1
|
Wang F, Xu J, Hu C, Lai J, Shen P, Lu Y, Jiang F. β-glucan improves intestinal health of pearl gentian grouper via activation of the p38 mitogen-activated protein kinase signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109868. [PMID: 39216713 DOI: 10.1016/j.fsi.2024.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/04/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Our previous study has demonstrated that supplementation of yeast β-glucan improves intestinal health in pearl gentian grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀), accompanied by the activation of the mitogen-activated protein kinase (MAPK) signaling pathway. In this study, we investigated the effects of perturbing p38 MAPK activity using an inhibitor on the intestinal health of β-glucan-injected pearl gentian grouper to elucidate the potential molecular mechanism underlying the protective effects of β-glucan on the fish gut. The pearl gentian grouper was categorized into four groups: PBS injected (CD group), β-glucan injected at a dose of 80 mg/kg (βG group), p38 MAPK inhibitor SB203580 injected at a dose of 1 mg/kg (SB203580 group), and a combination of β-glucan (80 mg/kg) and SB203580 (1 mg/kg) injected together (βG + SB203580 group). The results revealed that the introduction of SB203580 significantly suppressed the β-glucan-induced increase in p38α and p38β mRNA expression, as well as the phosphorylation of p38 MAPK. Both the βG group and SB203580 group exhibited reduced plica height and muscularis thickness. The βG + SB203580 group displayed a significant reduction in mucin cell level; interleukin 1β (il1β) mRNA expression; induced nitric oxide synthase, tumor necrosis factor α, and IL1β concentration; catalase and total antioxidant capacity activities. Additionally, there was a significant increase in the levels of intestinal malondialdehyde in the βG + SB203580 group compared to the βG group. The inhibition of the p38 MAPK signaling halted the trend of apoptosis-related caspase molecular expression induced by β-glucan. In conclusion, β-glucan injection resulted in elevated levels of mucous cells, nonspecific immunity, antioxidant capacity, and anti-apoptosis in grouper by modulating the p38 MAPK pathway. This study offers insights into the potential molecular mechanism underlying the protective effects of β-glucan on intestinal health in pearl gentian grouper.
Collapse
Affiliation(s)
- Fan Wang
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China; College of Life Science and Technology of Guangxi University, Nanning 530005, Guangxi, China
| | - Jia Xu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Chaoqun Hu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Junxiang Lai
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Peihong Shen
- College of Life Science and Technology of Guangxi University, Nanning 530005, Guangxi, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Fajun Jiang
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China.
| |
Collapse
|
2
|
Mishra V, Tripathi V, Yadav P, Singh MP. Beta glucan as an immune stimulant in tumor microenvironment - Insight into lessons and promises from past decade. Int J Biol Macromol 2023; 234:123617. [PMID: 36758755 DOI: 10.1016/j.ijbiomac.2023.123617] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Cancer is characterized by a perturbed immune landscape. Inside tumor microenvironment, immune system is reprogrammed to facilitate tumor growth and survival rather than eliminating it. This immune evasive mechanism needs to be reversed to normal for effective anticancer therapeutic strategy. Immunotherapy has emerged as a novel strategy for redeployment of immune cells against cancer. However, they suffer in their efficacy, response rate and side effects. This necessitated us to turn toward natural repertoires which can act as a substitute to conventional immunotherapeutics. Beta glucan, a polysaccharide derived from mushroom, serves the role of immunomodulator inside tumor microenvironment. It acts as pathogen associated molecular pattern and bind to various pattern recognition receptors expressed on surface of immune cells thereby facilitating their activation and crosstalk. This result in resurgence of suppressed immune surveillance in the tumor milieu. In this review, we highlight in brief the advances and limitation of cancer immunotherapy. Alongside, we have discussed the detailed mechanistic principle and recent advances underlying restoration of immune functionality by beta glucan.
