1
|
Wasim M, Bergonzi MC. From Waste to Value: Solubility and Dissolution Enhancement of Bioactive Extracts from Olive Leaves Using Poloxamers. Molecules 2025; 30:928. [PMID: 40005238 PMCID: PMC11858259 DOI: 10.3390/molecules30040928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
The European Union, producing over 2.5 billion tons of waste annually, has prompted the European Parliament to implement legal measures and encourage the shift towards a circular economy. Millions of tons of biowaste from olive plant leaves are generated annually, resulting in environmental and economic challenges. To address this, the biowaste of olive leaves was valorized, resulting in the extraction of valuable components, triterpenes and polyphenols, which hold potential pharmaceutical, food, or cosmetic applications. Our research involved the formulation of a triterpene extract (TTP70, 70% triterpenes) as a solid dispersion using Poloxamer-188 (P188) and Poloxamer-407 (P407). The solid dispersions were prepared using a kneading method and various extract-to-polymer weight ratios, including 1:1, 1:2, and 1:5. The influence of hydrophilic carriers on the solubility, dissolution profile, and in vitro passive permeability of TTP70 was evaluated. Both carriers and all considered weight ratios significantly improved the solubility of hydrophobic extract and the dissolution of triterpenes. PAMPA experiments demonstrated the efficacy of the formulation in improving the passive permeation of triterpenes. Subsequently, the solid dispersions were physically mixed with a polyphenol-enriched extract (OPA40, 49% of polyphenols) also obtained from olive leaves, and they were used to fill hard gelatin capsules and produce an oral dosage form. The composite formulations improved the dissolution of both classes of constituents.
Collapse
Affiliation(s)
| | - Maria Camilla Bergonzi
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
2
|
Le Bloch J, Rouault M, Iriantsoa V, Michelet O. Polyphenols in Human Nutrition: European Regulations and Potential Classification as a Novel Food or Food Additive. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39570113 DOI: 10.1021/acs.jafc.4c08435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Polyphenols are widely present in botanicals and are partially responsible for the health benefits associated with plant-based diets. Due to their nutritional and health-promoting properties, polyphenols are increasingly being proposed as innovative food ingredients, whether for technological applications or for inclusion in food supplements and other food products to enhance health. However, the regulatory considerations surrounding the use of polyphenols in human nutrition are critical. Although polyphenols are routinely consumed through fruits and vegetables, in Europe, polyphenols and plant extracts can be classified as novel foods or food additives. The scientific evaluation conducted by the European Food Safety Authority (EFSA) to obtain the necessary authorizations is stringent, requiring a substantial level of evidence to ensure the safe use of polyphenols. This work aims to provide an overview of the current European regulatory frameworks for novel foods and food additives and to discuss the scientific requirements for the approval of pure polyphenols and polyphenol-rich botanical extracts in Europe.
Collapse
Affiliation(s)
| | - Marie Rouault
- FoodchainID, 6 Rue de la Gare, 22000 Saint-Brieuc, France
| | | | | |
Collapse
|
3
|
Papadopoulou P, Polissidis A, Kythreoti G, Sagnou M, Stefanatou A, Theoharides TC. Anti-Inflammatory and Neuroprotective Polyphenols Derived from the European Olive Tree, Olea europaea L., in Long COVID and Other Conditions Involving Cognitive Impairment. Int J Mol Sci 2024; 25:11040. [PMID: 39456822 PMCID: PMC11507169 DOI: 10.3390/ijms252011040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The European olive tree, Olea europaea L., and its polyphenols hold great therapeutic potential to treat neuroinflammation and cognitive impairment. This review examines the evidence for the anti-inflammatory and neuroprotective actions of olive polyphenols and their potential in the treatment of long COVID and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Key findings suggest that olive polyphenols exhibit antioxidant, anti-inflammatory, neuroprotective, and antiviral properties, making them promising candidates for therapeutic intervention, especially when formulated in unique combinations. Recommendations for future research directions include elucidating molecular pathways through mechanistic studies, exploring the therapeutic implications of olive polyphenol supplementation, and conducting clinical trials to assess efficacy and safety. Investigating potential synergistic effects with other agents addressing different targets is suggested for further exploration. The evidence reviewed strengthens the translational value of olive polyphenols in conditions involving cognitive dysfunction and emphasizes the novelty of new formulations.
Collapse
Affiliation(s)
- Paraskevi Papadopoulou
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Alexia Polissidis
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Georgia Kythreoti
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Marina Sagnou
- Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, 15310 Athens, Greece;
| | - Athena Stefanatou
- School of Graduate & Professional Education, Deree–The American College of Greece, 15342 Athens, Greece
| | - Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine-Clearwater, Clearwater, FL 33759, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
4
|
Brenes-Álvarez M, García-García P, Ramírez EM, Medina E, Brenes M, Romero C. Potassium Hydroxide Extraction of Polyphenols from Olive Leaves: Effect on Color and Acrylamide Formation in Black Ripe Olives. Foods 2024; 13:3180. [PMID: 39410215 PMCID: PMC11475044 DOI: 10.3390/foods13193180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Olive leaves are generated in large quantities in olive oil and table olive factories. This waste is currently used for multiple purposes, one of them being the extraction of bioactive substances, in particular phenolic compounds. The aims of this study were (i) to obtain a new polyphenolic extract from potassium hydroxide (KOH) -treated olive leaves; and (ii) to reduce acrylamide formation in black olives by using this extract. The results showed that olive leaves and leafless branches of the Manzanilla cultivar treated with 10 g/L KOH provide a solution that, concentrated under vacuum, had >6000 mg/L hydroxytyrosol and >2000 mg/L of hydroxytyrosol 4-glucoside. Moreover, the residual material generated after the treatment with KOH could be used for agronomic purposes, due to its high potassium content. The employment of this non-bitter extract during the darkening step of black ripe olive processing then resulted in darker fruits with higher potassium content. Likewise, the addition of the extract into the packing brine reduced the acrylamide formation by up to 32%, although this effect was batch-dependent. KOH olive extract could be useful for the reduction in acrylamide in black ripe olives along with the enrichment of this product in phenolic compounds and potassium.
