1
|
Prieto LA, Khiar-Fernández N, Calderón-Montaño JM, López-Lázaro M, Lucía-Tamudo J, Nogueira JJ, León R, Moreno N, Valdivia V, Recio R, Fernández I. Exploring the broad-spectrum activity of carbohydrate-based Iberin analogues: From anticancer effect to antioxidant properties. Eur J Med Chem 2025; 289:117469. [PMID: 40058183 DOI: 10.1016/j.ejmech.2025.117469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
Iberin is a lower homologue of sulforaphane (SFN) which has shown effectiveness in addressing various pathologies, including its anti-inflammatory properties, antitumor activity against various cancers, and antimicrobial effects. Building on this activity, a series of carbohydrate-based analogues of the natural isothiocyanate (ITC) iberin were synthesized, and their anticancer and antioxidant activities were evaluated. Cytotoxicity studies on three cancer cell lines using Resazurin assay demonstrated significant cytotoxic activity, particularly against bladder cancer. The sulfonyl derivatives exhibited the most potent effects, with IC50 values comparable to those of reference natural isothiocyanates (from 10 to 20 μM). Computational simulations support the hypothesis that carbohydrate-based ITCs can interact with STAT3's SH2 domain in a manner similar to SFN, laying the groundwork for their potential development as STAT3-targeted anticancer agents. The antioxidant potential of these compounds was assessed by their ability to activate the Nrf2 factor, yielding CD values (concentration required to double luciferase activity compared to basal conditions) between 1.55 and 10.36 μM, without cytotoxicity at these concentrations. Notably, the phenylsulfone derivative 22β displayed slightly higher or comparable antioxidant activity to that of natural isothiocyanates. Based on these findings, this phenylsulfone analogue was selected as the optimal compound due to its dual anticancer and antioxidant activities. An additional advantage of this carbohydrate-based ITC is that it is a solid compound, making it easier to handle than natural isothiocyanates, which are typically liquids.
Collapse
Affiliation(s)
- L A Prieto
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
| | - N Khiar-Fernández
- Department of Organic Chemistry, School of Chemistry, Universidad Complutense de Madrid, Plaza de las Ciencias s/n, 28040, Madrid, Spain
| | - J M Calderón-Montaño
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012, Seville, Spain
| | - M López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012, Seville, Spain
| | - J Lucía-Tamudo
- Faculty of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - J J Nogueira
- Department of Chemistry, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, 7, 28049, Madrid, Spain; Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
| | - R León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, Madrid, 28006, Spain
| | - N Moreno
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
| | - V Valdivia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain.
| | - R Recio
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
| | - I Fernández
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain.
| |
Collapse
|
2
|
Anestopoulos I, Paraskevaidis I, Kyriakou S, Potamiti L, Trafalis DT, Botaitis S, Franco R, Pappa A, Panayiotidis MI. Isothiocyanates Enhance the Anti-Melanoma Effect of Zebularine Through Modulation of Apoptosis and Regulation of DNMTs' Expression, Chromatin Configuration and Histone Posttranslational Modifications Associated with Altered Gene Expression Patterns. EPIGENOMES 2025; 9:7. [PMID: 40136320 PMCID: PMC11941220 DOI: 10.3390/epigenomes9010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Background: In the present study, we aimed to characterize the cytotoxic efficacy of Zebularine either as a single agent or in combination with various isothiocyanates in an in vitro model consisting of human melanoma (A375, Colo-679) as well as non-tumorigenic immortalized keratinocyte (HaCaT) cells. Methods: In this model, we have evaluated the anti-melanoma effect of Zebularine (in single and combinatorial protocols) in terms of cell viability, apoptotic induction and alterations in ultrastructural chromatin configuration, protein expression levels of DNA methyltransferases (DNMTs) and associated histone epigenetic marks capable of mediating gene expression. Results: Exposure to Zebularine resulted in dose- and time-dependent cytotoxicity through apoptotic induction in malignant melanoma cells, while neighboring non-tumorigenic keratinocytes remained unaffected. A more profound response was observed in combinational protocols, as evidenced by a further decline in cell viability leading to an even more robust apoptotic induction followed by a differential response (i.e., activation/de-activation) of various apoptotic genes. Furthermore, combined exposure protocols caused a significant decrease of DNMT1, DNMT3A and DNMT3B protein expression levels together with alterations in ultrastructural chromatin configuration and protein expression levels of specific histone modification marks capable of modulating gene expression. Conclusions: Overall, we have developed a novel experimental approach capable of potentiating the cytotoxic efficacy of Zebularine against human malignant melanoma cells while at the same time maintaining a non-cytotoxic profile against neighboring non-tumorigenic keratinocyte (HaCaT) cells.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus; (I.A.); (S.K.); (L.P.)
