1
|
Maçãs M, Biduski B, Ferragina A, Santos AAD, Huet M, Arendt EK, Gallagher E. Impact of conventional and emerging processing methods on alternative breads- a comprehensive review and meta-analysis. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 39714071 DOI: 10.1080/10408398.2024.2442527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
An increasing consumer demand for plant-based and high-protein options, motivated by health and sustainability, has resulted in a surge of food innovation in this area. Incorporating alternative plant sources, such as pulses and pseudocereals, has been proven to enhance the nutritional profile of baked products. However, these can also negatively impact the yeasted bread acceptability. In the bakery sector, it is crucial to consider how incorporating non-wheat ingredients influences product quality. Consequently, exploring effective treatments/processing methods becomes essential to minimize the impact of alternative plant ingredient additions. This review explores conventional and emerging processing approaches for alternative plant materials and discusses the nutritional value may be enhanced while maintaining high acceptability. A meta-analysis was undertaken to visualize the influence of plant processing technologies on product quality, specifically on loaf-specific volume and crumb texture. This review highlighted the importance of conventional processing methods when applied to bread. Additionally revealed the potential of emerging processing which can positively affect a loaf volume and texture when compared with non-processed plant ingredients. Such studies enabled the production of acceptable bakery products with higher levels of alternative ingredient incorporation. However, increased use of emerging technologies is dependent on further research and overcoming scaling-up difficulties.
Collapse
Affiliation(s)
- Mariana Maçãs
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Ireland
- Department of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Bárbara Biduski
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Ireland
| | - Alessandro Ferragina
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Ireland
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | - Melanie Huet
- ESIROI Université de la Réunion, Reunion Island, France
| | - Elke K Arendt
- Department of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Eimear Gallagher
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Ireland
| |
Collapse
|
2
|
Heetesonne I, Claus E, De Leyn I, Dewettinck K, Camerlinck M, Schouteten JJ, Van Bockstaele F. Characterization of Pulse-Containing Cakes Using Sensory Evaluation and Instrumental Analysis. Foods 2024; 13:3575. [PMID: 39593991 PMCID: PMC11592933 DOI: 10.3390/foods13223575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Despite the nutritional and environmental benefits of pulses, their incorporation into bakery products has been impeded by their characteristic off-flavour. This study characterizes five pulses (faba bean, chickpea, whole lentil, split pea and pinto bean) in a cake application with a 40% wheat flour substitution, alongside a control cake. Physicochemical analysis and sensory analysis using a consumer panel (n = 124) and instrumental analysis (GC E-nose) were conducted. The liking scores for the pulse-containing cakes were significantly lower compared to the control cake, but half of the participants preferred a pulse-containing cake, indicating their market potential. Both instrumental analysis and sensory evaluation identified the chickpea and faba bean cakes as most similar to the control, while the pea cake was the most divergent. This cake was described as beany and grassy by consumers, negatively affecting the overall acceptance. Consumers in the sensory study had difficulties in distinguishing between the chickpea and faba bean cakes. Similarly, based on the volatile profiles, the chickpea and faba bean cakes demonstrated the closest relationship. The alignment between sensory data and E-nose results supports the added value of instrumental techniques such as the GC E-nose in sensory research.
Collapse
Affiliation(s)
- Ine Heetesonne
- Research Group Food Structure and Function, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Research Centre of AgroFoodNature, HOGENT University of Applied Sciences and Arts, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium;
| | - Elke Claus
- Research Group Food Structure and Function, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ingrid De Leyn
- Research Unit of Cereal and Feed Technology, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Koen Dewettinck
- Research Group Food Structure and Function, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Melissa Camerlinck
- Research Centre of AgroFoodNature, HOGENT University of Applied Sciences and Arts, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium;
| | - Joachim J. Schouteten
- Department of Agricultural Economics, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Filip Van Bockstaele
- Research Group Food Structure and Function, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Cao C, Hu B, Li H, Wei Z, Li L, Zhang H, Chen J, Sun Z, Xu Z, Li Y. Metatranscriptome and small RNA sequencing revealed a mixed infection of newly identified bymovirus and bean yellow mosaic virus on peas. Virology 2024; 596:110116. [PMID: 38788336 DOI: 10.1016/j.virol.2024.110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Peas (Pisum sativum L.) are widely cultivated in temperate regions and are susceptible hosts for various viruses across different families. The discovery and identification of new viruses in peas has significant implications for field disease management. Here, we identified a mixed infection of two viruses from field-collected peas exhibiting virus-like symptoms using metatranscriptome and small RNA sequencing techniques. Upon identification, one of the viruses was determined to be a newly isolated and discovered bymovirus from peas, named "pea bymovirus 1 (PBV1)". The other was identified as a novel variant of bean yellow mosaic virus (BYMV-HZ1). Subsequently, mechanical inoculation and RT-PCR assays confirmed that both viruses could be inoculated back onto peas and tobaccos, showing mixed infection by PBV1 and BYMV-HZ1. To our knowledge, this is the first isolation of a bymovirus from pea and the first documented case of mixed infection of peas by PBV1 and BYMV-HZ1 in China.