Collapse
Affiliation(s)
- Vartika Mishra
- Centre of Biotechnology, University of Allahabad, Prayagraj, India
| | | | - Priyanka Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj, India
| | - M P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, India.
| |
Collapse
|
3
|
Cao L, Li J, Zhang J, Huang H, Gui F, Xu W, Zhang L, Bi S. Beta-glucan enhanced immune response to Newcastle disease vaccine and changed mRNA expression of spleen in chickens. Poult Sci 2022; 102:102414. [PMID: 36565635 PMCID: PMC9801214 DOI: 10.1016/j.psj.2022.102414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The present study was performed to investigate the effect of oral administration of β-glucan (G70), a product obtained from the cell wall of yeast, on Newcastle disease virus (NDV)-specific hemagglutination inhibition (HI) titers, lymphocyte proliferation, and the role of T lymphocyte subpopulations in chickens treated with live NDV vaccine. In addition, the influence of β-glucan on splenic gene expression was investigated by transcriptome sequencing. The results revealed that the supplementation of β-glucan boosted the titer of serum NDV HI increased the NDV stimulation index of lymphocytes in peripheral blood and intestinal tract, and promoted the differentiation of T lymphocytes into CD4+ T cells. The RNA sequencing (RNA-seq) analysis demonstrated that G70 upregulated the mRNA expressions related to G-protein coupled receptor and MHC class I polypeptide, and downregulated the mRNA expressions related to cathelicidin and beta-defensin. The immunomodulatory effect of G70 might function through mitogen-activated protein kinase signaling pathway. To sum up, G70 could boost the immunological efficacy of live NDV vaccine in chickens and could be applied as a potential adjuvant candidate in the poultry industry.
Collapse
Affiliation(s)
- Liting Cao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Jun Li
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Jianrong Zhang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Huan Huang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Fuxing Gui
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Wei Xu
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Li Zhang
- Immunology Research Center, Medical Research Institute, Southwest University, Rongchang, Chongqing 402460, P. R. China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China,Correspondence author:
| |
Collapse
|
4
|
Song HY, Kim KI, Han JM, Park WY, Seo HS, Lim S, Byun EB. Ionizing radiation technology to improve the physicochemical and biological properties of natural compounds by molecular modification: A review. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Zhang Y, Li Y, Xia Q, Liu L, Wu Z, Pan D. Recent advances of cereal β-glucan on immunity with gut microbiota regulation functions and its intelligent gelling application. Crit Rev Food Sci Nutr 2021:1-17. [PMID: 34748438 DOI: 10.1080/10408398.2021.1995842] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
β-glucan from cereals such as wheat, barley, oats and rye are a water-soluble dietary fiber, which are composed of repeating (1→4)-β-bond β-D-glucopyranosyl units and a single (1→3)-β-D-bond separated unit. β-glucan has a series of physicochemical properties (such as viscosity, gelling properties, solubility, etc.), which can be used as a food gel and fat substitute. Its structure endows the healthy functions, including anti-oxidative stress, lowering blood glucose and serum cholesterol, regulating metabolic syndrome and exerting gut immunity via gut microbiota. Due to their unique structural properties and efficacy, cereal β-glucan are not only applied in food substrates in the food industry, but also in food coatings and packaging. This article reviewed the applications of cereal β-glucan in hydrogels, aerogels, intelligent packaging systems and targeted delivery carriers in recent years. Cereal β-glucan in edible film and gel packaging applications are becoming more diversified and intelligent in recent years. Those advances provide a potential solution based on cereal β-glucan as biodegradable substances for immune regulation delivery system and intelligent gelling material in the biomedicine field.