| | - Ioannis Paraskevaidis
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus; (I.A.); (S.K.); (L.P.)
| | - Louiza Potamiti
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus; (I.A.); (S.K.); (L.P.)
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Sotiris Botaitis
- Department of Surgery, School of Medicine, University Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Rodrigo Franco
- School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus; (I.A.); (S.K.); (L.P.)
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
3
|
Yang H, Dai B, Chen L, Li Y, Jin X, Gao C, Han L, Bian X. Iberverin Downregulates GPX4 and SLC7A11 to Induce Ferroptotic Cell Death in Hepatocellular Carcinoma Cells. Biomolecules 2024; 14:1407. [PMID: 39595583 PMCID: PMC11592392 DOI: 10.3390/biom14111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Ferroptosis, a recently elucidated style of regulated cell death, has emerged as a significant area of investigation in cancer biology. Natural active compounds that have anti-cancer effects are promising candidates for cancer prevention. Iberverin, a natural compound derived from Brassica oleracea var. capitata, has been shown to exert anti-tumor activities in some cancers. However, its role in hepatocellular carcinoma (HCC) cells and the molecular mechanisms are still poorly understood. In this study, we proved that iberverin can induce intracellular reactive oxygen species (ROS) generation to inhibit cell proliferation and initiate ferroptotic cell death in HCC cells, which can be eradicated by the ferroptosis inhibitor ferrostatin-1 (Fer-1) or deferoxamine mesylate (DFO) and ROS scavenger (GSH or NAC). Mechanistically, iberverin treatment can simultaneously downregulate SLC7A11 mRNA level and degrade GPX4 through the ubiquitination pathway, leading to lipid peroxidation and ferroptotic cell death in HCC cells. Significantly, a low dose of iberverin can remarkably increase the sensitivity of HCC cells to ferroptosis induced by canonical ferroptosis inducers RSL3 and imidazole ketone erastin (IKE). This study uncovers a critical function of iberverin in preventing HCC through ferroptosis and provides a promising strategy for HCC treatment either via iberverin alone or in combination with canonical ferroptosis inducers in the future.
Collapse
Affiliation(s)
- Haoying Yang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (H.Y.); (B.D.); (L.C.); (X.J.); (C.G.); (L.H.)
| | - Bolei Dai
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (H.Y.); (B.D.); (L.C.); (X.J.); (C.G.); (L.H.)
| | - Liangjie Chen
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (H.Y.); (B.D.); (L.C.); (X.J.); (C.G.); (L.H.)
| | - Yingping Li
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China;
| | - Xiaorui Jin
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (H.Y.); (B.D.); (L.C.); (X.J.); (C.G.); (L.H.)
| | - Chengchang Gao
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (H.Y.); (B.D.); (L.C.); (X.J.); (C.G.); (L.H.)
| | - Linfen Han
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (H.Y.); (B.D.); (L.C.); (X.J.); (C.G.); (L.H.)
| | - Xueli Bian
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (H.Y.); (B.D.); (L.C.); (X.J.); (C.G.); (L.H.)
