1
|
Wang X, You Y, Wang J, Zhang Y, Wang T, Gui C, Zhang H, Gu C. Metabolomic and transcriptomic analyses provide insights into the role of MiMYB114 and MiMYC2 in the MeJA-induced regulatory network for mango pericarp coloration. Int J Biol Macromol 2025; 311:143713. [PMID: 40316086 DOI: 10.1016/j.ijbiomac.2025.143713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/15/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
The color of mango fruit peel is a critical factor influencing consumer preference and market value. MeJA can enhance mango pericarp coloration, but its effects on different pigments accumulation and the underlying molecular mechanisms remain unclear. In this study, exogenous treatment of 4 mmol/L MeJA enhances the red and yellow pigments in the pericarp of mango cultivar 'Guifei'. Metabolomic analysis revealed that MeJA significantly increases anthocyanin and carotenoid accumulation while accelerating chlorophyll degradation. Transcriptomic analysis indicated that MeJA promotes the expression of genes involved in anthocyanin biosynthesis (e.g., MiPAL, MiC4H, MiF3H, and MiUFGT), chlorophyll degradation (MiSGRs, MiPPHs, MiPAO, and MiRCCRs), and carotenoid biosynthesis (MiPSY, MiLCYB, MiBCH, and MiZEP). Furthermore, the transcription factors (MYBs, AP2-ERFs, bHLHs, WRKYs, and TIFYs) were induced by MeJA. Of these, transient expression assays suggested that MiMYB114 mediates anthocyanin accumulation by enhancing the expression of MiF3H and MiUFGT, and the bHLH transcription factor MiMYC2 regulates chlorophyll degradation and carotenoid biosynthesis by promoting the expression of MiSGR, MiRCCR, MiPSY, and MiBCH. Our results provide new insights into the regulatory roles of MeJA treatment in mango pericarp coloration.
Collapse
Affiliation(s)
- Xueping Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuquan You
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiamei Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Tengjiao Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunju Gui
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Huping Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chao Gu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Liao R, Cai J, Zhang W, Wang Y, Xu J, He X. Anti-inflammatory benzophenones from the barks of mango (Mangifera indica L.). Fitoterapia 2025; 183:106575. [PMID: 40311707 DOI: 10.1016/j.fitote.2025.106575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/16/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Mango (Mangifera indica L.), commonly known as the "king of fruits", has been cultivated in South Asia for thousands of years. Its barks are a rich source of naturally occurring phytochemicals, such as benzophenones, phenolic acids, and sterols. Meanwhile, mango has been commonly used as a traditional Chinese medicine for inflammation-related diseases. In this study, phytochemicals in the barks of mango have been carried out and twenty-two benzophenones, including eight undescribed compounds were isolated and purified. Their structures were elucidated through comprehensive spectroscopic method. Anti-neuroinflammatory effects of the isolated benzophenones were evaluated in BV-2 microglia cells stimulated by lipopolysaccharide (LPS). The benzophenones exhibited significant inhibitive effects on the production of nitric oxide (NO), IL-6 and IL-1β. Notably, compound 16 exhibited the strongest activity (IC50 = 12.93 ± 0.67 μM), outperforming minocycline (IC50 = 34.73 ± 4.06 μM). Further mechanistic studies on compounds 19 and 22 revealed they concentration-dependently suppressed of iNOS, COX-2, IL-1β, IL-6, and CCL2, alongside inhibition of NF-κB nuclear translocation, which suggested NF-κB pathway involvement. These results suggest that the benzophenones from mango barks might be explored as a healthy benefit agent to be used for neurodegenerative diseases.
Collapse
Affiliation(s)
- Runfa Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Junjie Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Wenxin Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China.
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China.