Collapse
Affiliation(s)
- Yunzhen Zhang
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Yueqin Li
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Qiang Xia
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Lianliang Liu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Zufang Wu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| |
Collapse
|
6
|
Luo J, Cheng L, Du Y, Mao X, He J, Yu B, Chen D. The anti-inflammatory effects of low- and high-molecular-weight beta-glucans from Agrobacterium sp. ZX09 in LPS-induced weaned piglets. Food Funct 2020; 11:585-595. [PMID: 31858092 DOI: 10.1039/c9fo00627c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The physicochemical characteristics of beta-glucans determine the immune responses of the intestines and whole body. It is hypothesized that glucans with different molecular weights have diverse modes of action on LPS-mediated immune activity. This study aimed to verify the immune-modulatory effects of two types of beta-glucans in LPS-induced weaned piglets. The results indicated that dietary beta-glucan supplementation could prevent losses in body weight gain caused by LPS challenge. Supplementation with different molecular weights of beta-glucans decreased the production of IL-1β and TNF-α and increased IL-10 production, which is likely associated with key factors such as TLR4 and NF-κB. High-molecular-weight beta-glucans seemed to have a strong functional capacity to modulate the innate immune response through the Dectin-1 receptor. Therefore, the results indicate that supplementing piglets with Agrobacterium sp. ZX09 beta-glucans inhibits LPS-mediated depression in the growth performance and plays a protective role during LPS challenge possibly via the Dectin-1 receptor and the TLR4/NF-κB pathway. The results reveal the potential therapeutic activity of purified Agrobacterium sp. ZX09 beta-glucan following experimental LPS infusion.
Collapse
Affiliation(s)
- Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, Sichuan 611130, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Β-glucan is a strongly hydrophilic non-starchy polysaccharide, which, when incorporated in food, is renowned for its ability to alter functional characteristics such as viscosity, rheology, texture, and sensory properties of the food product. The functional properties of β-glucans are directly linked to their origin/source, molecular weight, and structural features. The molecular weight and structural/conformational features are in turn influenced by method of extraction and modification of the β-glucan. For example, whereas physical modification techniques influence only the spatial structures, modification by chemical agents, enzyme hydrolysis, mechanical treatment, and irradiation affect both spatial conformation and primary structures of β-glucan. Consequently, β-glucan can be modified (via one or more of the aforementioned techniques) into forms that have desired morphological, rheological, and (bio)functional properties. This review describes how various modification techniques affect the structure, properties, and applications of β-glucans in the food industry.
Collapse
|
8
|
He D, Wu S, Yan L, Zuo J, Cheng Y, Wang H, Liu J, Zhang X, Wu M, Choi JI, Tong H. Antitumor bioactivity of porphyran extracted from Pyropia yezoensis Chonsoo2 on human cancer cell lines. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6722-6730. [PMID: 31350864 DOI: 10.1002/jsfa.9954] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Pyropia yezoensis, rich in porphyran, is a medicine-edible red alga. In the present study, the physicochemical characteristics, conformational states and antitumor activities of a novel porphyran extracted from the high-yield algal strain Pyropia yezoensis Chonsoo2 and its two degraded derivatives by gamma irradiation were investigated. RESULTS Pyropia yezoensis porphyran is a water-soluble, triple-helical sulfated hetero-galactopyranose, named PYP. PYP was degraded by gamma irradiation at 20 kGy and 50 kGy, giving two low molecular weight derivatives comprising PYP-20 and PYP-50, respectively. PYP with a higher molecular weight has a solution conformation different from PYP-20 and PYP-50. Three porphyrans had no toxicity in normal human liver cells (HL-7702) and showed antitumor effects on Hep3B, HeLa and MDA-MB-231. They had better antitumor against HeLa cells, exhibiting a similar inhibition ratio compared to 5-fluorouracil, with PYP especially exhibiting a higher inhibition ratio than 5-fluorouracil. With respect to HeLa cells, the different antitumor activities might be related to porphyran molecular weight and solution conformation. Furthermore, the HeLa cell cycle was blocked in the G2/M phase after PYP treatment, leading to cell proliferation inhibition. The induction of cell cycle arrest was related to the changes in the expression of p21, p53, Cyclin B1 and cyclin-dependent kinase 1. CONCLUSION Pyropia yezoensis porphyran, as applied to medicine and functional food, could potentially be used as a non-toxic natural adjuvant in cancer therapy. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dan He