| |
Collapse
|
4
|
Mammone FR, Panusa A, Risoluti R, Cirilli R. Green HPLC Enantioseparation of Chemopreventive Chiral Isothiocyanates Homologs on an Immobilized Chiral Stationary Phase Based on Amylose tris-[( S)-α-Methylbenzylcarbamate]. Molecules 2024; 29:2895. [PMID: 38930960 PMCID: PMC11206679 DOI: 10.3390/molecules29122895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Sulforaphane is a chiral phytochemical with chemopreventive properties. The presence of a stereogenic sulfur atom is responsible for the chirality of the natural isothiocyanate. The key role of sulfur chirality in biological activity is underscored by studies of the efficacy of individual enantiomers as chemoprotective agents. The predominant native (R) enantiomer is active, whereas the (S) antipode is inactive or has little or no biological activity. Here we provide an enantioselective high-performance liquid chromatography (HPLC) protocol for the direct and complete resolution of sulforaphane and its chiral natural homologs with different aliphatic chain lengths between the sulfinyl sulfur and isothiocyanate group, namely iberin, alyssin, and hesperin. The chromatographic separations were carried out on the immobilized-type CHIRALPAK IH-3 chiral stationary phase with amylose tris-[(S)-methylbenzylcarbamate] as a chiral selector. The effects of different mobile phases consisting of pure alcoholic solvents and hydroalcoholic mixtures on enantiomer retention and enantioselectivity were carefully investigated. Simple and environmentally friendly enantioselective conditions for the resolution of all chiral ITCs were found. In particular, pure ethanol and highly aqueous mobile phases gave excellent enantioseparations. The retention factors of the enantiomers were recorded as the water content in the aqueous-organic modifier (methanol, ethanol, or acetonitrile) mobile phases progressively varied. U-shaped retention maps were generated, indicating a dual and competitive hydrophilic interaction liquid chromatography (HILIC) and reversed-phase liquid chromatography retention mechanism on the CHIRALPAK IH-3 chiral stationary phase. Finally, experimental chiroptical studies performed in ethanol solution showed that the (R) enantiomers were eluted before the (S) counterpart under all eluent conditions investigated.
Collapse
Affiliation(s)
- Francesca Romana Mammone
- National Centre for the Control and Evaluation of Medicines, Chemical Medicines Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.R.M.); (A.P.)
| | - Alessia Panusa
- National Centre for the Control and Evaluation of Medicines, Chemical Medicines Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.R.M.); (A.P.)
| | - Roberta Risoluti
- Department of Chemistry, “Sapienza” University of Rome, P.le A. Moro 5, 00185 Rome, Italy;
| | - Roberto Cirilli
- National Centre for the Control and Evaluation of Medicines, Chemical Medicines Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.R.M.); (A.P.)
| |
Collapse
|
5
|
Zhang Y, Du J, Jin L, Pan L, Yan X, Lin S. Iberverin exhibits antineoplastic activities against human hepatocellular carcinoma via DNA damage-mediated cell cycle arrest and mitochondrial-related apoptosis. Front Pharmacol 2023; 14:1326346. [PMID: 38152688 PMCID: PMC10751328 DOI: 10.3389/fphar.2023.1326346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the malignant tumors with high incidence and mortality rates in the world. Isothiocyanates (ITCs), bioactive substances present primarily in the plant order Brassicales, have been proved to be promising candidates for novel anti-HCC drugs with chemopreventive and anticancer activities. Iberverin, a predominant ITC isolated from the seeds of oxheart cabbage, has been discovered with anticancer property in lung cancer cells. However, the roles of iberverin in HCC remain elusive. In the present study, the effect and potential mechanisms of iberverin against human HCC were dissected. We demonstrated that low concentrations of iberverin inhibited cell proliferation, suppressed migration and induced mitochondrial-related apoptosis in vitro, and hampered tumorigenicity in vivo, with no obvious toxicity. Furthermore, we found that iberverin treatment induced DNA damage and G2/M phase arrest. Iberverin treatment also caused increased intracellular reactive oxygen species formation and glutathione depletion. Taken together, these results suggest that iberverin promotes mitochondrial-mediated apoptosis and induces DNA damage and G2/M cell cycle arrest in HCC by enhancing oxidative stress. Our findings provide better understanding of the anti-HCC mechanisms of ITCs and the potential for the natural product iberverin as a promising new anti-HCC biotherapeutic.