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China.
| |
Collapse
|
3
|
Luo X, Li J, Cen Z, Feng G, Hong M, Huang L, Long Q. Exploring the therapeutic potential of lupeol: A review of its mechanisms, clinical applications, and advances in bioavailability enhancement. Food Chem Toxicol 2025; 196:115193. [PMID: 39662867 DOI: 10.1016/j.fct.2024.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Lupeol, a naturally occurring triterpenoid, has garnered significant attention for its diverse range of biological activities and potential therapeutic applications. This comprehensive review delves into the various aspects of lupeol, including its sources, extraction methods, chemical characteristics, pharmacokinetics, safety evaluation, mechanisms of action, and applications in disease treatment. We highlight the compound's unique carbon skeleton and its role in inflammation regulation, antioxidant activity, and broad-spectrum antimicrobial effects. The review also underscores lupeol's potential in cancer therapy, cardiovascular protection, metabolic disease management, and wound healing. Furthermore, we discuss the challenges and future perspectives of lupeol's clinical application, emphasizing the need for further research to improve its bioavailability and explore its full therapeutic potential. The review concludes by recognizing the significance of lupeol in drug development and healthcare, with expectations for future breakthroughs in medical applications.
Collapse
Affiliation(s)
- Xia Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ji Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhifeng Cen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gang Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Meiqi Hong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lizhen Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
El-Shabasy RM, F Eissa T, Emam Y, Zayed A, Fayek N, Farag MA. Valorization potential of Egyptian mango kernel waste product as analyzed via GC/MS metabolites profiling from different cultivars and geographical origins. Sci Rep 2024; 14:2886. [PMID: 38311611 PMCID: PMC10838926 DOI: 10.1038/s41598-024-53379-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
Increasing attention has been given to mango (Mangifera indica) fruits owing to their characteristic taste, and rich nutritional value. Mango kernels are typically discarded as a major waste product in mango industry, though of potential economic value. The present study aims to outline the first comparison of different mango kernel cvs. originated from different localities alongside Egypt, e.g., Sharqia, Suez, Ismailia, and Giza. Gas chromatography-mass spectroscopy (GC-MS) post silylation analysis revealed that sugars were the major class being detected at 3.5-290.9 µg/mg, with some kernels originating from Sharqia province being the richest amongst other cvs. In consistency with sugar results, sugar alcohols predominated in Sharqia cvs. at 1.3-38.1 µg/mg represented by ribitol, iditol, pinitol, and myo-inositol. No major variation was observed in the fatty acids profile either based on cv. type or localities, with butyl caprylate as a major component in most cvs. identified for the first time in mango. Regarding phenolics, Sedeeq cv. represented the highest level at 18.3 µg/mg and showing distinct variation among cvs. posing phenolics as better classification markers than sugars. Multivariate data analyses (MVA) confirmed that the premium cvs "Aweis and Fons" were less enriched in sugars, i.e., fructose, talose, and glucose compared to the other cvs. Moreover, MVA of Zabdeya cv. collected from three localities revealed clear segregation to be chemically distinct. Sharqia originated mango kernels were rich in sugars (e.g., glucose and fructose), whilst sarcosine esters predominated in other origins.
Collapse
Affiliation(s)
- Rehan M El-Shabasy
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Kom, 32512, Egypt
| | - Tarek F Eissa
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Yossef Emam
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527, Egypt
| | - Nesrin Fayek
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt.
| |
Collapse
|
5
|
Zhang W, Zhao Y, Lu Q, Feng W, Wang L, Wei Z. Evaluating differences in humic substances formation based on the shikimic acid pathway during different materials composting. BIORESOURCE TECHNOLOGY 2022; 364:128060. [PMID: 36195217 DOI: 10.1016/j.biortech.2022.128060] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to evaluate differences in humic substance (HS) formation based on the shikimic acid pathway (SAP) during five different materials composting. The results showed that compared with other three materials, gallic acid, protocatechuic acid and shikimic acid of the SAP products in lawn waste (LW) and garden waste (GW) compost decreased significantly. Furthermore, as important indicators for evaluating humification, humic acid and degree of polymerization increased by 39.4%, 79.5% and 21.8%, 87.9% in LW and GW, respectively. Correlation analysis showed that SAP products were strongly correlated with HS fractions in LW and GW. Meanwhile, network analysis indicated that more core bacteria associated with both SAP products and HS were identified in LW and GW. Finally, the structural equation model proved that SAP had more significant contribution to humification improvement in LW and GW. These findings provided theoretical foundation and feasible actions to improve compost quality by the SAP.