Collapse
Affiliation(s)
| | | | | | | | | | - Concepción Romero
- Food Biotechnology Department, Instituto de la Grasa (IG), CSIC, Ctra. Utrera km 1, Building 46, 41013 Seville, Spain; (M.B.-Á.); (P.G.-G.); (E.M.R.); (E.M.); (M.B.)
| |
Collapse
|
5
|
Borghini F, Tamasi G, Loiselle SA, Baglioni M, Ferrari S, Bisozzi F, Costantini S, Tozzi C, Riccaboni A, Rossi C. Phenolic Profiles in Olive Leaves from Different Cultivars in Tuscany and Their Use as a Marker of Varietal and Geographical Origin on a Small Scale. Molecules 2024; 29:3617. [PMID: 39125022 PMCID: PMC11314593 DOI: 10.3390/molecules29153617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Olive leaves are a rich source of polyphenols with healthful properties and represent one of the most abundant waste products of olive oil production. The aims of this study were to explore the phenolic composition of olive leaves from the three main Tuscan cultivars (Leccino, Moraiolo and Frantoio) collected in Siena and Grosseto provinces and to investigate the possible use of these compounds as varietal and geographic origin markers. Discriminant factorial analysis (DFA) was used for distinguishing between different cultivars and locations. Apigenin and caffeoyl-secologanoside showed significant differences between cultivars. DFA showed that ligstroside, apigenin and luteolin have the most influence in determining the differences between sites, whereas total polyphenols, olacein and hydroxytyrosol acetate allowed for separation between leaves from the same province. The results of the present study indicate that concentrations of phenolic compounds, measured through high-resolution mass spectrometry, can be used as a marker for both the cultivar and of geographical origin of olive leaves, and possibly of olive-related products, as well as across small geographic scales (less than 50 km distance between sites).
Collapse
Affiliation(s)
- Francesca Borghini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Santa Chiara Lab, University of Siena, Via Valdimontone 1, 53100 Siena, Italy; (C.T.); (A.R.)
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Steven Arthur Loiselle
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Michele Baglioni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Stefano Ferrari
- ISVEA, Istituto per Lo Sviluppo Viticolo Enologico ed Agroindustriale, Via Basilicata 1-5, Località Fosci, 53036 Poggibonsi, Italy;
| | - Flavia Bisozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Sara Costantini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Cristiana Tozzi
- Santa Chiara Lab, University of Siena, Via Valdimontone 1, 53100 Siena, Italy; (C.T.); (A.R.)
| | - Angelo Riccaboni
- Santa Chiara Lab, University of Siena, Via Valdimontone 1, 53100 Siena, Italy; (C.T.); (A.R.)
- Department of Business and Law, University of Siena, Piazza San Francesco 8, 53100 Siena, Italy
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Forgione G, De Cristofaro GA, Sateriale D, Pagliuca C, Colicchio R, Salvatore P, Paolucci M, Pagliarulo C. Pomegranate Peel and Olive Leaf Extracts to Optimize the Preservation of Fresh Meat: Natural Food Additives to Extend Shelf-Life. Microorganisms 2024; 12:1303. [PMID: 39065075 PMCID: PMC11278528 DOI: 10.3390/microorganisms12071303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Quality and safety are one of the main concerns of the European Union in food preservation. Using chemical additives extends the shelf-life of fresh foods but raises consumer's concerns about the potential long-term carcinogenic effects. Using natural substances derived from agro-industrial by-products, which have significant antimicrobial and antioxidant activities, could extend the shelf-life of fresh foods such as meat. Furthermore, they can provide nutritional improvements without modifying organoleptic properties. This study analyzes the antimicrobial activity of pomegranate peel extract (PPE) and the antioxidant activity of olive leaf extract (OLE), added at concentrations of 10 mg g-1 and 0.25 mg g-1, respectively, to minced poultry and rabbit meat. PPE exhibited in vitro antimicrobial activity against foodborne pathogens starting at 10 mg/well. PPE and OLE determined a reduction in colony count over a storage period of 6 days at 4 °C. Additionally, the combination of PPE and OLE showed antioxidant effects, preserving lipid oxidation and maintaining pH levels. The obtained results demonstrate that PPE and OLE can be recommended as food additives to preserve the quality and extend the shelf-life of meat products.
Collapse
Affiliation(s)
- Giuseppina Forgione
- Department of Science and Technology, University of Sannio, via F. De Sanctis Snc, 82100 Benevento, Italy; (G.F.); (G.A.D.C.); (D.S.); (M.P.)
| | - Giuseppa Anna De Cristofaro
- Department of Science and Technology, University of Sannio, via F. De Sanctis Snc, 82100 Benevento, Italy; (G.F.); (G.A.D.C.); (D.S.); (M.P.)
| | - Daniela Sateriale
- Department of Science and Technology, University of Sannio, via F. De Sanctis Snc, 82100 Benevento, Italy; (G.F.); (G.A.D.C.); (D.S.); (M.P.)
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy; (C.P.); (R.C.); (P.S.)
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy; (C.P.); (R.C.); (P.S.)
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy; (C.P.); (R.C.); (P.S.)
- CEINGE-Biotecnologie Avanzate s.c.ar.l., via G. Salvatore 486, 80145 Naples, Italy
| | - Marina Paolucci
- Department of Science and Technology, University of Sannio, via F. De Sanctis Snc, 82100 Benevento, Italy; (G.F.); (G.A.D.C.); (D.S.); (M.P.)
| | - Caterina Pagliarulo
- Department of Science and Technology, University of Sannio, via F. De Sanctis Snc, 82100 Benevento, Italy; (G.F.); (G.A.D.C.); (D.S.); (M.P.)
| |
Collapse
|
7
|
Lubis LD, Prananda AT, Juwita NA, Nasution MA, Syahputra RA, Sumaiyah S, Lubis RR, Lubis MF, Astyka R, Atiqah JF. Unveiling antioxidant capacity of standardized chitosan-tripolyphosphate microcapsules containing polyphenol-rich extract of Portulaca oleraceae. Heliyon 2024; 10:e29541. [PMID: 38644872 PMCID: PMC11031833 DOI: 10.1016/j.heliyon.2024.e29541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/09/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
The medicinal plant Portulaca oleraceae has a long history of usage in traditional medicine. Plant extracts have several interesting pharmacological effects but have some drawbacks that can be addressed via capsulation with chitosan. This work set out to do just that tally up the antioxidant effects of a polyphenol-rich P. olerace extract and see how capsulation affected them. The reflux extraction and response surface methodology (RSM) were carried out to optimize the phenolic and flavonoid content of P. oleraceae extract. Additionally, high-resolution mass spectrometry was employed to determine the secondary metabolite present in the extract. The microcapsules of extract-loaded chitosan were prepared using the ionic gelation method and characterized in terms of size, encapsulation efficiency (EE), and morphology of microcapsules. Fourier transform infrared (FTIR) was used to observe the successful production of microcapsules with a principal component analysis (PCA) approach. The antioxidant activity of microcapsules was established using the radical scavenging method. According to RSM, the highest amounts of TPC and TFC were obtained at 72.894 % ethanol, 2.031 h, and 57.384 °C. The compounds were employed from the optimized extract of P. oleraceae including phenolics and flavonoids. The microcapsules were secured with a %EE of 43.56 ± 2.31 %. The characteristics of microcapsules were approved for the obtained product's successful synthesis according to the PCA. The microcapsules have antioxidant activity in a concentration-dependent manner (p < 0.0001). The findings of this study underscored the benefits of employing chitosan as a nanocarrier for extract, offering a promising approach to enhance plant-derived therapies.
