1
|
Biocontrol Methods in Avoidance and Downsizing of Mycotoxin Contamination of Food Crops. Processes (Basel) 2022. [DOI: 10.3390/pr10040655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
By increasing the resistance of seeds against abiotic and biotic stress, the possibility of cereal mold contamination and hence the occurrence of secondary mold metabolites mycotoxins decreases. The use of biological methods of seed treatment represents a complementary strategy, which can be implemented as an environmental-friendlier approach to increase the agricultural sustainability. Whereas the use of resistant cultivars helps to reduce mold growth and mycotoxin contamination at the very beginning of the production chain, biological detoxification of cereals provides additional weapons against fungal pathogens in the later stage. Most efficient techniques can be selected and combined on an industrial scale to reduce losses and boost crop yields and agriculture sustainability, increasing at the same time food and feed safety. This paper strives to emphasize the possibility of implementation of biocontrol methods in the production of resistant seeds and the prevention and reduction in cereal mycotoxin contamination.
Collapse
|
2
|
Selection of Wine Saccharomyces cerevisiae Strains and Their Screening for the Adsorption Activity of Pigments, Phenolics and Ochratoxin A. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6030080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ochratoxin A is a dangerous mycotoxin present in wines and is considered the principal safety hazard in the winemaking process. Several authors have investigated the ochratoxin A adsorption ability of Saccharomyces cerevisiae yeasts, and specifically selected strains for this desired trait. In the present work, a huge selection of wine yeasts was done starting from Portuguese, Spanish and Italian fermenting musts of different cultivars. Firstly, 150 isolates were collected, and 99 non-redundant S. cerevisiae strains were identified. Then, the strains were screened following a multi-step approach in order to select those having primary oenological traits, mainly (a) good fermentation performance, (b) low production of H2S and (c) low production of acetic acid. The preselected strains were further investigated for their adsorption activity of pigments, phenolic compounds and ochratoxin A. Finally, 10 strains showed the desired features. The goal of this work was to select the strains capable of absorbing ochratoxin A but not pigments and phenolic compounds in order to improve and valorise both the quality and safety of red wines. The selected strains are considered good candidates for wine starters, moreover, they can be exploited to obtain a further enhancement of the specific adsorption/non-adsorption activity by applying a yeast breeding approach.
Collapse
|
3
|
Liu Y, Galani Yamdeu JH, Gong YY, Orfila C. A review of postharvest approaches to reduce fungal and mycotoxin contamination of foods. Compr Rev Food Sci Food Saf 2020; 19:1521-1560. [DOI: 10.1111/1541-4337.12562] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/07/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Yue Liu
- Nutritional Science and Epidemiology Group, School of Food Science and NutritionUniversity of Leeds Leeds UK
| | - Joseph Hubert Galani Yamdeu
- Nutritional Science and Epidemiology Group, School of Food Science and NutritionUniversity of Leeds Leeds UK
| | - Yun Yun Gong
- Nutritional Science and Epidemiology Group, School of Food Science and NutritionUniversity of Leeds Leeds UK
| | - Caroline Orfila
- Nutritional Science and Epidemiology Group, School of Food Science and NutritionUniversity of Leeds Leeds UK
| |
Collapse
|
4
|
Chen W, Li C, Zhang B, Zhou Z, Shen Y, Liao X, Yang J, Wang Y, Li X, Li Y, Shen XL. Advances in Biodetoxification of Ochratoxin A-A Review of the Past Five Decades. Front Microbiol 2018; 9:1386. [PMID: 29997599 PMCID: PMC6028724 DOI: 10.3389/fmicb.2018.01386] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022] Open
Abstract
Ochratoxin A (OTA) is a toxic secondary fungal metabolite that widely takes place in various kinds of foodstuffs and feeds. Human beings and animals are inevitably threatened by OTA as a result. Therefore, it is necessary to adopt various measures to detoxify OTA-contaminated foods and feeds. Biological detoxification methods, with better safety, flavor, nutritional quality, organoleptic properties, availability, and cost-effectiveness, are more promising than physical and chemical detoxification methods. The state-of-the-art research advances of OTA biodetoxification by degradation, adsorption, or enzymes are reviewed in the present paper. Researchers have discovered a good deal of microorganisms that could degrade and/or adsorb OTA, including actinobacteria, bacteria, filamentous fungi, and yeast. The degradation of OTA to non-toxic or less toxic OTα via the hydrolysis of the amide bond is the most important OTA biodegradation mechanism. The most important influence factor of OTA adsorption capacity of microorganisms is cell wall components. A large number of microorganisms with good OTA degradation and/or adsorption ability, as well as some OTA degradation enzymes isolated or cloned from microorganisms and animal pancreas, have great application prospects in food and feed industries.