Collapse
Affiliation(s)
- Chen Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Biao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Huajuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lulu Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhongtian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
4
|
Guiding the formulation of soft cereal foods for the elderly population through food oral processing: Challenges and opportunities. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 99:137-188. [PMID: 35595393 DOI: 10.1016/bs.afnr.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As the elderly population is growing steadily, more age-friendly food products that allow them to cover their nutritional needs and are enjoyable need to be designed. Since their oral physiology is considerably altered, the study of Food Oral Processing has become an essential discipline in food development, as it takes into consideration the complex interactions between food structure, oral processing, physiology and perception. Cereals are staple foods in many countries, and their consumption as bakery products is popular among the elderly population. In addition, when fortified with pulse proteins, they can help meet the protein needs of seniors and help fight against sarcopenia. For these reasons, this chapter presents an overview of the various aspects involved in the oral processing and formulation of soft cereal foods, translating them into challenges and opportunities that are of relevance to the design of realistic soft cereal foods targeted for the elderly that are nutritious and sensory appealing. This review focuses on the healthy elderly population and does not intend to cover the needs of the dependent elderly suffering from chronical diseases.
Collapse
|
5
|
Physicochemical, nutritional and functional properties of chickpea (Cicer arietinum) and navy bean (Phaseolus vulgaris) flours from different mills. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Galali Y, Rees G, Kuri V. Study the influence of waxy wheat flour, inulin and guar gum on quality and microstructure of Pita and Tandoori breads: response surface methodology aids functional food development. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1372-1383. [PMID: 35250062 PMCID: PMC8882535 DOI: 10.1007/s13197-021-05147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/03/2020] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
A diet high in dietary fibre (DF) is thought to help reduce cholesterol levels, may control blood glucose levels and reduces gut transit time. However, people often fail to consume the recommended quantity of DF. The aim of this study was to supplement two types of bread with some novel functional food ingredients; waxy wheat flour (WF), inulin (IN) and guar gum (GG) to develop products rich in DF. Response surface methodology (RSM) was employed to study the effect of DF on two different breads. Breads were assessed using Cryo-SEM for its microstructure pattern, and physical attributes (pita; springiness, chewiness and hardness, Tandoori; hardness and elasticity). The results showed that, for pita bread, the outcome showed that IN and GG alone significantly increased hardness and chewiness and decreased springiness. WF addition only decreased springiness. GG linearly increased pita height and volume, but it quadratically increased weight loss. Moreover, IN increased volume and height in a quadratic way. Regarding Tandoori bread, IN reduced bread toughness, but showed no effect on extensibility. WF alone increased volume and diameter. The microstructure also showed that the novel ingredients modified starch gelatinisation and gluten-starch matrix in both pita and Tandoori breads differently. Therefore, the influence of the three functional ingredients alone and in combinations influenced quality parameters dissimilarly.