Collapse
Affiliation(s)
- Wenshuai Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qian Lu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Wenxuan Feng
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Liqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Ojeda GA, Sgroppo SC, Sánchez Moreno C, de Ancos Siguero B. Mango 'criollo' by-products as a source of polyphenols with antioxidant capacity. Ultrasound assisted extraction evaluated by response surface methodology and HPLC-ESI-QTOF-MS/MS characterization. Food Chem 2022; 396:133738. [PMID: 35872495 DOI: 10.1016/j.foodchem.2022.133738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/12/2023]
Abstract
Ultrasound assisted extraction (UAE) was evaluated as a green procedure for the recovery of phenolic compounds with antioxidant capacity from underutilized mango 'criollo' (peel, pulp and seed). Magnetic stirred was performed as conventional extraction. Response surface methodology using a three-factor (% ethanol, amplitude and time) central composite design was used to maximize the extraction for total phenolic compounds (TPC), total flavonoids and antioxidant capacity. The operational conditions to maximize extraction were: peel, 46% ethanol/amplitude 60% (36 µm)/6.5 min; pulp, 25% ethanol/amplitude 75% (45 µm)/30 min; seed 49% ethanol/100% (60 µm) amplitude/20 min. The phenolic composition of the optimized extracts was characterized by HPLC-QTOF-MS/MS and 45 compounds were tentatively identified as xanthones (mangiferin), flavonoids (quercetin), ellagic acid, benzophenones (maclurin), gallate derivatives and gallotannins. UAE increased TPC extraction (33%); interestingly mangiferin extraction increased 53% in peel, similarly, ellagic acid increased up to 2.5 and 4.4 times in peel and seed extracts.
Collapse
Affiliation(s)
- Gonzalo Adrián Ojeda
- Laboratorio de Tecnología Química y Bromatología, FaCENA, Universidad Nacional del Nordeste, Av. Libertad 5400, Corrientes, Argentina.
| | - Sonia Cecilia Sgroppo
- Laboratorio de Tecnología Química y Bromatología, FaCENA, Universidad Nacional del Nordeste, Av. Libertad 5400, Corrientes, Argentina
| | - Concepción Sánchez Moreno
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Novais 10, Madrid, Spain
| | - Begoña de Ancos Siguero
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Novais 10, Madrid, Spain
| |
Collapse
|
7
|
Li J, Ma X, Yang J, Wang L, Huang Y, Zhu Y. Lupeol Alleviates Myocardial Ischemia-Reperfusion Injury in Rats by Regulating NF-[Formula: see text]B and Nrf2 Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1269-1280. [PMID: 35670060 DOI: 10.1142/s0192415x22500525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cardiovascular disease is a global health problem. Previous studies revealed that it involves acute myocardial infarction and ischemia-reperfusion (I/R) injury. The mechanism of myocardial I/R injury is complex. But recognizing its mechanisms will bring important clinical significance. Lupeol is widely found in Chinese medicinal herbs and has been shown to have a variety of bio-activities. However, the pharmacological action of lupeol in the progress of myocardial ischemia-reperfusion injury (MIRI) is unclear. This study used a rat myocardial I/R model and the morphological changes in myocardium were determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining. The expression levels of IL-10, IL-1[Formula: see text], TNF-[Formula: see text], and IL-6 were assessed by quantitative real-time PCR (qRT-PCR) and ELISA. The expression levels of MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH) level and inflammatory cytokines were quantified using ELISA. The cellular apoptotic rate was determined by TUNEL staining. The findings showed that lupeol significantly decreased myocardial infarction after I/R and ameliorated I/R-induced myocardial inflammation, apoptosis, and oxidative stress. Furthermore, our results suggested that lupeol protected against MIRI-induced myocardial infarction through modulation of NF-[Formula: see text]B and Nrf2 signaling pathways. In summary, this study first clarified the cardioprotective effects of lupeol against I/R-induced myocardial infarction in rats, which could be due to its anti-oxidant, anti-inflammatory, and anti-apoptotic activities. Our study also highlighted a mechanism of NF-[Formula: see text]B and Nrf2 signaling, through which lupeol could be a promising agent in protecting against I/R-induced myocardial infarction.