Collapse
Affiliation(s)
- Wenying Chen
- School of Public Health, Zunyi Medical University, Zunyi, China
- Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Chen Li
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Boyang Zhang
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zheng Zhou
- School of Public Health, Zunyi Medical University, Zunyi, China
- Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yingbin Shen
- Department of Food Science and Engineering, School of Science and Engineering, Jinan University, Guangzhou, China
| | - Xin Liao
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Jieyeqi Yang
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Yan Wang
- Department of Food Quality and Safety, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohong Li
- Department of Food and Bioengineering, Beijing Agricultural Vocational College, Beijing, China
| | - Yuzhe Li
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xiao L. Shen
- School of Public Health, Zunyi Medical University, Zunyi, China
- Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Gonçalves BL, Coppa CFSC, Neeff DVD, Corassin CH, Oliveira CAF. Mycotoxins in fruits and fruit-based products: occurrence and methods for decontamination. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1457056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bruna Leonel Gonçalves
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | | - Diane Valganon de Neeff
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Carlos Humberto Corassin
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | |
Collapse
|
6
|
Sun X, Niu Y, Ma T, Xu P, Huang W, Zhan J. Determination, content analysis and removal efficiency of fining agents on ochratoxin A in Chinese wines. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Petruzzi L, Corbo MR, Sinigaglia M, Bevilacqua A. Ochratoxin A Removal by Yeasts after Exposure to Simulated Human Gastrointestinal Conditions. J Food Sci 2016; 81:M2756-M2760. [DOI: 10.1111/1750-3841.13518] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 09/04/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Leonardo Petruzzi
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Maria Rosaria Corbo
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Milena Sinigaglia
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Antonio Bevilacqua
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Via Napoli 25 71122 Foggia Italy
| |
Collapse
|
8
|
Russo P, Capozzi V, Spano G, Corbo MR, Sinigaglia M, Bevilacqua A. Metabolites of Microbial Origin with an Impact on Health: Ochratoxin A and Biogenic Amines. Front Microbiol 2016; 7:482. [PMID: 27092133 PMCID: PMC4824791 DOI: 10.3389/fmicb.2016.00482] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/22/2016] [Indexed: 11/13/2022] Open
Abstract
Safety and quality are significant challenges for food; namely, safety represents a big threat all over the world and is one of the most important goal to be achieved in both Western Society and Developing Countries. Wine safety mainly relies upon some metabolites and many of them are of microbial origin. The main goal of this review is a focus on two kinds of compounds (biogenic amines and mycotoxins, mainly Ochratoxin A) for their deleterious effects on health. For each class of compounds, we will focus on two different traits: (a) synthesis of the compounds in wine, with a brief description of the most important microorganisms and factors leading this phenomenon; (b) prevention and/or correction strategies and new trends. In addition, there is a focus on a recent predictive tool able to predict toxin contamination of grape, in order to perform some prevention approaches and achieve safe wine.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| |
Collapse
|
9
|
Farbo MG, Urgeghe PP, Fiori S, Marceddu S, Jaoua S, Migheli Q. Adsorption of ochratoxin A from grape juice by yeast cells immobilised in calcium alginate beads. Int J Food Microbiol 2015; 217:29-34. [PMID: 26485316 DOI: 10.1016/j.ijfoodmicro.2015.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/27/2015] [Accepted: 10/12/2015] [Indexed: 11/19/2022]
Abstract
Grape juice can be easily contaminated with ochratoxin A (OTA), one of the known mycotoxins with the greatest public health significance. Among the different approaches to decontaminate juice from this mycotoxin, microbiological methods proved efficient, inexpensive and safe, particularly the use of yeast or yeast products. To ascertain whether immobilisation of the yeast biomass would lead to successful decontamination, alginate beads encapsulating Candida intermedia yeast cells were used in our experiments to evaluate their OTA-biosorption efficacy. Magnetic calcium alginate beads were also prepared by adding magnetite in the formulation to allow fast removal from the aqueous solution with a magnet. Calcium alginate beads were added to commercial grape juice spiked with 20 μg/kg OTA and after 48 h of incubation a significant reduction (>80%), of the total OTA content was achieved, while in the subsequent phases (72-120 h) OTA was slowly released into the grape juice by alginate beads. Biosorption properties of alginate-yeast beads were tested in a prototype bioreactor consisting in a glass chromatography column packed with beads, where juice amended with OTA was slowly flowed downstream. The adoption of an interconnected scaled-up bioreactor as an efficient and safe tool to remove traces of OTA from liquid matrices is discussed.