Collapse
|
7
|
Guldiken B, Franczyk A, Boyd L, Wang N, Choo K, Sopiwnyk E, House JD, Paliwal J, Nickerson M. Impact of milling on the functional and physicochemical properties of green lentil and yellow pea flours. Cereal Chem 2021. [DOI: 10.1002/cche.10504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Burcu Guldiken
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon SK Canada
| | - Adam Franczyk
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg MB Canada
| | - Lindsey Boyd
- Canadian International Grains Institute (CIGI) Winnipeg MB Canada
| | - Ning Wang
- Canadian Grain Commission Grain Research Laboratory Winnipeg MB Canada
| | - Kristin Choo
- Department of Biosystems Engineering University of Manitoba Winnipeg MB Canada
| | - Elaine Sopiwnyk
- Canadian International Grains Institute (CIGI) Winnipeg MB Canada
| | - James D. House
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg MB Canada
| | - Jitendra Paliwal
- Department of Biosystems Engineering University of Manitoba Winnipeg MB Canada
| | - Michael Nickerson
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon SK Canada
| |
Collapse
|
8
|
Escobedo A, Mojica L. Pulse-based snacks as functional foods: Processing challenges and biological potential. Compr Rev Food Sci Food Saf 2021; 20:4678-4702. [PMID: 34324249 DOI: 10.1111/1541-4337.12809] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022]
Abstract
Despite their high nutritional value and potential health benefits, pulse intake has not increased in the last three decades. Several strategies have been implemented to increase pulse consumption, such as their incorporation in bakery products, breakfast cereals, and snacks. The inclusion of pulses in these products could be an alternative to satisfy the consumers' demand for healthy foods. However, pulse-based snacks face important challenges, including reducing antinutritional factors, achieving consumer acceptance, and consolidating the pulse-based snacks as functional foods. This review summarizes and discusses methods for producing snacks where cereals or tubers were replaced with at least 50% pulses. Also, it briefly assesses their effect on nutritional composition, antinutritional factors, sensory acceptance, and different health benefits evaluations. Extruded snacks exhibited high protein and dietary fiber and low fat content, contrary to the high fat content of deep fat-fried snacks. Meanwhile, baked snacks presented moderate concentrations of protein, dietary fiber, and lipids. Pulses must be pretreated using process combinations such as soaking, dehulling, cooking, fermentation, germination, and extrusion to reduce the antinutritional factors. Pulse-based snacks show good sensory acceptance. However, sensory evaluation should be more rigorous using additional untrained judges. Several studies have evaluated the health benefits of pulse-based snacks. More research is needed to validate scientifically the health benefits associated with their consumption. Pulse-based snacks could be an alternative to improve the nutritional composition of commercially available snacks. The use of pulses as ingredients of healthier snacks represents an important alternative for the food industry due to their low cost, sensory characteristics, high nutritional profile, and environmental benefits.
Collapse
Affiliation(s)
- Alejandro Escobedo
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, México
| | - Luis Mojica
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, México
| |
Collapse
|
9
|
Frohlich P, Young G, Borsuk Y, Sigvaldson M, Bourré L, Sopiwnyk E. Influence of premilling thermal treatments of yellow peas, navy beans, and fava beans on the flavor and end‐product quality of tortillas and pitas. Cereal Chem 2021. [DOI: 10.1002/cche.10424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Peter Frohlich
- Richardson Centre for Functional Foods Winnipeg MB Canada
| | - Gina Young
- Canadian International Grains Institute (Cigi) Winnipeg MB Canada
| | - Yulia Borsuk
- Canadian International Grains Institute (Cigi) Winnipeg MB Canada
| | | | - Lindsay Bourré
- Canadian International Grains Institute (Cigi) Winnipeg MB Canada
| | - Elaine Sopiwnyk
- Canadian International Grains Institute (Cigi) Winnipeg MB Canada
| |
Collapse
|
10
|
Marchini M, Carini E, Cataldi N, Boukid F, Blandino M, Ganino T, Vittadini E, Pellegrini N. The use of red lentil flour in bakery products: How do particle size and substitution level affect rheological properties of wheat bread dough? Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110299] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Binou P, Yanni AE, Karathanos VT. Physical properties, sensory acceptance, postprandial glycemic response, and satiety of cereal based foods enriched with legume flours: a review. Crit Rev Food Sci Nutr 2020; 62:2722-2740. [PMID: 33305591 DOI: 10.1080/10408398.2020.1858020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Legumes are rich in proteins and widely consumed around the world. Their consumption has been associated with improved glycemic and lipidemic profile and positive alterations of gut microbiota. These beneficial effects have created a growing scientific interest in the role of legume-enriched foods on the promotion of human health. The aim of this review was to critically record the studies examining the nutritional value and textural properties of these products, as well as their efficacy on lowering postprandial glucose response and satiety. Reviewed data have shown that cereal products with high nutritional value are formulated when fortified with legume flours. The postprandial glucose response appears to be ameliorated and the enriched foods have a medium or a low glycemic index, however not enough data are presented referring to the appetite hormones responses. Textural properties are affected by the addition of legumes and occasionally, when substitution level is high, the final product has not acceptable odor and appearance. To overcome this barrier, particular food processes such as fermentation, extrusion and addition of hydrocolloids, are used and have shown great results on the textural and sensory properties of the final products. The development of healthy legume-enriched cereal-based products is of great importance for the increase of legume consumption and the promotion of public health.