Collapse
Affiliation(s)
- Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Liying Pan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, Zhejiang, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Qin H, King GJ, Borpatragohain P, Zou J. Developing multifunctional crops by engineering Brassicaceae glucosinolate pathways. PLANT COMMUNICATIONS 2023:100565. [PMID: 36823985 PMCID: PMC10363516 DOI: 10.1016/j.xplc.2023.100565] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Glucosinolates (GSLs), found mainly in species of the Brassicaceae family, are one of the most well-studied classes of secondary metabolites. Produced by the action of myrosinase on GSLs, GSL-derived hydrolysis products (GHPs) primarily defend against biotic stress in planta. They also significantly affect the quality of crop products, with a subset of GHPs contributing unique food flavors and multiple therapeutic benefits or causing disagreeable food odors and health risks. Here, we explore the potential of these bioactive functions, which could be exploited for future sustainable agriculture. We first summarize our accumulated understanding of GSL diversity and distribution across representative Brassicaceae species. We then systematically discuss and evaluate the potential of exploited and unutilized genes involved in GSL biosynthesis, transport, and hydrolysis as candidate GSL engineering targets. Benefiting from available information on GSL and GHP functions, we explore options for multifunctional Brassicaceae crop ideotypes to meet future demand for food diversification and sustainable crop production. An integrated roadmap is subsequently proposed to guide ideotype development, in which maximization of beneficial effects and minimization of detrimental effects of GHPs could be combined and associated with various end uses. Based on several use-case examples, we discuss advantages and limitations of available biotechnological approaches that may contribute to effective deployment and could provide novel insights for optimization of future GSL engineering.
Collapse
Affiliation(s)
- Han Qin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | | | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
7
|
Brassica Genus Seeds: A Review on Phytochemical Screening and Pharmacological Properties. Molecules 2022; 27:molecules27186008. [PMID: 36144744 PMCID: PMC9500762 DOI: 10.3390/molecules27186008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Traditionally, Brassica species are widely used in traditional medicine, human food, and animal feed. Recently, special attention has been dedicated to Brassica seeds as source of health-promoting phytochemicals. This review provides a summary of recent research on the Brassica seed phytochemistry, bioactivity, dietary importance, and toxicity by screening the major online scientific database sources and papers published in recent decades by Elsevier, Springer, and John Wiley. The search was conducted covering the period from January 1964 to July 2022. Phytochemically, polyphenols, glucosinolates, and their degradation products were the predominant secondary metabolites in seeds. Different extracts and their purified constituents from seeds of Brassica species have been found to possess a wide range of biological properties including antioxidant, anticancer, antimicrobial, anti-inflammatory, antidiabetic, and neuroprotective activities. These valuable functional properties of Brassica seeds are related to their richness in active compounds responsible for the prevention and treatment of various chronic diseases such as obesity, diabetes, cancer, and COVID-19. Currently, the potential properties of Brassica seeds and their components are the main focus of research, but their toxicity and health risks must also be accounted for.
Collapse
|
8
|
Gras A, Parada M, Pellicer J, Vallès J, Garnatje T. Cancer and Traditional Plant Knowledge, an Interesting Field to Explore: Data from the Catalan Linguistic Area. Molecules 2022; 27:molecules27134070. [PMID: 35807319 PMCID: PMC9268183 DOI: 10.3390/molecules27134070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Cancer is the second cause of death in the world and is foreseen to be responsible for about 16 million deaths in 2040. Approximately, 60% of the drugs used to treat cancer are of natural origin. Besides the extensive use of some of these drugs in therapies, such as those derived from the genus Taxus, a significant number of plants have revealed themselves as useful against cancer in recent years. The field of ethnobotany focuses on documenting traditional knowledge associated with plants, constituting a starting point to uncover the potential of new plant-based drugs to treat or prevent, in this case, tumour diseases and side effects of chemotherapy and radiotherapy. From a series of extensive ethnobotanical prospections across the Catalan linguistic area (CLA), we have recorded uses for 41 taxa with antitumour effects. The two most quoted botanical families are Asteraceae and Ranunculaceae, and the most frequently reported species is Ranunculus parnassifolius, a high-mountain species, which is widely collected for this purpose. The reported species have been used to treat an important number of cancer types, focusing on preventive, palliative, and curative uses, as well as to deal with the side effects of conventional treatments. Comparing our results in CLA with previous data available in the most comprehensive databases of pharmacology and a review of cytotoxicity assays revealed that for the several species reported here, there was no previous evidence of traditional uses against cancer. Despite the need for further analyses to experimentally validate the information presented here, combining traditional uses and phylogenetically-informed strategies to phytochemical and pharmacological research would represent new avenues to establish more integrative approaches, hence improving the ability to select new candidate taxa in cancer research.