Collapse
Affiliation(s)
- Lokot Donna Lubis
- Department of Histology, Faculty of Medicine, Universitas Sumatera Utara, Medan, 20155, Indonesia
| | - Arya Tjipta Prananda
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, 20155, Indonesia
| | - Nur Aira Juwita
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, 20155, Indonesia
| | - Muhammad Amin Nasution
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Muslim Nusantara Al Washliyah, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, 20155, Indonesia
| | - Sumaiyah Sumaiyah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, 20155, Indonesia
- Nanomedicine Center of Innovation, Universitas Sumatera Utara, Medan, 20155, Indonesia
| | - Rodiah Rahmawaty Lubis
- Department of Opthalmology, Faculty of Medicine, Universitas Sumatera Utara, Medan, 20155, Indonesia
| | - Muhammad Fauzan Lubis
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, 20155, Indonesia
| | - Ririn Astyka
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, 20155, Indonesia
| | - Jihan Firyal Atiqah
- Bachelor Program, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, 20155, Indonesia
| |
Collapse
|
8
|
de Oliveira NM, Machado J, Chéu MH, Lopes L, Barroso MF, Silva A, Sousa S, Domingues VF, Grosso C. Potential Therapeutic Properties of Olea europaea Leaves from Selected Cultivars Based on Their Mineral and Organic Profiles. Pharmaceuticals (Basel) 2024; 17:274. [PMID: 38543060 PMCID: PMC10975974 DOI: 10.3390/ph17030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 01/04/2025] Open
Abstract
Olive leaves are consumed as an extract or as a whole herbal powder with several potential therapeutic benefits attributed to polyphenols, tocopherol's isomers, and flavonoids, among others. This study assessed the potential variance in the functional features presented by olive leaves from three different Portuguese cultivars-Cobrançosa, Madural, and Verdeal-randomly mix-cultivated in the geographical area of Vale de Salgueiros. Inorganic analysis determined their mineral profiles while an organic analysis measured their total phenolic and flavonoid content, and scanned their phenolic and tocopherol and fatty acid composition. The extracts' biological activity was tested by determining their antimicrobial and antioxidant power as well as their ability to inhibit acetylcholinesterase, butyrylcholinesterase, MAO-A/B, and angiotensin-I-converting enzyme. The inorganic profiles showed them to be an inexpensive source able to address different mineral deficiencies. All cultivars appear to have potential for use as possible antioxidants and future alternative antibiotics against some multidrug-resistant microorganisms, with caution regarding the arsenic content in the Verdeal cultivar. Madural's extract displayed properties to be considered a natural multitarget treatment for Alzheimer's and Parkinson's diseases, depression, and cardiometabolic and dual activity for blood pressure modulation. This work indicates that randomly cultivating different cultivars significantly modifies the leaves' composition while keeping their multifaceted therapeutic value.
Collapse
Affiliation(s)
- Natália M. de Oliveira
- ICBAS, Laboratory of Applied Physiology, School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- CBScin, Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - Jorge Machado
- ICBAS, Laboratory of Applied Physiology, School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- CBScin, Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - Maria Helena Chéu
- Insight: Piaget Research Center for Ecological Human Development, Instituto Piaget—ISEIT, Estrada do Alto Gaio, 3515-776 Lordosa Viseu, Portugal
| | - Lara Lopes
- ICBAS, Laboratory of Applied Physiology, School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- CBScin, Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - M. Fátima Barroso
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Aurora Silva
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Sara Sousa
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Valentina F. Domingues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| |
Collapse
|
9
|
Altissimi C, Roila R, Ranucci D, Branciari R, Cai D, Paulsen P. Preventing Microbial Growth in Game Meat by Applying Polyphenolic Extracts from Olive Mill Vegetation Water. Foods 2024; 13:658. [PMID: 38472771 DOI: 10.3390/foods13050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
We studied the efficacy of different formulations of polyphenol extracts (mainly containing hydroxytyrosol and tyrosol) from olive mill vegetation water on the microflora on the surfaces of game meat cuts with high or low initial bacterial loads. Meat with a high microbial load (>5 Log cfu/g; mean value = 6.83 ± 0.45 standard deviation) was immersed for 10 or 60 sec into 25% and 10% solutions of microencapsulated freeze-dried and non-encapsulated polyphenolic extracts. Aerobic colony, Enterobacteriaceae, Pseudomonas spp., and lactic acid bacteria counts were determined on treated samples compared to controls after 7 days of storage (in vacuum-packed conditions at +3 °C). Significant differences were registered only for aerobic colony count for a 10% liquid extract treatment (0.64 log reduction). In contrast, the dipping or immersion of game meat with low initial microbial loads (<5 Log cfu/g; mean value = 3.58 ± 0.72 standard deviation) in 10% solutions of the polyphenol extracts effectuated significant reductions in all bacteria counts (p < 0.002) at 7 and 14 days of storage for different extracts, independently from the application methods. The use of the extracts to inhibit bacterial growth in game meat should only be considered if a good hygienic baseline is guaranteed.
Collapse
Affiliation(s)
- Caterina Altissimi
- Department of Veterinary Medicine, University of Perugia, 06121 Perugia, Italy
| | - Rossana Roila
- Department of Veterinary Medicine, University of Perugia, 06121 Perugia, Italy
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, 06121 Perugia, Italy
| | - Raffaella Branciari
- Department of Veterinary Medicine, University of Perugia, 06121 Perugia, Italy
| | - Dongjie Cai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Peter Paulsen
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, 1012 Vienna, Austria
| |
Collapse
|
10
|
Khoshdouni Farahani Z, Ebrahimzadeh Mousavi M, Ibrahim SA. Improving physicochemical, rheometry and sensory attributes of fortified beverages using jujube alcoholic/aqueous extract loaded Gellan-Protein macrocarriers. Heliyon 2024; 10:e24518. [PMID: 38304791 PMCID: PMC10831596 DOI: 10.1016/j.heliyon.2024.e24518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
The use of phenolic bioactive substances in beverages is introduced by novel techniques as a functional food product. Gel beads from jujube extract were prepared by extrusion method using encapsulation and coated by whey protein isolate and soy protein isolate and thus, a functional beverage was prepared from these beads. There were three types of beads, including Gellan, Gellan/whey protein isolate and Gellan/soy protein isolate. The pH, acidity, Brix, turbidity, viscosity and sensory properties were evaluated. Observing the increase in pH is the result of the release of small amounts of fruit extract, the effect of which can be seen in the inverse relationship of acidity next to pH. The results demonstrate that the highest viscosity is related to protein beverages, especially Gellan gum/SPI beads' beverage. Hence, the highest turbidity in Gellan gum/SPI beads' beverage was visible on the 14th day (66.6 NTU). Thereby, there is potential for these Gellan beads beverages with suitable sensory scores to be wholly utilized and developed with the aim of this study. Along with it, this new beverage can attract the opinion of a wide range of consumers. Therewith, the industrialization of such types of products helps to improve the consumer market.