Collapse
Affiliation(s)
- Panagiota Binou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopion University of Athens, Athens, Greece
| | - Amalia E Yanni
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopion University of Athens, Athens, Greece
| | - Vaios T Karathanos
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopion University of Athens, Athens, Greece
| |
Collapse
|
12
|
Bühler JM, Dekkers BL, Bruins ME, van der Goot AJ. Modifying Faba Bean Protein Concentrate Using Dry Heat to Increase Water Holding Capacity. Foods 2020; 9:E1077. [PMID: 32784734 PMCID: PMC7465143 DOI: 10.3390/foods9081077] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 01/06/2023] Open
Abstract
We investigated the effect of dry-heat treatment on the properties of faba bean protein concentrate using soy protein concentrate as a benchmark. While soy protein-widely used as an ingredient in meat replacers-is recovered through a wet fractionation, protein recovery from starch bearing pulses like faba bean can be done via dry fractionation. This process does not require drying or heating steps and therefore, keeps the original protein functionality intact. This results in differences in properties such as water binding capacity of the protein fraction. Faba bean protein concentrate was dry-heated at temperatures from 75-175 °C, which resulted in higher water-holding capacity and less soluble protein, approaching values of soy protein concentrate. These changes were due to partial denaturation of protein, changing the structure of the protein, and exposing hydrophobic sites. This led to protein aggregation, as observed by light microscopy. Only noncovalent bonds caused the decrease of solubility of dry-heated faba bean protein concentrate. We conclude that dry-heating of dry fractionated faba bean protein can change the functional properties of the protein fraction to desired properties for certain applications. The effect is similar to that on soy, but the underlying mechanisms differ.
Collapse
Affiliation(s)
- Jan M. Bühler
- Wageningen UR, Food & Biobased Research, Wageningen, 6700HB Gelderland, The Netherlands; (J.M.B.); (M.E.B.)
- Department of Food Process Engineering, Wageningen University, Wageningen, 6700HB Gelderland, The Netherlands;
| | - Birgit L. Dekkers
- Department of Food Process Engineering, Wageningen University, Wageningen, 6700HB Gelderland, The Netherlands;
| | - Marieke E. Bruins
- Wageningen UR, Food & Biobased Research, Wageningen, 6700HB Gelderland, The Netherlands; (J.M.B.); (M.E.B.)
| | - Atze Jan van der Goot
- Department of Food Process Engineering, Wageningen University, Wageningen, 6700HB Gelderland, The Netherlands;
| |
Collapse
|
13
|
Fahmi R, Ryland D, Sopiwnyk E, Aliani M. Sensory and Physical Characteristics of Pan Bread Fortified with Thermally Treated Split Yellow Pea (Pisum sativum L.) Flour. J Food Sci 2019; 84:3735-3745. [PMID: 31742694 DOI: 10.1111/1750-3841.14908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/20/2019] [Accepted: 10/02/2019] [Indexed: 01/18/2023]
Abstract
Pulses, including peas, are a good source of protein, dietary fiber, folic acid, and iron and are reported to reduce the risk for cardiovascular disease and diabetes. However, pulse ingredients present a known challenge as they exhibit a grassy/beany off-flavor. Heat treatment in some cases can decrease this off-flavor. The objective of this study was to determine the effect of substitution of 20% split yellow pea (SYP) flour treated by Revtech thermal processing at 140 °C with 10% steam (RT10%) and without steam (RT0%) for wheat flour in bread on the sensory attributes, acceptability, nutrient composition, firmness, color, and pH. RT10% was more acceptable overall than bread with untreated pea flour (USYP) or RT0% as assessed by 110 consumers. Sensory attributes were defined and measured on 15-cm line scales by an 11 member trained panel. Attributes associated with RT10% included wheaty, sweet, and yeast aromas and wheaty flavor, whereas attributes associated with USYP and RT0% were pea and nutty aroma and flavor. Although firmness and dryness were higher in RT10%, the acceptability of the bread texture was not affected. This sample contained significantly higher protein and lower carbohydrate than the wheat sample. PRACTICAL APPLICATION: Revtech (RT), a novel thermal process, when applied at 140 °C with steam to split yellow pea (SYP) flour successfully increased the acceptability of white pan bread fortified at 20% compared to bread fortified with RT 140 °C with no steam, and untreated SYP flours. This could be due to its association with wheaty aroma and flavor attributes rather than the pea aroma and flavor attributes of the other two breads.