Collapse
Affiliation(s)
- Jing Li
- Department of Cardiology, Gansu Provincial Hospital, Gansu, Lanzhou 730000, P. R. China
| | - Xuming Ma
- Department of Cardiology, Gansu Provincial Hospital, Gansu, Lanzhou 730000, P. R. China
| | - Jun Yang
- Department of Cardiology, Gansu Provincial Hospital, Gansu, Lanzhou 730000, P. R. China
| | - Luzhen Wang
- Department of Cardiology, Gansu Provincial Hospital, Gansu, Lanzhou 730000, P. R. China
| | - Yan Huang
- Department of Cardiology, Gansu Provincial Hospital, Gansu, Lanzhou 730000, P. R. China
| | - Yan Zhu
- Department of Cardiology, Gansu Provincial Hospital, Gansu, Lanzhou 730000, P. R. China
| |
Collapse
|
8
|
Wu S, Wu D, Song J, Zhang Y, Tan Q, Yang T, Yang J, Wang S, Xu J, Xu W, Liu A. Metabolomic and transcriptomic analyses reveal new insights into the role of abscisic acid in modulating mango fruit ripening. HORTICULTURE RESEARCH 2022; 9:uhac102. [PMID: 35795388 PMCID: PMC9250656 DOI: 10.1093/hr/uhac102] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/18/2022] [Indexed: 05/16/2023]
Abstract
Mango (Mangifera indica L.) is a climacteric tropical fruit consumed around the world. Although ethylene and abscisic acid (ABA) have been considered to be stimulators that trigger mango fruit ripening, their regulation mechanisms in modulating mango fruit ripening remain uncertain. In this study, we performed integrative analyses of metabolome and transcriptome data combined with a series of physiological and experimental analyses in the 'Keitt' mango, and we characterized changes in accumulation of specific metabolites at different stages during fruit development and ripening, which were strongly correlated with transcriptional changes and embodied physiological changes as well as taste formation. Specifically, we found that ABA, rather than ethylene, was highly associated with mango ripening, and exogenous ABA application promoted mango fruit ripening. Transcriptomic analysis identified diverse ripening-related genes involved in sugar and carotenoid biosynthesis and softening-related metabolic processes. Furthermore, networks of ABA- and ripening-related genes (such as MiHY5, MiGBF4, MiABI5, and MibZIP9) were constructed, and the direct regulation by the key ABA-responsive transcription factor MiHY5 of ripening-related genes was experimentally confirmed by a range of evidence. Taken together, our results indicate that ABA plays a key role in directly modulating mango fruit ripening through MiHY5, suggesting the need to reconsider how we understand ABA function in modulating climacteric fruit ripening.