Collapse
Affiliation(s)
- Airy Gras
- Laboratori de Botànica—Unitat Associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació—Institut de Recerca de la Biodiversitat IRBio, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain; (M.P.); (J.V.)
- Center for the Study of Human Health, Emory University, Atlanta, GA 30033-5305, USA
- Correspondence:
| | - Montse Parada
- Laboratori de Botànica—Unitat Associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació—Institut de Recerca de la Biodiversitat IRBio, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain; (M.P.); (J.V.)
| | - Jaume Pellicer
- Institut Botànic de Barcelona (IBB), CSIC-Ajuntament de Barcelona, 08038 Barcelona, Catalonia, Spain; (J.P.); (T.G.)
- Royal Botanic Gardens, Kew, Richmond TW9 3AE, UK
| | - Joan Vallès
- Laboratori de Botànica—Unitat Associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació—Institut de Recerca de la Biodiversitat IRBio, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain; (M.P.); (J.V.)
- Secció de Ciències Biològiques, Institut d’Estudis Catalans, 08001 Barcelona, Catalonia, Spain
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB), CSIC-Ajuntament de Barcelona, 08038 Barcelona, Catalonia, Spain; (J.P.); (T.G.)
| |
Collapse
|
9
|
Inter-Varietal Variation in Phenolic Profile, Sugar Contents, Antioxidant, Anti-Proliferative and Antibacterial Activities of Selected Brassica Species. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The main objective of this research work was to evaluate the variation in nutritional profile, antioxidant, anti-proliferative and antibacterial activities of selected species of Brassica. Five locally grown Brassica species (cauliflower, broccoli, red cabbage, white cabbage and Chinese cabbage) were collected from Ayub Agriculture Research Institute (AARI), Faisalabad, Pakistan. Polyphenolic rich extracts of these Brassicaceae species were prepared by Soxhlet extraction technique using ethanol. Phenolic acids, flavonoids and sugar contents of the investigated species were determined and quantified by RP-HPLC. Antioxidant activity was carried out by measurement of total phenolic contents (TPC), total flavonoid contents (TFC), reducing potential and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity. Anti-proliferative activity of all the extracts was determined by MTT assay on lung cancer cell line A549. Antibacterial activity was tested against the two bacterial strains, i.e., Bacillus cereus (B. cereus) and Escherichia coli (E. coli). HPLC analysis revealed the presence of gallic acid, p-coumaric acid, chlorogenic acid and benzoic acid as the major phenolic acids, whereas catechine was the major flavonoid in most of the extracts. The TPC ranged from 9.7 to 32.8 mg/g of dry plant material, measured GAE and TFC ranged from 7.7 to 23.7 mg/g of dry plant material, measured as CE. Higher TPC and TFC were found in red cabbage extract followed by cauliflower, broccoli, white cabbage and Chinese cabbage. Red cabbage extract also showed higher DPPH radical scavenging activity (IC50 = 2.3 µg/mL) followed by cauliflower, broccoli, white cabbage and Chinese cabbage. Maltodextrose was the major sugar followed by fructose in all species of Brassica. Promising anti-proliferative and antibacterial activities were also recorded by the selected Brassica extracts.