Collapse
Affiliation(s)
- Zahra Khoshdouni Farahani
- Department of Food Science and Technology, Faculty of Agriculture and Food Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Ebrahimzadeh Mousavi
- Department of Food Science, Engineering and Technology, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Salam Adnan Ibrahim
- Food Microbiology and Biotechnology Laboratory, 173 Carver Hall, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA
| |
Collapse
|
11
|
Benčić Đ, Barbarić M, Mornar A, Klarić DA, Brozovic A, Dabelić S, Fadljević M, Marković AK. Oleuropein in olive leaf, branch, and stem extracts: stability and biological activity in human cervical carcinoma and melanoma cells. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:601-616. [PMID: 38147483 DOI: 10.2478/acph-2023-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
Olive leaves as a main byproduct of olive oil and fruit industry are a valuable source of phytochemicals such as polyphenols, with multiple biomedical effects. Apart from leaves, olive branches and stems make up a significant amount of olive waste. It is well known that the drying process and long-term storage affect the stability and concentration of polyphenols present in raw materials. For that matter, two different means of storing olive waste, at room temperature and +4 °C, were compared by determining the content of the polyphenol oleuropein (OLE) in olive leaf, branch, and stem extracts (LE, BE, and SE) by HPLC-DAD method. Total phenols (TPC), o-diphenols (o-DPC), and total flavonoids (TFC) content in extracts were assessed by UV-Vis measurements. LE prepared from leaves stored at +4 °C had the highest OLE content, 30.7 mg g-1 of dry extract (DE). SE from stems stored at +4 °C was the richest in TPC and TFC (193 mg GAE/g DE and 82.9 mg CE/g DE, respectively), due to the higher purity of the extract. The biological activity of extracts was determined on cervical cancer (HeLa), melanoma (A375), metastatic melanoma (A375M) tumor cell lines, and on spontaneously immortalized cell line of keratinocytes (HaCaT), using the MTT assay. The data show that all extracts had a similar dose-dependent effect on cell viability in HeLa cells, while the effect of LE on melanoma A375 and A375M, and HaCaT cells was cell-line dependent.
Collapse
Affiliation(s)
- Đani Benčić
- 1University of Zagreb Faculty of Agriculture, 10000 Zagreb, Croatia
| | - Monika Barbarić
- 2University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Ana Mornar
- 2University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | | | | | - Sanja Dabelić
- 2University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Mihaela Fadljević
- 2University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | | |
Collapse
|
12
|
Santos de Carvalho A, de Oliveira A, Fernandes Moya Moreira T, Gustavo Médice Arabel Costa L, Donato Marcatto G, da Silva Castilhos de Melo A, Hess Gonçalves O, Inês Dias M, Calhelha RC, Barros L, Valderrama P, Cardozo Filho L, Vitória Leimann F. In situ extraction/encapsulation of olive leaves antioxidants in zein for improved oxidative stability of edible oils. Food Res Int 2023; 173:113363. [PMID: 37803661 DOI: 10.1016/j.foodres.2023.113363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 10/08/2023]
Abstract
This study presents a sustainable and cost-effective method for preserving the bioactivity of phenolic compounds in olive leaves (OLE) during their application. The extraction and nanoencapsulation of OLE were performed in a single-step process using a rotor-stator system with zein as the encapsulating agent. The nanoprecipitation step was carried out using an aqueous sodium caseinate solution, resulting in spherical particles with an average diameter of about 640 nm, as confirmed by Transmission Electron Microscopy. Thermal characterization showed that the produced nanoparticles were more thermally stable than free OLE until 250 °C, and FTIR spectra indicated effective interaction between the phenolic compounds and zein. Antioxidant activity was evaluated using TBARS, DPPH, ABTS, and FRAP assays, with results showing that encapsulated OLE had lower antioxidant activity than free OLE. The best antioxidant capacity results were determined by TBARS assay, with IC50 results equal to 43 and 103 µgOLE/mL for free and encapsulated OLE, respectively. No anti-inflammatory potential was detected for both samples using the RAW 264.7 model, and only free OLE showed cytotoxic activity against lung cancer and gastric carcinoma. Encapsulated and free OLE were used as antioxidants in soy, palm, and palm kernel oils and compared to BHT using Rancimat. The Schaal Oven Test was also performed, and the PARAFAC chemometric method analyzed the UV-Vis spectra, which revealed high stability of the oil when 300 mg or the nanoparticles were added per kg oil. Results suggested that zein-encapsulated olive leaf antioxidants can improve the oxidative stability of edible oils.
Collapse
Affiliation(s)
- Amarilis Santos de Carvalho
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Campo Mourão, PR, Brazil
| | - Anielle de Oliveira
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Campo Mourão, PR, Brazil
| | - Thaysa Fernandes Moya Moreira
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Campo Mourão, PR, Brazil
| | - Luis Gustavo Médice Arabel Costa
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Campo Mourão, PR, Brazil
| | - Gabrielle Donato Marcatto
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Campo Mourão, PR, Brazil
| | - Andre da Silva Castilhos de Melo
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Campo Mourão, PR, Brazil
| | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Campo Mourão, PR, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Patricia Valderrama
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Campo Mourão, PR, Brazil
| | - Lucio Cardozo Filho
- Department of Chemical Engineering, State University of Maringá - UEM, Maringá, PR, Brazil
| | - Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Campo Mourão, PR, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
13
|
Carrapiso AI, Pimienta M, Martín L, Cardenia V, Andrés AI. Effect of a Chitosan Coating Enriched with an Olive Leaf Extract on the Characteristics of Pork Burgers. Foods 2023; 12:3757. [PMID: 37893650 PMCID: PMC10606866 DOI: 10.3390/foods12203757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chitosan coatings have been investigated for improving food shelf-life. The addition of an olive leaf extract could enhance its beneficial effect. The aim of this study was to evaluate the effectiveness of an olive leaf extract added to a chitosan coating in delaying deterioration in refrigerated pork burgers without additives packaged under a 40% oxygen and 60% carbon dioxide modified atmosphere. Some general parameters (microbial counts, instrumental color and texture, and lipid and protein oxidation) were measured over the storage of pork burgers without coating (Control), with a chitosan-based coating (Chitosan) and with a chitosan-based coating enriched with an olive leaf extract (Chitoex). The coating impacted the effect of the storage time on most parameters. Both coatings were especially effective at limiting the changes that occur over time in the headspace gases, some texture parameters (hardness, gumminess, and chewiness) and lipid oxidation, although the effect on the microbial counts was weak. Chitoex was more effective than Chitosan at preventing changes in the headspace gases on day 11 and in lipid oxidation on all the sampling days. In conclusion, the Chitoex coating could be useful for prolonging the storage of pork burgers by preventing changes in texture and reducing lipid oxidation.