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, South Korea
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Siya Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Liping Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jihui Zuo
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Yang Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Hanfei Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jian Liu
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, South Korea
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, South Korea
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| |
Collapse
|
9
|
Song HY, Kim HM, Mushtaq S, Kim WS, Kim YJ, Lim ST, Byun EB. Gamma-Irradiated Chrysin Improves Anticancer Activity in HT-29 Colon Cancer Cells Through Mitochondria-Related Pathway. J Med Food 2019; 22:713-721. [PMID: 31158040 DOI: 10.1089/jmf.2018.4320] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Irradiation technology can improve the biological activities of natural molecules through a structural modification. This study was conducted to investigate the enhancement of the anticancer effects of chrysin upon exposure to gamma irradiation. Gamma irradiation induces the production of new radiolytic peaks simultaneously with the decrease of the chrysin peak, which increases the cytotoxicity in HT-29 human colon cancer cells. An isolated chrysin derivative (CM1) exhibited a stronger apoptotic effect in HT-29 cells than intact chrysin. The apoptotic characteristics induced by CM1 in HT-29 cells was mediated through the intrinsic signaling pathway, including the excessive production of included reactive oxygen species, the dissipation of the mitochondrial membrane potential, regulation of the B cell lymphoma-2 family, activation of caspase-9, 3, and cleavage of poly (adenosine diphosphate-ribose) polymerase. Our findings suggest that CM1 can be a potential anticancer candidate for the treatment of colon cancer.
Collapse
Affiliation(s)
- Ha-Yeon Song
- 1 Department of Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea.,2 Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Korea
| | - Hye-Min Kim
- 3 Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Sajid Mushtaq
- 1 Department of Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea.,4 Department of Radiation Biotechnology and Applied Radioisotope Science, Korea University of Science and Technology, Deajeon, Korea
| | - Woo Sik Kim
- 1 Department of Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Young Jun Kim
- 3 Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Seung-Taik Lim
- 2 Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Korea
| | - Eui-Baek Byun
- 1 Department of Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| |
Collapse
|
10
|
Hwang JT, Cho JM, Jeong IH, Lee JY, Ha KC, Baek HI, Yang HJ, Kim MJ, Lee JH. The effect of silk peptide on immune system, A randomized, double-blind, placebo-controlled clinical trial. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
11
|
de Graaff P, Govers C, Wichers HJ, Debets R. Consumption of β-glucans to spice up T cell treatment of tumors: a review. Expert Opin Biol Ther 2019; 18:1023-1040. [PMID: 30221551 DOI: 10.1080/14712598.2018.1523392] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Adoptive T-cell treatments of solid cancers have evolved into a robust therapy with objective response rates surpassing those of standardized treatments. Unfortunately, only a limited fraction of patients shows durable responses, which is considered to be due to a T cell-suppressive tumor microenvironment (TME). Here we argue that naturally occurring β-glucans can enable reversion of such T cell suppression by engaging innate immune cells and enhancing numbers and function of lymphocyte effectors. AREAS COVERED This review summarizes timely reports with respect to absorption, trafficking and immune stimulatory effects of β-glucans, particularly in relation to innate immune cells. Furthermore, we list effects toward well-being and immune functions in healthy subjects as well as cancer patients treated with orally administered β-glucans, extended with effects of β-glucan treatments in mouse cancer models. EXPERT OPINION Beta-glucans, when present in food and following uptake in the proximal gut, stimulate immune cells present in gut-associated lymphoid tissue and initiate highly conserved pro-inflammatory pathways. When tested in mouse cancer models, β-glucans result in better control of tumor growth and shift the TME toward a T cell-sensitive environment. Along these lines, we advocate that intake of β-glucans provides an accessible and immune-potentiating adjuvant when combined with adoptive T-cell treatments of cancer.