Collapse
Affiliation(s)
- Shibo Wu
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Wu
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Song
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
| | - Yanyu Zhang
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Tan
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianquan Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jingya Yang
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | - Wei Xu
- Corresponding authors. E-mail: , , ,
| | | |
Collapse
|
9
|
Crespo L, Gaglio R, Martínez FG, Martin GM, Franciosi E, Madrid-Albarrán Y, Settanni L, Mozzi F, Pescuma M. Bioaccumulation of selenium-by fruit origin lactic acid bacteria in tropical fermented fruit juices. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Lupeol-induced nitric oxide elicits apoptosis-like death within Escherichia coli in a DNA fragmentation-independent manner. Biochem J 2021; 478:855-869. [PMID: 33522568 DOI: 10.1042/bcj20200925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022]
Abstract
Lupeol is known to be plentiful in fruits or plant barks and has an antimicrobial effect, however, its mode of action(s) has yet to be determined. To elucidate lupeol generates nitric oxide (NO), which is recognized for possessing an antimicrobial activity, intracellular NO was measured in Escherichia coli using DAF-FM. Using the properties of NO passing through plasma membrane easily, increased malondialdehyde levels have shown that lupeol causes lipid peroxidation, and the resulting membrane depolarization was confirmed by DiBAC4(3). These data indicated that lupeol-induced NO is related to the destruction of bacterial membrane. Further study was performed to examine whether NO, known as a cell proliferation inhibitor, affects bacterial cell division. As a result, DAPI staining verified that lupeol promotes cell division arrest, and followed by early apoptosis is observed in Annexin V/PI double staining. Even though these apoptotic hallmarks appeared, the endonuclease failed to perform properly with supporting data of decreased intracellular Mg2+ and Ca2+ levels without DNA fragmentation, which is confirmed using a TUNEL assay. These findings indicated that lupeol-induced NO occurs DNA fragmentation-independent bacterial apoptosis-like death (ALD). Additionally, lupeol triggers DNA filamentation and morphological changes in response to DNA repair system called SOS system. In accordance with the fact that ALD deems to SOS response, and that the RecA is considered as a caspase-like protein, increase in caspase-like protein activation occurred in E. coli wild-type, and no ΔRecA mutant. In conclusion, these results demonstrated that the antibacterial mode of action(s) of lupeol is an ALD while generating NO.
Collapse
|
11
|
Fyfe S, Smyth HE, Schirra HJ, Rychlik M, Sultanbawa Y. The Nutritional Potential of the Native Australian Green Plum ( Buchanania obovata) Compared to Other Anacardiaceae Fruit and Nuts. Front Nutr 2020; 7:600215. [PMID: 33392239 PMCID: PMC7772180 DOI: 10.3389/fnut.2020.600215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/24/2020] [Indexed: 01/04/2023] Open
Abstract
The native Australian green plum (Buchanania obovata) is a small fruit that grows in the northern parts of the Northern Territory and Western Australia. The fruit belongs to the family Anacardiaceae, which includes the other agriculturally important fruit mangoes, pistachios and cashew nuts. The green plum is a favored species of fruit for the Aboriginal communities and an important bush food in the Northern Territory. To date, only minimal scientific studies have been performed on the green plum as a food. This review is about plant foods in the family Anacardiaceae and the key nutritional compounds that occur in these fruit and nuts. It looks at the more traditional nutrient profiles, some key health metabolites, allergens and anti-nutrients that occur, and the role these foods play in the health of populations. This provides a guide for future studies of the green plum to show what nutritional and anti-nutritional properties and compounds should be analyzed and if there are areas where future studies should focus. This review includes an update on studies and analysis of the green plum and how its nutritional properties give it potential as a food for diet diversification in Australia.
Collapse
Affiliation(s)
- Selina Fyfe
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD, Australia
| | - Heather E. Smyth
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD, Australia
| | | | - Michael Rychlik
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD, Australia
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Yasmina Sultanbawa
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD, Australia
| |
Collapse
|
12
|
Kumar D, Sharma S, Kumar S. Botanical description, phytochemistry, traditional uses, and pharmacology of Crataeva nurvala Buch. Ham.: an updated review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Crataeva nurvala Buch. Ham., an important medicinal plant of the Capparidaceae family, is widely distributed in India and tropical and subtropical parts of the world. It has been reported for its folkloric use in various disorders such as blood purifier, breathing problems, fever, metabolic disorders, wound healing, memory loss, and weak immune system.