Collapse
Affiliation(s)
- Ronak Fahmi
- Dept. of Food and Human Nutritional Sciences, Univ. of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Donna Ryland
- Dept. of Food and Human Nutritional Sciences, Univ. of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Elaine Sopiwnyk
- Canadian Intl. Grains Inst. (Cigi), Winnipeg, MB, R3C 3G7, Canada
| | - Michel Aliani
- Dept. of Food and Human Nutritional Sciences, Univ. of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Dept. of Physiology & Pathophysiology, Univ. of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Univ. of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Div. of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada
| |
Collapse
|
14
|
Bread for the Aging Population: The Effect of a Functional Wheat-Lentil Bread on the Immune Function of Aged Mice. Foods 2019; 8:foods8100510. [PMID: 31635240 PMCID: PMC6835359 DOI: 10.3390/foods8100510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023] Open
Abstract
A functional bread tailored for the needs of the aging population was baked by substituting 24% of wheat flour with red lentil flour and compared with wheat bread. Its nutritional profile was assessed by analysing proteins, amino acids, lipids, soluble and insoluble dietary fibre, resistant starch, total polyphenols, lignans and the antioxidant capacity (FRAP assay). The wheat-lentil bread had 30% more proteins than wheat bread (8.3%, as is), a more balanced amino acids composition, an almost double mineral (0.63%, as is) as well as total dietary fibre content (4.6%, as is), double the amount of polyphenols (939.1 mg GAE/100g on dry matter, d.m.), higher amounts and variety of lignans, and more than double the antioxidant capacity (71.6 µmoL/g d.m.). The in vivo effect of 60 days bread consumption on the immune response was studied by means of a murine model of elderly mice. Serum cytokines and intraepithelial lymphocyte immunophenotype from the mice intestine were analysed as markers of systemic and intestinal inflammatory status, respectively. Analysis of immune parameters in intraepithelial lymphocytes showed significant differences among the two types of bread indicating a positive effect of the wheat-lentil bread on the intestinal immune system, whereas both breads induced a reduction in serum IL-10.
Collapse
|
15
|
Kathirvel P, Yamazaki Y, Zhu W, Luhovyy BL. Glucose release from lentil flours digested in vitro: The role of particle size. Cereal Chem 2019. [DOI: 10.1002/cche.10223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Priya Kathirvel
- Department of Applied Human Nutrition Mount Saint Vincent University Halifax NS Canada
| | - Yuka Yamazaki
- Department of Applied Human Nutrition Mount Saint Vincent University Halifax NS Canada
| | - Wenxi Zhu
- Department of Applied Human Nutrition Mount Saint Vincent University Halifax NS Canada
| | - Bohdan L. Luhovyy
- Department of Applied Human Nutrition Mount Saint Vincent University Halifax NS Canada
| |
Collapse
|
16
|
Bourré L, Frohlich P, Young G, Borsuk Y, Sopiwnyk E, Sarkar A, Nickerson MT, Ai Y, Dyck A, Malcolmson L. Influence of particle size on flour and baking properties of yellow pea, navy bean, and red lentil flours. Cereal Chem 2019. [DOI: 10.1002/cche.10161] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lindsay Bourré
- Canadian International Grains Institute (Cigi) Winnipeg Manitoba Canada
| | - Peter Frohlich
- Canadian International Grains Institute (Cigi) Winnipeg Manitoba Canada
| | - Gina Young
- Canadian International Grains Institute (Cigi) Winnipeg Manitoba Canada
| | - Yulia Borsuk
- Canadian International Grains Institute (Cigi) Winnipeg Manitoba Canada
| | - Elaine Sopiwnyk
- Canadian International Grains Institute (Cigi) Winnipeg Manitoba Canada
| | - Ashok Sarkar
- Canadian International Grains Institute (Cigi) Winnipeg Manitoba Canada
| | - Michael T. Nickerson
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Yongfeng Ai
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Adam Dyck
- Warburton Foods Ltd. Saint Francois Xavier Manitoba Canada
| | | |
Collapse
|
17
|
Thakur S, Scanlon MG, Tyler RT, Milani A, Paliwal J. Pulse Flour Characteristics from a Wheat Flour Miller's Perspective: A Comprehensive Review. Compr Rev Food Sci Food Saf 2019; 18:775-797. [PMID: 33336925 DOI: 10.1111/1541-4337.12413] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/17/2018] [Accepted: 11/02/2018] [Indexed: 11/29/2022]
Abstract