Collapse
Affiliation(s)
- Priscilla de Graaff
- a Laboratory of Tumor Immunology, Department of Medical Oncology , Erasmus MC Cancer Institute , Rotterdam , The Netherlands.,b Food and Biobased Research , Wageningen University and Research , Wageningen , The Netherlands
| | - Coen Govers
- b Food and Biobased Research , Wageningen University and Research , Wageningen , The Netherlands
| | - Harry J Wichers
- b Food and Biobased Research , Wageningen University and Research , Wageningen , The Netherlands
| | - Reno Debets
- a Laboratory of Tumor Immunology, Department of Medical Oncology , Erasmus MC Cancer Institute , Rotterdam , The Netherlands
| |
Collapse
|
12
|
Saccharomyces cerevisiae β-glucan-induced SBD-1 expression in ovine ruminal epithelial cells is mediated through the TLR-2-MyD88-NF-κB/MAPK pathway. Vet Res Commun 2019; 43:77-89. [PMID: 30863917 DOI: 10.1007/s11259-019-09747-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/27/2019] [Indexed: 12/18/2022]
Abstract
Ovine ruminal epithelial cells (ORECs) not only have a physical barrier function but also can secrete host defence peptides (HDPs), such as sheep β-defensin-1 (SBD-1). As a feed additive, Saccharomyces cerevisiae can enhance the host's innate immunity. β-glucan, a cell wall component of Saccharomyces cerevisiae, can stimulate innate immune responses and trigger the up-regulation of SBD-1 in ORECs. The signaling mechanisms involved in β-glucan-induced SBD-1 expression are not completely understood. The aim of this study was to identify the receptors and intracellular pathways involved in the up-regulation of SBD-1 induced by β-glucan. ORECs were cultured, and the regulatory mechanisms of β-glucan-induced up-regulation of SBD-1 were detected using quantitative real-time PCR (qPCR), enzyme-linked immunosorbent assay (ELISA), and western blotting. TLR-2 and MyD88 knockdown or inhibition attenuated β-glucan-induced SBD-1 expression. We also showed that inhibition of MAPK and NF-κB pathways significantly reduced β-glucan-induced SBD-1 expression. These results demonstrate that β-glucan-induced SBD-1 expression is TLR-2-MyD88-dependent and may be regulated by both MAPK and NF-κB pathways. Since NF-κB inhibition had a greater effect on the down-regulation of β-glucan-induced SBD-1 expression, the NF-κB pathway may be the dominant signaling pathway involved in the regulation of defensin expression. Our studies demonstrate that β-glucan-induced SBD-1 expression is mediated through the TLR-2-MyD88-NF-κB/MAPK pathway. Our results would contribute to the understanding of immunological modulations in the gastrointestinal tract triggered by probiotic yeast cell wall components.
Collapse
|
13
|
Song HY, Kim HM, Kim WS, Byun EH, Jang BS, Choi DS, Byun EB. Effect of gamma irradiation on the anti-oxidant and anti-melanogenic activity of black ginseng extract in B16F10 melanoma cells. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Majtan J, Jesenak M. β-Glucans: Multi-Functional Modulator of Wound Healing. Molecules 2018; 23:molecules23040806. [PMID: 29614757 PMCID: PMC6017669 DOI: 10.3390/molecules23040806] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/27/2023] Open
Abstract
β-glucans are derived from a variety of sources including yeast, grain and fungus and belong to the class of drugs known as biological response modifiers. They possess a broad spectrum of biological activities that enhance immunity in humans. One promising area for β-glucans’ application is dermatology, including wound care. Topical applications of β-glucans are increasing, especially due to their pluripotent properties. Macrophages, keratinocytes and fibroblasts are considered the main target cells of β-glucans during wound healing. β-glucans enhance wound repair by increasing the infiltration of macrophages, which stimulates tissue granulation, collagen deposition and reepithelialization. β-glucan wound dressings represent a suitable wound healing agent, with great stability and resistance to wound proteases. This review summarizes the current knowledge and progress made on characterizing β-glucans’ wound healing properties in vitro and in vivo and their safety and efficacy in managing non-healing wounds or other chronic dermatological conditions and diseases.