Collapse
Affiliation(s)
- Ana Isabel Carrapiso
- Tecnología de Alimentos, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Ctra de Cáceres s/n, 06007 Badajoz, Spain; (M.P.); (L.M.); (A.I.A.)
| | - Manuel Pimienta
- Tecnología de Alimentos, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Ctra de Cáceres s/n, 06007 Badajoz, Spain; (M.P.); (L.M.); (A.I.A.)
| | - Lourdes Martín
- Tecnología de Alimentos, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Ctra de Cáceres s/n, 06007 Badajoz, Spain; (M.P.); (L.M.); (A.I.A.)
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Grugliasco, Italy;
| | - Ana Isabel Andrés
- Tecnología de Alimentos, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Ctra de Cáceres s/n, 06007 Badajoz, Spain; (M.P.); (L.M.); (A.I.A.)
| |
Collapse
|
14
|
Colzi I, Marone E, Luti S, Pazzagli L, Mancuso S, Taiti C. Metabolic Responses in Leaves of 15 Italian Olive Cultivars in Correspondence to Variable Climatic Elements. PLANTS (BASEL, SWITZERLAND) 2023; 12:1953. [PMID: 37653870 PMCID: PMC10221759 DOI: 10.3390/plants12101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 09/02/2023]
Abstract
This study aims to evaluate the metabolic changes that occurred in olive leaves as responses over time to variations in climatic elements. Rainfall, temperature, and solar radiation data were collected over 4 months (August-November) to assess the impact of different climatic trends on the metabolism of the leaves of 15 Italian olive cultivars, cultivated at the experimental farm of the University of Florence. The net photosynthetic rate (AN) and stomatal conductance (gs), measured as main indicators of primary metabolism, were mainly influenced by the "cultivar" effect compared to the "climate" effect. The lowest AN value was showed by "Bianchera", while "Ascolana" recorded the highest (8.6 and 13.6 µmol CO2 m-2s-1, respectively). On the other hand, the secondary metabolism indicators, volatile organic compound (VOC) and oleuropein (OL) content, were much more influenced by climate trends, especially rainfall. A phase of high rainfall caused a significant increase in the VOCs emission from leaves, even with different behaviors among the genotypes. The highest differences were observed between "Maiatica di Ferrandina", with the highest average values (~85,000 npcs), and "Frantoio", which showed the lowest (~22,700 npcs). The OL content underwent considerable fluctuations in relation to the rainfall but also appeared to be controlled by the genotype. "Coratina" always showed the highest OL concentration (reaching the maximum ~98 mg g-1), indicating the great potential of this cultivar for the industrial recovery of OL.
Collapse
Affiliation(s)
- Ilaria Colzi
- Department of Biology, University of Florence, Via Micheli 1, 50121 Firenze, Italy
| | - Elettra Marone
- Department of Biosciences and Technologies for Agriculture, Food and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy;
| | - Simone Luti
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy; (S.L.); (L.P.)
| | - Luigia Pazzagli
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy; (S.L.); (L.P.)
| | - Stefano Mancuso
- Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee, 50019 Sesto Fiorentino, Italy
| | - Cosimo Taiti
- Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
15
|
Difonzo G, Antonino C, Squeo G, Caponio F, Faccia M. Application of Agri-Food By-Products in Cheesemaking. Antioxidants (Basel) 2023; 12:antiox12030660. [PMID: 36978908 PMCID: PMC10045188 DOI: 10.3390/antiox12030660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Agri-food companies produce large quantities of plant by-products that in many instances contain functional bioactive compounds. This review summarizes the main applications of agro-industrial by-products in cheesemaking, considering their bioactivities and functional properties. Polyphenol-rich by-products increase antioxidant and antimicrobial activity in cheeses, positively impacting their shelf life. Contrasting results have been obtained regarding the color and sensory properties of enriched cheeses depending on the selected by-products and on the technology adopted for the extract preparation. Furthermore, functional compounds in cheeses perform a prebiotic function and their bioavailability improves human health. Overall, the use of agri-food by-products in cheese formulation can offer benefits for agri-food chain sustainability and consumer health.
Collapse
|
16
|
The Oleoside-type Secoiridoid Glycosides: Potential Secoiridoids with Multiple Pharmacological Activities. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
17
|
Pyrka I, Mantzouridou FT, Nenadis N. Optimization of olive leaves' thin layer, intermittent near-infrared-drying. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2022.103264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Characterization, Sensory and Oxidative Stability Analysis of Vegetable Mayonnaise Formulated with Olive Leaf Vinegar as an Active Ingredient. Foods 2022; 11:foods11244006. [PMID: 36553748 PMCID: PMC9777809 DOI: 10.3390/foods11244006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Development of novel food products represents a basic meeting point for health and business requirements. Mayonnaise sauce is well-suited to be a healthy and tasty dressing. In this study, mayonnaise was formulated by using unconventional ingredients, such as olive leaf vinegar (OLV), soybean/high oleic sunflower oil blend, and soymilk (as an egg substitute). An 18% alcoholic vinegar was used as the control sample. OLV is a rich source of bioactive substances, especially polyphenols and represents a possible way to enhance the olive oil by-product valorisation. For this new typology of vinegar an high level of phenolic compounds (7.2 mg/mL GAE), especially oleuropein (6.0 mg/mL oleuropein equivalent) was found. OLV mayonnaise had 57% fat, composed of 11%, 64%, and 23% saturated, monounsaturated, and polyunsaturated fatty acids, while linolenic acid was up to 1.7%. The phenol and oleuropein contents were 68 and 52 mg/100 g, respectively. Sensory panellists expressed a moderate overall acceptability for both samples but attested more distinctive and positive sensations for the colour, odour, and taste attributes of OLV mayonnaise. Finally, oxidative stability and shelf life were better in OLV mayonnaise than in the control. Specifically, the peroxide value remained low (around 4.5 meqO2/kg) after 12 months of storage at room and low (4 °C) temperatures.