Pulses (grain legumes) are increasingly of interest to the food industry as product formulators and consumers seek to exploit their fiber-rich and protein-rich reputation in the development of nutritionally attractive new products, particularly in the bakery, gluten-free, snack, pasta, and noodle categories. The processing of pulses into consistent high-quality ingredients starts with a well-defined and controlled milling process. However, in contrast to the extensive body of knowledge on wheat flour milling, the peer-reviewed literature on pulse flour milling is not as well defined, except for the dehulling process. This review synthesizes information on milling of leguminous commodities such as chickpea (kabuli and desi), lentil (green and red), pea, and bean (adzuki, black, cowpea, kidney, navy, pinto, and mung) from the perspective of a wheat miller to explore the extent to which pulse milling studies have addressed the objectives of wheat flour milling. These objectives are to reduce particle size (so as to facilitate ingredient miscibility), to separate components (so as to improve value and/or functionality), and to effect mechanochemical transformations (for example, to cause starch damage). Current international standards on pulse quality are examined from the perspective of their relationship to the millability of pulses (that is, grain legume properties at mill receival). The effect of pulse flour on the quality of the products they are incorporated in is examined solely from the perspective of flour quality not quantity. Finally, we identify research gaps where critical questions should be answered if pulse milling science and technology are to be established on par with their wheat flour milling counterparts.
Collapse
Affiliation(s)
- S Thakur
- Dept. of Biosystems Eng., Univ. of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | - M G Scanlon
- Dept. of Food and Human Nutritional Sciences, Univ. of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | - R T Tyler
- Dept. of Food and Bioproduct Sciences, Univ. of Saskatchewan, 51 Campus Drive, SK, Canada, S7N 5AB
| | - A Milani
- Buhler Inc, 13105 12th Ave. N., Plymouth, MN, U.S.A
| | - J Paliwal
- Dept. of Biosystems Eng., Univ. of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| |
Collapse
|
18
|
Felker FC, Kenar JA, Byars JA, Singh M, Liu SX. Comparison of properties of raw pulse flours with those of jet-cooked, drum-dried flours. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Szczygiel EJ, Harte JB, Strasburg GM, Cho S. Consumer acceptance and aroma characterization of navy bean (Phaseolus vulgaris) powders prepared by extrusion and conventional processing methods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4142-4150. [PMID: 28230271 DOI: 10.1002/jsfa.8284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/10/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Food products produced with bean ingredients are gaining in popularity among consumers due to the reported health benefits. Navy bean (Phaseolus vulgaris) powder produced through extrusion can be considered as a resource-efficient alternative to conventional methods, which often involve high water inputs. Therefore, navy bean powders produced with extrusion and conventional methods were assessed for the impact of processing on consumer liking in end-use products and odor-active compounds. RESULTS Consumer acceptance results reveal significant differences in flavor, texture and overall acceptance scores of several products produced with navy bean powder. Crackers produced with extruded navy bean powder received higher hedonic flavor ratings than those produced with commercial navy bean powder (P < 0.001). GC-O data showed that the commercial powder produced through conventional processing had much greater contents of several aliphatic aldehydes commonly formed via lipid oxidation, such as hexanal, octanal and nonanal with descriptors of 'grassy', 'nutty', 'fruity', 'dusty', and 'cleaner', compared to the extruded powder. CONCLUSION Extrusion processed navy bean powders were preferred over commercial powders for certain navy bean powder applications. This is best explained by substantial differences in aroma profiles of the two powders that may have been caused by lipid oxidation. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Edward J Szczygiel
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Janice B Harte
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Gale M Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Sungeun Cho
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
20
|
Abdullah MMH, Marinangeli CPF, Jones PJH, Carlberg JG. Canadian Potential Healthcare and Societal Cost Savings from Consumption of Pulses: A Cost-Of-Illness Analysis. Nutrients 2017; 9:E793. [PMID: 28737688 PMCID: PMC5537906 DOI: 10.3390/nu9070793] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023] Open