Collapse
Affiliation(s)
- Juraj Majtan
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51 Bratislava, Slovakia.
| | - Milos Jesenak
- Department of Paediatrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 59 Martin, Slovakia.
| |
Collapse
|
15
|
Elsonbaty SM, Zahran WE, Moawed FS. Gamma-irradiated β-glucan modulates signaling molecular targets of hepatocellular carcinoma in rats. Tumour Biol 2017; 39:1010428317708703. [PMID: 28810822 DOI: 10.1177/1010428317708703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
β-glucans are one of the most abundant forms of polysaccharides known as biological response modifiers which influence host's biological response and stimulate immune system. Accordingly, this study was initiated to evaluate irradiated β-glucan as a modulator for cellular signaling growth factors involved in the pathogenesis of hepatocellular carcinoma in rats. Hepatocellular carcinoma was induced with 20 mg diethylnitrosamine/kg BW. Rats received daily by gastric gavage 65 mg irradiated β-glucan/kg BW. It was found that treatment of rats with diethylnitrosamine induced hepatic injury and caused significant increase in liver injury markers with a concomitant significant increase in both hepatic oxidative and inflammatory indices: alpha-fetoprotein, interferon gamma, and interleukin 6 in comparison with normal and irradiated β-glucan-treated groups. Western immunoblotting showed a significant increase in the signaling growth factors: extracellular signal-regulated kinase 1 and phosphoinositide 3-kinase proteins in a diethylnitrosamine-treated group while both preventive and therapeutic irradiated β-glucan treatments recorded significant improvement versus diethylnitrosamine group via the modulation of growth factors that encounters hepatic toxicity. The transcript levels of vascular endothelial growth factor A and inducible nitric oxide synthase genes were significantly higher in the diethylnitrosamine-treated group in comparison with controls. Preventive and therapeutic treatments with irradiated β-glucan demonstrated that the transcript level of these genes was significantly decreased which demonstrates the protective effect of β-glucan. Histological investigations revealed that diethylnitrosamine treatment affects the hepatic architecture throughout the significant severe appearance of inflammatory cell infiltration in the portal area and congestion in the portal vein in association with severe degeneration and dysplasia in hepatocytes all over hepatic parenchyma. The severity of hepatic architecture changes was significantly decreased with both β-glucan therapeutic and preventive treatments. In conclusion, irradiated β-glucan modulated signal growth factors, vascular endothelial growth factor A, extracellular signal-regulated kinase 1, and phosphatidylinositol-3-kinase, which contributed to experimental hepatocarcinogenesis.