Collapse
|
19
|
Difonzo G, Crescenzi MA, Piacente S, Altamura G, Caponio F, Montoro P. Metabolomics Approach to Characterize Green Olive Leaf Extracts Classified Based on Variety and Season. PLANTS (BASEL, SWITZERLAND) 2022; 11:3321. [PMID: 36501360 PMCID: PMC9735528 DOI: 10.3390/plants11233321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The huge interest in the health-related properties of plant polyphenols to be applied in food and health-related sectors has brought about the development of sensitive analytical methods for metabolomic characterization. Olive leaves constitute a valuable waste rich in polyphenols with functional properties. A (HR)LC-ESI-ORBITRAP-MS analysis with a multivariate statistical analysis approach using PCA and/or PLS-DA projection methods were applied to identify polyphenols in olive leaf extracts of five varieties from the Apulia region (Italy) in two different seasonal times. A total of 26 metabolites were identified, further finding that although metabolites are common among the different cultivars, they differ in the relative intensity of each peak and within each cultivar in the two seasonal periods taken into consideration. The results of the total phenol contents showed the highest content in November for Bambina and Cima di Mola varieties (1816 and 1788 mg/100 g, respectively), followed by Coratina, Leccino, and Cima di Melfi; a similar trend was found for the antioxidant activity and RapidOxy evaluations by reaching in Bambina values of 45 mmol TE/100 g and 85 min of induction time.
Collapse
Affiliation(s)
- Graziana Difonzo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Maria Assunta Crescenzi
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Italy
- PhD Program in Drug Discovery & Development, Pharmacy Department, University of the Study of Salerno, I-84135 Salerno, Italy
| | - Sonia Piacente
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Italy
| | - Giuseppe Altamura
- Centro di Ricerca, Sperimentazione e Formazione in Agricoltura Basile Caramia, Locorotondo, I-70010 Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Paola Montoro
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Italy
| |
Collapse
|
20
|
Paciulli M, Grimaldi M, Rinaldi M, Cavazza A, Flamminii F, Mattia CD, Gennari M, Chiavaro E. Microencapsulated olive leaf extract enhances physicochemical stability of biscuits. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
21
|
Caponio GR, Lippolis T, Tutino V, Gigante I, De Nunzio V, Milella RA, Gasparro M, Notarnicola M. Nutraceuticals: Focus on Anti-Inflammatory, Anti-Cancer, Antioxidant Properties in Gastrointestinal Tract. Antioxidants (Basel) 2022; 11:antiox11071274. [PMID: 35883765 PMCID: PMC9312044 DOI: 10.3390/antiox11071274] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years, nutraceuticals have gained great popularity, owing to their physiological and potential health effects, such as anti-inflammatory, anti-cancer, antioxidant, and prebiotic effects, and their regulation of lipid metabolism. Since the Mediterranean diet is a nutritionally recommended dietary pattern including high-level consumption of nutraceuticals, this review aimed to summarize the main results obtained by our in vitro and in vivo studies on the effects of the major constituents of the Mediterranean diet (i.e., extra virgin olive oil compounds, polyunsaturated fatty acids, and fruit components). Based on experimental studies, the therapeutic purpose of nutraceuticals depends on their bioavailability, solubility, toxicity, and delivery system. This review provides more in-depth knowledge on the effects linked to nutraceuticals administration on human health, focusing the gastrointestinal tract and suggesting specific dietary components for personalized adjuvant therapies.
Collapse
Affiliation(s)
- Giusy Rita Caponio
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
| | - Tamara Lippolis
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
| | - Valeria Tutino
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
| | - Isabella Gigante
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
| | - Valentina De Nunzio
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
| | - Rosa Anna Milella
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, Turi, 70010 Bari, Italy; (R.A.M.); (M.G.)
| | - Marica Gasparro
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, Turi, 70010 Bari, Italy; (R.A.M.); (M.G.)
| | - Maria Notarnicola
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
- Correspondence: ; Tel.: +39-080-4994342
| |
Collapse
|
22
|
Ning N, Wang X, Li J, Bi X, Li M, Xing Y, Che Z, Wang Y. Effects of different antioxidants combined with high hydrostatic pressure on the color and anthocyanin retention of a blueberry juice blend during storage. FOOD SCI TECHNOL INT 2022:10820132221098314. [PMID: 35491658 DOI: 10.1177/10820132221098314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Blueberry juice has been found to undergo severe browning after treatment and cold storage, such as processing by high hydrostatic pressure (HHP) at 550 MPa/10 min/25°C followed storage at 4°C for 4 days. This browning may be due to the degradation of anthocyanin (AC) in the berries. Therefore, in this study, gallic acid (GA), ferulic acid (FA), ascorbic acid (VC), citric acid (CA), tea polyphenol (TP) and α-tocopherol (VE) were compared to determine their ability to improve the stability of the AC in HHP-treated blueberry juice. The juice was combined with the six abovementioned antioxidants at different concentrations, then treated by HHP at 550 MPa/10 min/25°C and stored at 4°C for 20 days. Thereafter, the pH levels, degrees °Brix (°Bx), color parameters, total AC content and polyphenol oxidase (PPO) activity of the blueberry juice blend were measured and compared. Gallic acid at 2 g/L was found to be the most effective antioxidant to protect against AC degradation. After storage at 4°C for 20 days, the AC content of the juice with no added antioxidants had decreased by 62.27% with a PPO relative activity of 50.78%, while the AC content of juice supplemented with 2 g/L GA had decreased by 13.42% with a PPO relative activity of 28.13%. The results of this study, thus, suggest that GA can stabilize the structure of AC in blueberry juice and reduce PPO activity, which may be beneficial in guiding the production of blueberry juice with high AC retention.
