1
|
Lim W, Iyer N. A GD (Gamma-Delta) type of cancel culture. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 24:100740. [PMID: 39717204 PMCID: PMC11664092 DOI: 10.1016/j.iotech.2024.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
γδ T cells represent an 'unconventional' class of CD3+ lymphocytes with unique phenotypical and functional attributes that distinguishes them from their αβ T-cell receptor-expressing counterparts. Studies investigating the roles of γδ T cells in cancer have shown that these cells are indispensable for effective tumor control and their presence within the tumor may be of prognostic significance. Currently, there is significant interest in harnessing γδ T cells for cancer treatment, and research efforts have focused on the development of γδ T-cell-based strategies that are efficacious against cancer. Several therapeutic approaches using γδ T cells have been described, premised on the expansion of γδ T cells or γδ chimeric antigen receptor T therapy. The potential for broad, unbiased and 'off-the-shelf' applicability in cancer treatment, drives ongoing and future research and methodologies by which γδ T cells can be exploited for therapeutic use. In this review, we will briefly outline the characteristics of γδ T cells and describe how these work within and promote proper functioning of the cancer-immunity cycle. Additionally, we will introduce strategies that are less commonly described and may potentially be more efficacious than other types of therapy. Our discussion will expand upon presently known applications and even highlight the versatility of this immune subset as cancer therapeutics. γδ T-cell-based treatment is an emerging strategy and should be considered for cancelling cancer.
Collapse
Affiliation(s)
- W.K. Lim
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore
| | - N.G. Iyer
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore
- Department of Head and Neck Surgery, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
2
|
Xue D, Hu S, Zheng R, Luo H, Ren X. Tumor-infiltrating B cells: Their dual mechanistic roles in the tumor microenvironment. Biomed Pharmacother 2024; 179:117436. [PMID: 39270540 DOI: 10.1016/j.biopha.2024.117436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
The occurrence and development of tumors are closely associated with abnormalities in the immune system's structure and function, with tumor immunotherapy being intricately linked to the tumor microenvironment (TME). Early studies on lymphocytes within the TME primarily concentrated on T cells. However, as research has advanced, the multifaceted roles of tumor-infiltrating B cells (TIL-Bs) in tumor immunity, encompassing both anti-tumor and pro-tumor effects, have garnered increasing attention. This paper explored the composition of the TME and the biological characteristics of TIL-Bs, investigating the dual roles within the TME to offer new insights and strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Demin Xue
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shaozhen Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Runchen Zheng
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huidan Luo
- Department of Pulmonology, Hechi Hospital of Traditional Chinese Medicine, Guangxi 547000, China
| | - Xi Ren
- Department of Oncology II, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
3
|
Wu Y, Shang J, Ruan Q, Tan X. Integrated single-cell and bulk RNA sequencing in pancreatic cancer identifies disulfidptosis-associated molecular subtypes and prognostic signature. Sci Rep 2023; 13:17577. [PMID: 37845218 PMCID: PMC10579418 DOI: 10.1038/s41598-023-43036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023] Open
Abstract
Pancreatic cancer (PC) is known for its high degree of heterogeneity and exceptionally adverse outcome. While disulfidptosis is the most recently identified form of cell death, the predictive and therapeutic value of disulfidptosis-related genes (DRGs) for PC remains unknown. RNA sequencing data with the follow-up information, were retrieved from the TCGA and ICGC databases. Consensus clustering analysis was conducted on patient data using R software. Subsequently, the LASSO regression analysis was conducted to create a prognostic signature for foreseeing the outcome of PC. Differences in relevant pathways, mutational landscape, and tumor immune microenvironment were compared between PC samples with different risk levels. Finally, we experimentally confirmed the impact of DSG3 on the invasion and migration abilities of PC cells. All twenty DRGs were found to be hyperexpressed in PC tissues, and fourteen of them significantly associated with PC survival. Using consensus clustering analysis based on these DRGs, four DRclusters were identified. Additionally, altogether 223 differential genes were evaluated between clusters, indicating potential biological differences between them. Four gene clusters (geneClusters) were recognized according to these genes, and a 10-gene prognostic signature was created. High-risk patients were found to be primarily enriched in signaling pathways related to the cell cycle and p53. Furthermore, the rate of mutations was markedly higher in high-risk patients, besides important variations were present in terms of immune microenvironment and chemotherapy sensitivity among patients with different risk levels. DSG3 could appreciably enhance the invasion and migration of PC cells. This work, based on disulfidoptosis-related genes (DRGs), holds the promise of classifying PC patients and predicting their prognosis, mutational landscape, immune microenvironment, and drug therapy. These insights could boost an improvement in a better comprehension of the role of DRGs in PC as well as provide new opportunities for prognostic prediction and more effective treatment strategies.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Jin Shang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Qiang Ruan