Collapse
Affiliation(s)
- Maria Grazia Farbo
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, I-07100 Sassari, Italy; Unità di ricerca Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Sassari, Viale Italia 39, I-07100 Sassari, Italy
| | - Pietro Paolo Urgeghe
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, I-07100 Sassari, Italy
| | - Stefano Fiori
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, I-07100 Sassari, Italy; Unità di ricerca Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Sassari, Viale Italia 39, I-07100 Sassari, Italy
| | - Salvatore Marceddu
- Istituto CNR di Scienze delle Produzioni Alimentari, UOS Sassari, Traversa La Crucca 3, I-07100 Sassari, Italy
| | - Samir Jaoua
- Department of Biological & Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Quirico Migheli
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, I-07100 Sassari, Italy; Unità di ricerca Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Sassari, Viale Italia 39, I-07100 Sassari, Italy.
| |
Collapse
|
10
|
Petruzzi L, Corbo MR, Baiano A, Beneduce L, Sinigaglia M, Bevilacqua A. In vivo stability of the complex ochratoxin A – Saccharomyces cerevisiae starter strains. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.09.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Bevilacqua A, Petruzzi L, Corbo MR, Baiano A, Garofalo C, Sinigaglia M. Ochratoxin A released back into the medium by Saccharomyces cerevisiae as a function of the strain, washing medium and fermentative conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:3291-3295. [PMID: 24700209 DOI: 10.1002/jsfa.6683] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/15/2014] [Accepted: 03/30/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND This study was aimed at investigating the removal of ochratoxin A (OTA) by two wild strains of Saccharomyces cerevisiae (W20 and W30) in a semi-synthetic medium under two temperatures (25, 30 °C) and sugar levels (200, 250 g L(-1) ), as well as the stability of OTA-yeast complex by evaluating the amount of bound toxin released back after some washing treatments with phosphate-buffered saline (PBS) or model wine (MW). In addition, the main products of fermentation were studied. RESULTS Both W20 and W30 strains reduced OTA with removal percentages of 5.41-49.58%, and this process was affected by temperature and sugar concentration. Concerning the stability of the OTA-yeast complex, the amount of bound toxin decreased by 20-99% after five passes of washing, with a strong strain dependence and an effect of temperature and sugar concentration only for the W30 isolate. In addition, the two strains showed interesting technological properties in terms of fermentation products in a semi-synthetic medium (high ethanol yield, volatile acidity as acetic acid < 1.2 g L(-1) ; glycerol production exceeding 5.2 g L(-1) ). CONCLUSIONS Apart from the removal of OTA, release of the toxin is a variable process and relies upon the strain effect; a significance of the other factors of the design (sugar concentration, temperature) was found only for a single isolate. Thus evaluation of the stability of the complex yeasts/OTA should be an additional trait to select promising functional yeasts.
Collapse
Affiliation(s)
- Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Biocontrol activity of four non- and low-fermenting yeast strains against Aspergillus carbonarius and their ability to remove ochratoxin A from grape juice. Int J Food Microbiol 2014; 189:45-50. [DOI: 10.1016/j.ijfoodmicro.2014.07.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/09/2014] [Accepted: 07/18/2014] [Indexed: 11/17/2022]
|
13
|
Petruzzi L, Sinigaglia M, Corbo MR, Campaniello D, Speranza B, Bevilacqua A. Decontamination of ochratoxin A by yeasts: possible approaches and factors leading to toxin removal in wine. Appl Microbiol Biotechnol 2014; 98:6555-67. [DOI: 10.1007/s00253-014-5814-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 10/25/2022]
|
14
|
Petruzzi L, Bevilacqua A, Baiano A, Beneduce L, Corbo MR, Sinigaglia M. In vitro removal of ochratoxin A by two strains of Saccharomyces cerevisiae and their performances under fermentative and stressing conditions. J Appl Microbiol 2013; 116:60-70. [PMID: 24112596 DOI: 10.1111/jam.12350] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/28/2013] [Accepted: 09/13/2013] [Indexed: 11/28/2022]
Abstract
AIMS The aim of this research was to study the effect of time, temperature, sugar content and addition of diammonium phosphate (DAP) on ochratoxin A (OTA) removal by two strains of Saccharomyces cerevisiae using a completely randomized design. METHODS AND RESULTS The strains were grown in a medium containing OTA (2 μg l(-1)), two sugar levels (200 and 250 g l(-1)), with or without DAP (300 mg l(-1)), and incubated at 25-30°C. The yeasts were able to decrease the toxin amount by c. 70%, with the highest removing effect observed after 3 days at 30°C in the presence of 250 g l(-1) of sugars and with DAP; after 10 days, the toxin was partially released into the medium. The strains produced high ethanol and glycerol contents, showed high tolerance to single/combined stress conditions and possessed β-d-glucosidase, pectinase and xylanase activities. CONCLUSIONS Ochratoxin A removal was affected by time, temperature, sugar and addition of DAP. Moreover, the phenomenon was reversible. SIGNIFICANCE AND IMPACT OF THE STUDY Ochratoxin A removal could be an interesting trait for the selection of promising strains; however, the strains removing efficiently the toxin could release it back; thus, the selection of the starter should take into account both the removal and the binding ability of OTA.
Collapse
Affiliation(s)
- L Petruzzi
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Foggia, Italy
| | | | | | | | | | | |
Collapse
|