
- Department of Biochemistry, Federal University of Rio Grande do Norte-UFRN, Natal 59010-180, Brazil;
| | - Denise V. Tambourgi
- Department of Morphology, Federal University of Rio Grande do Norte-UFRN, Natal 59010-180, Brazil;
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59010-180, Brazil; (A.S.A.d.M.); (M.T.-R.); (A.F.L.); (E.S.T.d.E.)
- Correspondence: (M.d.F.F.-P.); (A.A.d.S.-J.); Tel.: +55-84-33429820 (M.d.F.F.-P. & A.A.d.S.-J.); Fax: +55-84-33429833 (M.d.F.F.-P. & A.A.d.S.-J.)
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59010-180, Brazil; (A.S.A.d.M.); (M.T.-R.); (A.F.L.); (E.S.T.d.E.)
- Correspondence: (M.d.F.F.-P.); (A.A.d.S.-J.); Tel.: +55-84-33429820 (M.d.F.F.-P. & A.A.d.S.-J.); Fax: +55-84-33429833 (M.d.F.F.-P. & A.A.d.S.-J.)
| |
Collapse
|