- Virology Lab, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Xiaodong Tan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
4
|
Ladke VS, Kumbhar G, Kheur SM, Chougule H. Evaluation of tumor-infiltrating T & B lymphocytes and their association and distribution in oral squamous cell carcinoma tumor microenvironment: An in vitro immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol 2023:S2212-4403(23)00425-X. [PMID: 37258329 DOI: 10.1016/j.oooo.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/09/2023] [Accepted: 04/02/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVE The immune interaction between host immunity and the tumor microenvironment is complex, and a thorough understanding of tumor-infiltrating lymphocyte selection in oral cancer, including T and B cells, is urgently required. Within the tumor microenvironment, tumor cells escape immune surveillance and grow uncontrollably. The study examined the relationship and distribution of tumor-infiltrating T and B lymphocytes. STUDY DESIGN Retrospective data of paraffin-embedded tissue samples of 47 primary oral squamous cell carcinoma (OSCC) cases were retrieved. Hematoxylin and eosin evaluation, along with all clinicopathologic data, were collected. Immunohistochemical CD3 and CD20 markers were used and evaluated for association and distribution in given OSCC cases. RESULTS The intermediate type of inflammatory infiltrate was seen primarily in Well DIfferentiated Squamous cell Carcinoma grade and positive and negative lymph nodes. Compared with T-cell density, B-cell density showed an aggregate pattern rather than a scattered pattern, indicating a statistically significant association between T-cell and B-cell infiltrate. B-cell infiltrates were also found to have a statistically significant relationship with tertiary lymphoid structure. CONCLUSIONS A strong, positive association and correlation exists between B- and T-lymphocyte infiltration in both the stroma and the invasive front. When compared with T-cell density, B-cell density is more predominantly in aggregates.
Collapse
Affiliation(s)
- Vaibhav Sunil Ladke
- Research Associate, Dr. D. Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India; Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India.
| | - Gauri Kumbhar
- MDS Scholar, Dr. D. Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune. India
| | - Supriya Mohit Kheur
- Dr. D. Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Hemalata Chougule
- Dr. D. Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| |
Collapse
|
5
|
Goodin DA, Frieboes HB. Evaluation of innate and adaptive immune system interactions in the tumor microenvironment via a 3D continuum model. J Theor Biol 2023; 559:111383. [PMID: 36539112 DOI: 10.1016/j.jtbi.2022.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Immune cells in the tumor microenvironment (TME) are known to affect tumor growth, vascularization, and extracellular matrix (ECM) deposition. Marked interest in system-scale analysis of immune species interactions within the TME has encouraged progress in modeling tumor-immune interactions in silico. Due to the computational cost of simulating these intricate interactions, models have typically been constrained to representing a limited number of immune species. To expand the capability for system-scale analysis, this study develops a three-dimensional continuum mixture model of tumor-immune interactions to simulate multiple immune species in the TME. Building upon a recent distributed computing implementation that enables efficient solution of such mixture models, major immune species including monocytes, macrophages, natural killer cells, dendritic cells, neutrophils, myeloid-derived suppressor cells (MDSC), cytotoxic, helper, regulatory T-cells, and effector and regulatory B-cells and their interactions are represented in this novel implementation. Immune species extravasate from blood vasculature, undergo chemotaxis toward regions of high chemokine concentration, and influence the TME in proportion to locally defined levels of stimulation. The immune species contribute to the production of angiogenic and tumor growth factors, promotion of myofibroblast deposition of ECM, upregulation of angiogenesis, and elimination of living and dead tumor species. The results show that this modeling approach offers the capability for quantitative insight into the modulation of tumor growth by diverse immune-tumor interactions and immune-driven TME effects. In particular, MDSC-mediated effects on tumor-associated immune species' activation levels, volume fraction, and influence on the TME are explored. Longer term, linking of the model parameters to particular patient tumor information could simulate cancer-specific immune responses and move toward a more comprehensive evaluation of immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dylan A Goodin
- Department of Bioengineering, University of Louisville, KY, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, KY, USA; Center for Predictive Medicine, University of Louisville, KY, USA.