Abstract
Consumption of dietary pulses, including beans, peas and lentils, is recommended by health authorities across jurisdictions for their nutritional value and effectiveness in helping to prevent and manage major diet-related illnesses of significant socioeconomic burden. The aim of this study was to estimate the potential annual healthcare and societal cost savings relevant to rates of reduction in complications from type 2 diabetes (T2D) and incidence of cardiovascular disease (CVD) following a low glycemic index (GI) or high fiber diet that includes pulses, or 100 g/day pulse intake in Canada, respectively. A four-step cost-of-illness analysis was conducted to: (1) estimate the proportions of individuals who are likely to consume pulses; (2) evaluate the reductions in established risk factors for T2D and CVD; (3) assess the percent reduction in incidences or complications of the diseases of interest; and (4) calculate the potential annual savings in relevant healthcare and related costs. A low GI or high fiber diet that includes pulses and 100 g/day pulse intake were shown to potentially yield Can$6.2 (95% CI $2.6-$9.9) to Can$62.4 (95% CI $26-$98.8) and Can$31.6 (95% CI $11.1-$52) to Can$315.5 (95% CI $110.6-$520.4) million in savings on annual healthcare and related costs of T2D and CVD, respectively. Specific provincial/territorial analyses suggested annual T2D and CVD related cost savings that ranged from up to Can$0.2 million in some provinces to up to Can$135 million in others. In conclusion, with regular consumption of pulse crops, there is a potential opportunity to facilitate T2D and CVD related socioeconomic cost savings that could be applied to Canadian healthcare or re-assigned to other priority domains. Whether these potential cost savings will be offset by other healthcare costs associated with longevity and diseases of the elderly is to be investigated over the long term.
Collapse
Affiliation(s)
- Mohammad M H Abdullah
- Department of Human Nutritional Sciences and Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 6C5, Canada.
- Department of Food Science and Nutrition, Kuwait University, Kuwait City 10002, Kuwait.
| | | | - Peter J H Jones
- Department of Human Nutritional Sciences and Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 6C5, Canada.
| | - Jared G Carlberg
- Department of Agribusiness & Agricultural Economics, University of Manitoba, Winnipeg, MB R2C 0A1, Canada.
| |
Collapse
|
21
|
Coda R, Kianjam M, Pontonio E, Verni M, Di Cagno R, Katina K, Rizzello CG, Gobbetti M. Sourdough-type propagation of faba bean flour: Dynamics of microbial consortia and biochemical implications. Int J Food Microbiol 2017; 248:10-21. [PMID: 28242419 DOI: 10.1016/j.ijfoodmicro.2017.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/28/2016] [Accepted: 02/18/2017] [Indexed: 10/20/2022]
Abstract
The microbial ecology of faba bean sourdoughs obtained from an Italian (Ita) and a Finnish (Fi) cultivar, belonging respectively to Vicia faba major and V. faba minor groups, was described by 16S rRNA gene pyrosequencing and culture-dependent analysis. The sourdoughs were propagated with traditional backslopping procedure throughout 14days. Higher microbial diversity was found in the sourdough deriving from V. faba minor (Fi), still containing residual hulls after the milling procedure. After 2days of propagation, the microbial profile of Ita sourdough was characterized by the dominance of the genera Pediococcus, Leuconostoc and Weissella, while the genera Lactococcus, Lactobacillus and Escherichia, as well as Enterobacteriaceae were present in Fi sourdoughs. Yeasts were in very low cell density until the second backslopping and were not anymore found after this time by plate count or pyrosequencing analysis. Among the lactic acid bacteria isolates, Pediococcus pentosaceus, Leuconostoc mesenteroides and Weissella koreensis had the highest frequency of occurrence in both the sourdoughs. Lactobacillus sakei was the only lactobacillus isolated from the first to the last propagation day in Fi sourdough. According to microbiological and acidification properties, the maturity of the sourdoughs was reached after 5days. The presence of hulls and the different microbial composition reflected on biochemical characteristics of Fi sourdoughs, including acidification and phenolic compounds. Moreover, proteolysis in Fi sourdough was more intense compared to Ita. The microbial dynamic of the faba bean sourdoughs showed some differences with the most studied cereal sourdoughs.