Collapse
Affiliation(s)
- Sawsan M Elsonbaty
- 1 National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Walid E Zahran
- 2 Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Fatma Sm Moawed
- 1 National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
16
|
Byun EB, Song HY, Mushtaq S, Kim HM, Kang JA, Yang MS, Sung NY, Jang BS, Byun EH. Gamma-Irradiated Luteolin Inhibits 3-Isobutyl-1-Methylxanthine-Induced Melanogenesis Through the Regulation of CREB/MITF, PI3K/Akt, and ERK Pathways in B16BL6 Melanoma Cells. J Med Food 2017; 20:812-819. [DOI: 10.1089/jmf.2016.3890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Eui-Baek Byun
- Division of Biotechnology, Advanced Radiation Technology Institute/Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Ha-Yeon Song
- Division of Biotechnology, Advanced Radiation Technology Institute/Korea Atomic Energy Research Institute, Jeongeup, Korea
- Department of Food Science and Technology, Kongju National University, Yesan, Korea
| | - Sajid Mushtaq
- Division of Biotechnology, Advanced Radiation Technology Institute/Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Hye-Min Kim
- Division of Biotechnology, Advanced Radiation Technology Institute/Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Jung Ae Kang
- Division of Biotechnology, Advanced Radiation Technology Institute/Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Mi-So Yang
- Department of Microbiology, Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Nak-Yun Sung
- Department of Food Science and Technology, Kongju National University, Yesan, Korea
| | - Beom-Su Jang
- Division of Biotechnology, Advanced Radiation Technology Institute/Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Eui-Hong Byun
- Department of Food Science and Technology, Kongju National University, Yesan, Korea
| |
Collapse
|
17
|
Roudi R, Mohammadi SR, Roudbary M, Mohsenzadegan M. Lung cancer and β-glucans: review of potential therapeutic applications. Invest New Drugs 2017; 35:509-517. [PMID: 28303529 DOI: 10.1007/s10637-017-0449-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022]
Abstract
The potential of natural substances with immunotherapeutic properties has long been studied. β-glucans, a cell wall component of certain bacteria and fungi, potentiate the immune system against microbes and toxic substances. Moreover, β-glucans are known to exhibit direct anticancer effects and can suppress cancer proliferation through immunomodulatory pathways. Mortality of lung cancer has been alarmingly increasingly worldwide; therefore, treatment of lung cancer is an urgent necessity. Numerous researchers are now dedicated to using β-glucans as a therapy for lung cancer. In the present attempt, we have reviewed the studies addressing therapeutic effects of β-glucans in primary and metastatic lung cancer published in the time period of 1991-2016.
Collapse
Affiliation(s)
- Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahla Roudbar Mohammadi
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Roudbary
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Zheng D, Zou Y, Cobbina SJ, Wang W, Li Q, Chen Y, Feng W, Zou Y, Zhao T, Zhang M, Yang L, Wu X. Purification, characterization and immunoregulatory activity of a polysaccharide isolated from Hibiscus sabdariffa L. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1599-1606. [PMID: 27418109 DOI: 10.1002/jsfa.7908] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 04/13/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Hibiscus sabdariffa L. is not only used traditionally as a component of herbal drinks, beverages and flavoring agents but also as a herbal medicine in the drug industry. Bioactive polysaccharides are important constituents of H. sabdariffa that may contribute to the plant's beneficial effects. This study was designed to investigate the structural characteristics of a water-soluble polysaccharide from H. sabdariffa, HSP41, and its immunoregulatory activity on RAW264.7 cells. RESULTS HSP41 was mainly composed of arabinose, xylose and mannose at a molar ratio of 1:1.34:15.6, with an average molecular weight of 3.3 × 105 Da. Fourier transform infrared (FTIR) spectra exhibited absorption peaks characteristic of HSP41. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed the amorphous form and aggregation conformation of HSP41 respectively. HSP41 significantly induced interleukin 1β (IL-1β) and inducible nitric oxide synthase (iNOS) expression in RAW264.7 cells in vitro, promoting an increase in nuclear factor kB p65 (NF-kB p65) levels in the nucleus. CONCLUSION The results indicated that HSP41 up-regulated the immune response by stimulating RAW264.7 cell activity. HSP41, a promising immunoregulator, possibly contributes to the health benefits of H. sabdariffa and might have potential applications in health food or medicine. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Daheng Zheng
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
- School of Life Science, Shaoxing University, Chengnan Road 900, Shaoxing, 312000, Zhejiang, China
| | - Ye Zou
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Samuel Jerry Cobbina
- School of Environment and Safety, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Wei Wang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Qian Li
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Yao Chen
- School of Environment and Safety, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Weiwei Feng
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Yanmin Zou
- School of Pharmacy, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Xiangyang Wu
- School of Environment and Safety, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| |
Collapse
|