Collapse
Affiliation(s)
- Nan Ning
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, 12598Xihua University, Chengdu, People's Republic of China
| | - Xiaoqiong Wang
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, 12598Xihua University, Chengdu, People's Republic of China
| | - Jiarou Li
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, 12598Xihua University, Chengdu, People's Republic of China.,Key Laboratory of Food NonThermal Technology, Engineering Technology Research Center of Food NonThermal, Yibin Xihua University Research Institute, Yibin, China
| | - Xiufang Bi
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, 12598Xihua University, Chengdu, People's Republic of China
| | - Mingyuan Li
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, 12598Xihua University, Chengdu, People's Republic of China
| | - Yage Xing
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, 12598Xihua University, Chengdu, People's Republic of China
| | - Zhenming Che
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, 12598Xihua University, Chengdu, People's Republic of China
| | - Yan Wang
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, 12598Xihua University, Chengdu, People's Republic of China
| |
Collapse
|
23
|
Food-Derived Bioactive Molecules from Mediterranean Diet: Nanotechnological Approaches and Waste Valorization as Strategies to Improve Human Wellness. Polymers (Basel) 2022; 14:polym14091726. [PMID: 35566894 PMCID: PMC9103748 DOI: 10.3390/polym14091726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
The beneficial effects of the Mediterranean diet (MedDiet), the most widely followed healthy diet in the world, are principally due to the presence in the foods of secondary metabolites, mainly polyphenols, whose healthy characteristics are widely recognized. However, one of the biggest problems associated with the consumption of polyphenols as nutraceutical adjuvant concerns their bioavailability. During the last decades, different nanotechnological approaches have been developed to enhance polyphenol bioavailability, avoiding the metabolic modifications that lead to low absorption, and improving their retention time inside the organisms. This review focuses on the most recent findings regarding the encapsulation and delivery of the bioactive molecules present in the foods daily consumed in the MedDiet such as olive oil, wine, nuts, spice, and herbs. In addition, the possibility of recovering the polyphenols from food waste was also explored, taking into account the increased market demand of functional foods and the necessity to obtain valuable biomolecules at low cost and in high quantity. This circular economy strategy, therefore, represents an excellent approach to respond to both the growing demand of consumers for the maintenance of human wellness and the economic and ecological exigencies of our society.
Collapse
|
24
|
Caponio GR, Difonzo G, de Gennaro G, Calasso M, De Angelis M, Pasqualone A. Nutritional Improvement of Gluten-Free Breadsticks by Olive Cake Addition and Sourdough Fermentation: How Texture, Sensory, and Aromatic Profile Were Affected? Front Nutr 2022; 9:830932. [PMID: 35223958 PMCID: PMC8869757 DOI: 10.3389/fnut.2022.830932] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
There is a growing need for gluten-free bakery products with an improved nutritional profile. Currently, gluten-free baked goods deliver low protein, fiber, and mineral content and elevated predicted glycaemic index (pGI). Olive cake (OC), a by-product from virgin olive oil extraction, is an excellent natural source of unsaturated fatty acids, dietary fiber and bioactive molecules, including polyphenols and tocopherols. In this framework, this study aimed at using two selected lactic acid bacteria and a yeast for increasing the antioxidant features and the phenol profile of the gluten-free breadsticks fortified with OC with the perspective of producing a functional food. Control (CTR) samples were prepared and compared with fermented ones (fCTR). Samples were added with either non-fermented OC (nfOC) or fermented for 12 and 20 h (fOC-12 and fOC-20). Our results showed that the predicted glycemic index (pGI) was influenced by both OC addition and sourdough fermentation. In fact, the lowest value of pGI was found in fOC-12, and hydrolysis index and pGI values of samples with OC (fOC-12 and nfOC) were statistically lower than fCTR. Both OC addition and fermentation improved the total phenol content and antioxidant activity of breadsticks. The most pronounced increase in hardness values was observed in the samples subjected to sourdough fermentation as evidenced both from texture profile analysis and sensory evaluation. Moreover, in most cases, the concentration of the detected volatile compounds was reduced by fermentation. Our work highlights the potential of OC to be upcycled in combination with fermentation to produce gluten-free breadsticks with improved nutritional profile, although additional trials are required to enhance textural and sensory profile.
Collapse
Affiliation(s)
- Giusy Rita Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Graziana Difonzo
| | - Giuditta de Gennaro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
25
|
Difonzo G, Totaro MP, Caponio F, Pasqualone A, Summo C. Olive Leaf Extract (OLE) Addition as Tool to Reduce Nitrate and Nitrite in Ripened Sausages. Foods 2022; 11:foods11030451. [PMID: 35159601 PMCID: PMC8834353 DOI: 10.3390/foods11030451] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/08/2023] Open
Abstract
Olive leaf extract (OLE) is known to be a source of phenolic compounds with antioxidant and antimicrobial activities. This study investigated the effects of the OLE addition to reduce nitrate/nitrite (NO) content on the physico-chemical features of ripened pork sausages. Seven formulations of pork sausages were set up: CTRL (0 mg/kg OLE; 300 mg/kg NO), Tr1 (200 mg/kg OLE; 150 mg/kg NO), Tr2 (400 mg/kg OLE; 150 mg/kg NO), Tr3 (800 mg/kg OLE; 150 mg/kg NO), Tr4 (200 mg/kg OLE; 0 mg/kg NO), Tr5 (400 mg/kg OLE; 0 mg/kg NO), and Tr6 (800 mg/kg OLE; 0 mg/kg NO). At the end of the ripening period, all the samples were within hygienic limits and the substitution of the additives with OLE allowed the reduction of NO residual contents. Both OLE and NO influenced the colour parameters. At the highest dose of OLE, both alone and in combination with reduced dose of NO, no significant differences in terms of moisture, pH, and aw were found compared to CTRL. In absence of NO, a significant reduction of weight loss was observed. Moreover, in the samples without NO a reduction of the hardness was detected. Finally, the oxidative stability test showed that the increase of the OLE amount prolonged the induction time.
Collapse
|
26
|
Oulahal N, Degraeve P. Phenolic-Rich Plant Extracts With Antimicrobial Activity: An Alternative to Food Preservatives and Biocides? Front Microbiol 2022; 12:753518. [PMID: 35058892 PMCID: PMC8764166 DOI: 10.3389/fmicb.2021.753518] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the search for natural plant-based antimicrobial compounds as alternatives to some synthetic food preservatives or biocides has been stimulated by sanitary, environmental, regulatory, and marketing concerns. In this context, besides their established antioxidant activity, the antimicrobial activity of many plant phenolics deserved increased attention. Indeed, industries processing agricultural plants generate considerable quantities of phenolic-rich products and by-products, which could be valuable natural sources of natural antimicrobial molecules. Plant extracts containing volatile (e.g., essential oils) and non-volatile antimicrobial molecules can be distinguished. Plant essential oils are outside the scope of this review. This review will thus provide an overview of current knowledge regarding the promises and the limits of phenolic-rich plant extracts for food preservation and biofilm control on food-contacting surfaces. After a presentation of the major groups of antimicrobial plant phenolics, of their antimicrobial activity spectrum, and of the diversity of their mechanisms of action, their most promising sources will be reviewed. Since antimicrobial activity reduction often observed when comparing in vitro and in situ activities of plant phenolics has often been reported as a limit for their application, the effects of the composition and the microstructure of the matrices in which unwanted microorganisms are present (e.g., food and/or microbial biofilms) on their activity will be discussed. Then, the different strategies of delivery of antimicrobial phenolics to promote their activity in such matrices, such as their encapsulation or their association with edible coatings or food packaging materials are presented. The possibilities offered by encapsulation or association with polymers of packaging materials or coatings to increase the stability and ease of use of plant phenolics before their application, as well as to get systems for their controlled release are presented and discussed. Finally, the necessity to consider phenolic-rich antimicrobial plant extracts in combination with other factors consistently with hurdle technology principles will be discussed. For instance, several authors recently suggested that natural phenolic-rich extracts could not only extend the shelf-life of foods by controlling bacterial contamination, but could also coexist with probiotic lactic acid bacteria in food systems to provide enhanced health benefits to human.