Collapse
Affiliation(s)
- Rossana Coda
- University of Helsinki, Department of Food and Environmental Sciences, Agnes Sjioberginkatu 2, Helsinki, Finland
| | - Maryam Kianjam
- University of Helsinki, Department of Food and Environmental Sciences, Agnes Sjioberginkatu 2, Helsinki, Finland
| | - Erica Pontonio
- University of Bari "Aldo Moro", Department of Soil, Plant, and Food Science, Via Amendola 165/a, 70125 Bari, Italy
| | - Michela Verni
- University of Bari "Aldo Moro", Department of Soil, Plant, and Food Science, Via Amendola 165/a, 70125 Bari, Italy
| | - Raffaella Di Cagno
- Faculty of Food Science and Technology, University of Bozen, 39100 Bolzano, Italy
| | - Kati Katina
- University of Helsinki, Department of Food and Environmental Sciences, Agnes Sjioberginkatu 2, Helsinki, Finland
| | - Carlo Giuseppe Rizzello
- University of Bari "Aldo Moro", Department of Soil, Plant, and Food Science, Via Amendola 165/a, 70125 Bari, Italy.
| | - Marco Gobbetti
- Faculty of Food Science and Technology, University of Bozen, 39100 Bolzano, Italy
| |
Collapse
|
22
|
Byars JA, Singh M, Kenar JA. Effect of hydrocolloids on functional properties of navy bean starch. STARCH-STARKE 2017. [DOI: 10.1002/star.201600305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jeffrey A. Byars
- Functional Foods Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service; United States Department of Agriculture; Peoria IL USA
| | - Mukti Singh
- Functional Foods Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service; United States Department of Agriculture; Peoria IL USA
| | - James A. Kenar
- Functional Foods Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service; United States Department of Agriculture; Peoria IL USA
| |
Collapse
|
23
|
Multari S, Stewart D, Russell WR. Potential of Fava Bean as Future Protein Supply to Partially Replace Meat Intake in the Human Diet. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12146] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Salvatore Multari
- Natural Products Group; Rowett Inst. of Nutrition and Health; Univ. of Aberdeen; Aberdeen AB21 9SB Scotland
| | - Derek Stewart
- The James Hutton Inst. Invergowrie; Dundee DD2 5DA Scotland
| | - Wendy R. Russell
- Natural Products Group; Rowett Inst. of Nutrition and Health; Univ. of Aberdeen; Aberdeen AB21 9SB Scotland
| |
Collapse
|
24
|
Singh M, Byars JA, Liu SX. Navy Bean Flour Particle Size and Protein Content Affect Cake Baking and Batter Quality1. J Food Sci 2015; 80:E1229-34. [DOI: 10.1111/1750-3841.12869] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 02/14/2015] [Indexed: 01/24/2023]
Affiliation(s)
- Mukti Singh
- USDA, Agricultural Research Services, Natl. Center for Agricultural Utilization Research; 1815 N. Univ. St; Peoria Ill. 61604 U.S.A
| | - Jeffrey A. Byars
- USDA, Agricultural Research Services, Natl. Center for Agricultural Utilization Research; 1815 N. Univ. St; Peoria Ill. 61604 U.S.A
| | - Sean X. Liu
- USDA, Agricultural Research Services, Natl. Center for Agricultural Utilization Research; 1815 N. Univ. St; Peoria Ill. 61604 U.S.A
| |
Collapse
|
25
|
Romano A, Giosafatto CVL, Masi P, Mariniello L. Impact of dehulling on the physico-chemical properties and in vitro protein digestion of common beans (Phaseolus vulgaris L.). Food Funct 2015; 6:1345-51. [DOI: 10.1039/c5fo00021a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dehulling process improves bean flour nutritional functionality making beans more likely to be digested by infants.
Collapse
Affiliation(s)
- A. Romano
- Centre for Food Innovation and Development in the Food Industry
- University of Naples Federico II
- Portici (Naples)
- Italy
| | | | - P. Masi
- Centre for Food Innovation and Development in the Food Industry
- University of Naples Federico II
- Portici (Naples)
- Italy
- Department of Agriculture
| | - L. Mariniello
- Department of Chemical Sciences
- University of Naples Federico II
- Naples
- Italy
| |
Collapse
|
26
|
Barbana C, Boye JI. In vitro protein digestibility and physico-chemical properties of flours and protein concentrates from two varieties of lentil (Lens culinaris). Food Funct 2013; 4:310-21. [DOI: 10.1039/c2fo30204g] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|