Results
The present review has focused on the botanical description and ethnomedicinal and traditional uses of C. nurvala along with its reported pharmacological activities. Chief chemical constituents and pharmacological aspects of C. nurvala have been deeply explored to unravel the unexplored folklore/ethnomedicinal uses of this plant so that the researchers working on this plant may be able to find new insights to continue further investigation on this plant. The pharmacological aspects like anti-diabetic, anti-inflammatory, anti-nociceptive, anti-diarrheal, anti-fertility, anti-pyretic, and anti-cancer potentials evaluated by various in vitro/in vivo methods on this plant have been reported.
Conclusion
Various traditional uses have been reported that need to be scientifically investigated in depth and several pharmacological activities have been reported for the C. nurvala, but more detailed and mechanism-based studies linked to a particular lead compound need to be targeted in the future. Moreover, this plant has not been completely assessed on the basis of its safety and efficacy on humans. It is expected that this review will compile and improve the existing knowledge on the potential utilization of C. nurvala in complementary and alternative medicine.
Collapse
|
13
|
A Comprehensive Review of Natural Products against Liver Fibrosis: Flavonoids, Quinones, Lignans, Phenols, and Acids. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7171498. [PMID: 33082829 PMCID: PMC7556091 DOI: 10.1155/2020/7171498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
Liver fibrosis resulting from continuous long-term hepatic damage represents a heavy burden worldwide. Liver fibrosis is recognized as a complicated pathogenic mechanism with extracellular matrix (ECM) accumulation and hepatic stellate cell (HSC) activation. A series of drugs demonstrate significant antifibrotic activity in vitro and in vivo. No specific agents with ideally clinical efficacy for liver fibrosis treatment have been developed. In this review, we summarized the antifibrotic effects and molecular mechanisms of 29 kinds of common natural products. The mechanism of these compounds is correlated with anti-inflammatory, antiapoptotic, and antifibrotic activities. Moreover, parenchymal hepatic cell survival, HSC deactivation, and ECM degradation by interfering with multiple targets and signaling pathways are also involved in the antifibrotic effects of these compounds. However, there remain two bottlenecks for clinical breakthroughs. The low bioavailability of natural products should be improved, and the combined application of two or more compounds should be investigated for more prominent pharmacological effects. In summary, exploration on natural products against liver fibrosis is becoming increasingly extensive. Therefore, natural products are potential resources for the development of agents to treat liver fibrosis.
Collapse
|
14
|
Polyphenolic Characterization, Antioxidant, and Cytotoxic Activities of Mangifera indica Cultivars from Costa Rica. Foods 2019; 8:foods8090384. [PMID: 31480721 PMCID: PMC6769667 DOI: 10.3390/foods8090384] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/10/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
The phenolic profile of skin and flesh from Manifera indica main commercial cultivars (Keitt and Tommy Atkins) in Costa Rica was studied using ultra performance liquid chromatography coupled with high resolution mass spectrometry (UPLC-ESI-MS) on enriched phenolic extracts. A total of 71 different compounds were identified, including 32 gallates and gallotannins (of different polymerization degree, from galloyl hexose monomer up to decagalloyl hexoses and undecagalloyl hexoses); seven hydroxybenzophenone (maclurin and iriflophenone) derivatives, six xanthonoids (including isomangiferin and mangiferin derivatives); 11 phenolic acids (hydroxybenzoic and hydroxycinnamic acid derivatives); and eight flavonoids (rhamnetin and quercetin derivatives). The findings for T. Atkins skin constitute the first report of such a high number and diversity of compounds. Also, it is the first time that the presence of gallotannin