Collapse
Affiliation(s)
- Nadia Oulahal
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d’Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | | |
Collapse
|
27
|
Passos RSFT, Barreto BG, Leite JSF, Trevisan AB, Souza CO, Silva MCA, Cavalheiro CP. Green tea extract as natural preservative in chicken patties: Effects on physicochemical, microbiological, and sensory properties. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Rafael Sepúlveda Fonsêca Trevisan Passos
- Laboratório de Inspeção e Tecnologia de Carnes e Derivados (LabCarne), Escola de Medicina Veterinária e Zootecnia (EMEVZ) Universidade Federal da Bahia (UFBA) Salvador Brazil
| | - Brenno Guimarães Barreto
- Laboratório de Inspeção e Tecnologia de Carnes e Derivados (LabCarne), Escola de Medicina Veterinária e Zootecnia (EMEVZ) Universidade Federal da Bahia (UFBA) Salvador Brazil
| | - Juliana Sant’Ana Falcão Leite
- Laboratório de Inspeção e Tecnologia de Carnes e Derivados (LabCarne), Escola de Medicina Veterinária e Zootecnia (EMEVZ) Universidade Federal da Bahia (UFBA) Salvador Brazil
| | - Adrielle Bahiense Trevisan
- Laboratório de Inspeção e Tecnologia de Carnes e Derivados (LabCarne), Escola de Medicina Veterinária e Zootecnia (EMEVZ) Universidade Federal da Bahia (UFBA) Salvador Brazil
| | | | - Mauricio Costa Alves Silva
- Laboratório de Inspeção e Tecnologia de Carnes e Derivados (LabCarne), Escola de Medicina Veterinária e Zootecnia (EMEVZ) Universidade Federal da Bahia (UFBA) Salvador Brazil
| | - Carlos Pasqualin Cavalheiro
- Laboratório de Inspeção e Tecnologia de Carnes e Derivados (LabCarne), Escola de Medicina Veterinária e Zootecnia (EMEVZ) Universidade Federal da Bahia (UFBA) Salvador Brazil
| |
Collapse
|
28
|
Biscuit Contaminants, Their Sources and Mitigation Strategies: A Review. Foods 2021; 10:foods10112751. [PMID: 34829032 PMCID: PMC8621915 DOI: 10.3390/foods10112751] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/18/2023] Open
Abstract
The scientific literature is rich in investigations on the presence of various contaminants in biscuits, and of articles aimed at proposing innovative solutions for their control and prevention. However, the relevant information remains fragmented. Therefore, the objective of this work was to review the current state of the scientific literature on the possible contaminants of biscuits, considering physical, chemical, and biological hazards, and making a critical analysis of the solutions to reduce such contaminations. The raw materials are primary contributors of a wide series of contaminants. The successive processing steps and machinery must be monitored as well, because if they cannot improve the initial safety condition, they could worsen it. The most effective mitigation strategies involve product reformulation, and the use of alternative baking technologies to minimize the thermal load. Low oxygen permeable packaging materials (avoiding direct contact with recycled ones), and reformulation are effective for limiting the increase of contaminations during biscuit storage. Continuous monitoring of raw materials, intermediates, finished products, and processing conditions are therefore essential not only to meet current regulatory restrictions but also to achieve the aim of banning dietary contaminants and coping with related diseases.
Collapse
|
29
|
Giacometti J, Milovanović S, Jurc\̌ić Momc\̌ilović D, Bubonja‐S\̌onje M. Evaluation of antioxidant activity of olive leaf extract obtained by ultrasound‐assisted extraction and their antimicrobial activity against bacterial pathogens from food. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jasminka Giacometti
- Department of Biotechnology University of Rijeka Radmile Matejc\̌ić 2 Rijeka HR‐51000 Croatia
| | - Sanja Milovanović
- Department of Biotechnology University of Rijeka Radmile Matejc\̌ić 2 Rijeka HR‐51000 Croatia
| | - Diana Jurc\̌ić Momc\̌ilović
- Clinical Department for Clinical Microbiology Clinical Hospital Center Rijeka Kres\̌imirova 42 Rijeka HR‐51000 Croatia
| | - Marina Bubonja‐S\̌onje
- Clinical Department for Clinical Microbiology Clinical Hospital Center Rijeka Kres\̌imirova 42 Rijeka HR‐51000 Croatia
- Department of Microbiology and Parasitology Faculty of Medicine University of Rijeka Rijeka HR‐51000 Croatia
| |
Collapse
|
30
|
Squeo G, De Angelis D, Leardi R, Summo C, Caponio F. Background, Applications and Issues of the Experimental Designs for Mixture in the Food Sector. Foods 2021; 10:1128. [PMID: 34069527 PMCID: PMC8161211 DOI: 10.3390/foods10051128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mixtures play a key role in Food Science and Technology. For studying them, rational approaches should be used. In detail, the experimental designs for mixtures are useful tools for studying the effects of ingredients/components in formulations. RESULTS Food Science and Technology is the fourth category among the total records considered in this review. The applications span from food formulation to the composition of modified atmosphere, shelf-life improvement and bioactives extraction. However, the majority of the studies regards few products and ingredients. Simplex-lattice and simplex-centroid designs are the most common used, although some optimal designs, such as the D-optimal, have also interesting applications. Finally, some issues are highlighted, which basically regard the interpretation of the models coefficients and the lack of model validation. CONCLUSION In the last decade, mixture designs have been fairly used in the field of Food Science and Technology. Modeling the response(s) allows researchers to achieve a global knowledge of the system under study within the defined experimental domain. However, the majority of application has regarded limited classes of products, and thus an increase in the spectrum of applications is desired.
Collapse
Affiliation(s)
- Giacomo Squeo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (D.D.A.); (C.S.); (F.C.)
| | - Davide De Angelis
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (D.D.A.); (C.S.); (F.C.)
| | - Riccardo Leardi
- Department of Pharmacy (DIFAR), University of Genova, Viale Cembrano 4, 16148 Genova, Italy;
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (D.D.A.); (C.S.); (F.C.)
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (D.D.A.); (C.S.); (F.C.)
| |
Collapse
|
31
|
VURAL N, AKAY MA. Chemical compounds, antioxidant properties and antimicrobial activity of olive leaves derived volatile oil in West Anatolia. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.833139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|