Collapse
|
10
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
11
|
Lv C, Zhang Y, Zou L, Sun J, Song X, Mao J, Wu Y. Simultaneous Hydrolysis and Extraction Increased Erucin Yield from Broccoli Seeds. ACS OMEGA 2021; 6:6385-6392. [PMID: 33718729 PMCID: PMC7948436 DOI: 10.1021/acsomega.0c06319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Isothiocyanates (ITCs) are well-known chemopreventive agents that have received significant interest across the nutrition and pharmaceutical industries owing to their anticancer properties, thus it is essential to increase the conversion of glucosinolate to ITCs by myrosinase to maximize their health benefits. In this paper, using broccoli seed meals as a raw material, we comparatively analyzed the outcomes of two extraction methods: (i) hydrolysis followed by extraction (HFE) and (ii) simultaneous hydrolysis and extraction (SHE) in terms of the ITC yield. The results revealed that the SHE method showed a relatively greater erucin production from broccoli seeds and greater antitumor and antioxidant activities. A similar phenomenon was found for the hydrolysates of crude myrosinase and crude glucosinolate separated from broccoli seeds. However, when the crude glucosinolates were hydrolyzed by purified broccoli myrosinase, or when pure glucoraphanin was hydrolyzed by crude myrosinase, no significant effects were noted on the types and yields of ITCs between the SHE and HFE methods.
Collapse
Affiliation(s)
- Chengzhi Lv
- School
of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Yao Zhang
- School
of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Ligen Zou
- Hangzhou
Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Juan Sun
- School
of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Xinjie Song
- School
of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Jianwei Mao
- School
of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
- Zhejiang
Provincial Key Laboratory for Chem and Bio Processing Technology of
Farm Produces, Hangzhou, Zhejiang 310023, China
| | - Yuanfeng Wu
- School
of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| |
Collapse
|
12
|
Direct HPLC enantioseparation of chemopreventive chiral isothiocyanates sulforaphane and iberin on immobilized amylose-based chiral stationary phases under normal-phase, polar organic and aqueous conditions. Talanta 2020; 218:121151. [DOI: 10.1016/j.talanta.2020.121151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/13/2022]
|
13
|
Cao SY, Li Y, Meng X, Zhao CN, Li S, Gan RY, Li HB. Dietary natural products and lung cancer: Effects and mechanisms of action. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
14
|
Jiang X, Liu Y, Ma L, Ji R, Qu Y, Xin Y, Lv G. Chemopreventive activity of sulforaphane. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2905-2913. [PMID: 30254420 PMCID: PMC6141106 DOI: 10.2147/dddt.s100534] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancer is one of the major causes of morbidity and mortality in the world. Carcinogenesis is a multistep process induced by genetic and epigenetic changes that disrupt pathways controlling cell proliferation, apoptosis, differentiation, and senescence. In this context, many bioactive dietary compounds from vegetables and fruits have been demonstrated to be effective in cancer prevention and intervention. Over the years, sulforaphane (SFN), found in cruciferous vegetables, has been shown to have chemopreventive activity in vitro and in vivo. SFN protects cells from environmental carcinogens and also induces growth arrest and/or apoptosis in various cancer cells. In this review, we will discuss several potential mechanisms of the chemopreventive activity of SFN, including regulation of Phase I and Phase II drug-metabolizing enzymes, cell cycle arrest, and induction of apoptosis, especially via regulation of signaling pathways such as Nrf2-Keap1 and NF-κB. Recent studies suggest that SFN can also affect the epigenetic control of key genes and greatly influence the initiation and progression of cancer. This research may provide a basis for the clinical use of SFN for cancer chemoprevention and enable us to design preventive strategies for cancer management, reduce cancer development and recurrence, and thus improve patient survival.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Ye Liu
- Department of Pathobiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China
| | - Lixin Ma
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Rui Ji
- Department of Internal Medicine, Florida Hospital, Orlando, FL, USA
| | - Yaqin Qu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China,
| | - Guoyue Lv
- Department of General Surgery, The First Hospital of Jilin University, Changchun 130021, China,
| |
Collapse
|