decamers and undecamers are reported in the skin and flesh of Keitt cultivar and in T. Atkins skins. In addition, total phenolic content (TPC) was measured with high values especially for fruits' skins, with a TPC of 698.65 and 644.17 mg gallic acid equivalents/g extract, respectively, for Keitt and T. Atkins cultivars. Antioxidant potential using 2,2-diphenyl-1-picrylhidrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) methods were evaluated, with T. Atkins skin showing the best values for both DPPH (IC50 = 9.97 µg/mL) and ORAC (11.02 mmol TE/g extract). A significant negative correlation was found for samples between TPC and DPPH antioxidant values (r = -0.960, p < 0.05), as well as a significant positive correlation between TPC and ORAC (r = 0.910, p < 0.05) and between DPPH and ORAC antioxidant methods (r = 0.989, p < 0.05). Also, cytotoxicity was evaluated in gastric adenocarcinoma (AGS), hepatocarcinoma (HepG2), and colon adenocarcinoma (SW620), with T. Atkins skin showing the best results (IC50 = 138-175 µg/mL). Finally, for AGS and SW 620 cell lines particularly, a high significant negative correlation was found between cytotoxic activity and gallotannins (r = -0.977 and r = -0.940, respectively) while for the HepG2 cell line, the highest significant negative correlation was found with xanthonoids compounds (r = -0.921).
Collapse
|
15
|
Castro-Vargas HI, Ballesteros Vivas D, Ortega Barbosa J, Morantes Medina SJ, Aristizabal Gutiérrez F, Parada-Alfonso F. Bioactive Phenolic Compounds from the Agroindustrial Waste of Colombian Mango Cultivars 'Sugar Mango' and 'Tommy Atkins'-An Alternative for Their Use and Valorization. Antioxidants (Basel) 2019; 8:E41. [PMID: 30781395 PMCID: PMC6406469 DOI: 10.3390/antiox8020041] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to explore the potential of the agroindustrial waste from two Colombian mango cultivars as sources of bioactive phenolic compounds. Phenolic extracts from mango waste (peels, seed coats, and seed kernels) of 'sugar mango' and 'Tommy Atkins' cultivars were obtained. The bioactive properties of the phenolic extracts were accessed by measuring their free radical scavenging activity and antioxidant effects against lipid oxidation in food products; moreover, their antiproliferative effects against some cell lines of human cancer were explored. It is observed that the agroindustrial waste studied provides promising sources of bioactive phenolics. 'Sugar mango' waste provided extracts with the highest antioxidant effect in food products and antiproliferative activity; these extracts reduced lipid oxidation and cell growth by more than 57% and 75%, respectively. The seed kernel from 'sugar mango' supplied the extract with the best bioactive qualities; in addition, some recognized bioactive phenolics (such as mangiferin and several galloyl glucosides) were observed in this extract and related with its properties. The results obtained suggest that 'sugar mango' waste may be considered a source of bioactive phenolics, with promising uses in food and pharmaceutical products. Thus, a suitable alternative for the use and valorization of agroindustrial waste from Colombian mango cultivars is presented.
Collapse
Affiliation(s)
- Henry I Castro-Vargas
- Faculty of Engineering, Universidad Libre, Seccional Bogotá, Carrera 70 No 53-40, Bogotá D.C. 111071, Colombia.
- Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 No 45-03, Bogotá D.C. 111321, Colombia.
| | - Diego Ballesteros Vivas
- Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 No 45-03, Bogotá D.C. 111321, Colombia.
| | - Jenny Ortega Barbosa
- Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 No 45-03, Bogotá D.C. 111321, Colombia.
| | - Sandra Johanna Morantes Medina
- Unit of Basic Oral Investigation (UIBO), School of Dentistry, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá D.C. 110121, Colombia.
| | - Fabio Aristizabal Gutiérrez
- Department of Farmacy, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 No 45-03, Bogotá D.C. 111321, Colombia.
| | - Fabián Parada-Alfonso
- Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 No 45-03, Bogotá D.C. 111321, Colombia.
| |
Collapse
|