| |
Collapse
|
6
|
Qin Y, Lu F, Lyu K, Chang AE, Li Q. Emerging concepts regarding pro- and anti tumor properties of B cells in tumor immunity. Front Immunol 2022; 13:881427. [PMID: 35967441 PMCID: PMC9366002 DOI: 10.3389/fimmu.2022.881427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/07/2022] [Indexed: 12/26/2022] Open
Abstract
Controversial views regarding the roles of B cells in tumor immunity have existed for several decades. However, more recent studies have focused on its positive properties in antitumor immunity. Many studies have demonstrated a close association of the higher density of intratumoral B cells with favorable outcomes in cancer patients. B cells can interact with T cells as well as follicular dendritic cells within tertiary lymphoid structures, where they undergo a series of biological events, including clonal expansion, somatic hypermutation, class switching, and tumor-specific antibody production, which may trigger antitumor humoral responses. After activation, B cells can function as effector cells via direct tumor-killing, antigen-presenting activity, and production of tumor-specific antibodies. At the other extreme, B cells can obtain inhibitory functions by relevant stimuli, converting to regulatory B cells, which serve as an immunosuppressive arm to tumor immunity. Here we summarize our current understanding of the bipolar properties of B cells within the tumor immune microenvironment and propose potential B cell-based immunotherapeutic strategies, which may help promote cancer immunotherapy.
Collapse
Affiliation(s)
- You Qin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Furong Lu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kexing Lyu
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Alfred E. Chang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Qiao Li, ; Alfred E. Chang,
| | - Qiao Li
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Qiao Li, ; Alfred E. Chang,
| |
Collapse
|
7
|
Li S, Li S, Zhao Y, Zhang B, Wang X, Yang X, Wang Y, Jia C, Chang Y, Wei W. A comprehensive analysis of TDO2 expression in immune cells and characterization of immune cell phenotype in TDO2 knockout mice. Transgenic Res 2021; 30:781-797. [PMID: 34529208 DOI: 10.1007/s11248-021-00281-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022]
Abstract
Tryptophan 2,3-dioxygenase (TDO2) was an initial rate-limiting enzyme of the kynurenine (Kyn) pathway in tryptophan (Trp) metabolism. We undertook this study to determine a comprehensive analysis of TDO2 expression in immune cells and assess the characterization of immune cell phenotype in TDO2 knockout mice. The expression of TDO2 in various tissues of DBA/1 mice was detected by quantitative real-time PCR (qPCR) and immunohistochemistry. Both flow cytometry and immunofluorescence were used to analyze the expression of TDO2 in immune cells. Furthermore, TDO2 knockout (KO) mice were generated by CRISPR/Cas9 technology to detect immune cell phenotype. TDO2 protein level in liver was tested by western blot. High-performance liquid chromatography was used to detect the level of Trp and Kyn. Flow cytometry was used to test the proportions of splenic lymphocyte subsets in wild-type (WT) and TDO2 KO mice. We found that TDO2 was expressed in various tissues and immune cells, and TDO2 staining was mainly observed in the cytoplasm of cells. There was no difference in the development of immune cells between TDO2 KO mice and WT mice, including T cells, B cells, memory B cells, plasma cells, dendritic cells, and natural killer cells. Interestingly, the reduced M1/M2 ratio was observed in the peritoneal macrophages of TDO2 KO mice. Taken together, these findings enriched the known expression profile of TDO2, especially its expression in immune cells. Our study suggested that TDO2-mediated Trp-Kyn metabolism pathway might be involved in the immune response.
Collapse
Affiliation(s)
- Susu Li
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Siyu Li
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yingjie Zhao
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Bingjie Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xinwei Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xuezhi Yang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yueye Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Chengyan Jia
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yan Chang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
8
|
Qin M, Wang D, Fang Y, Zheng Z, Liu X, Wu F, Wang L, Li X, Hui B, Ma S, Tang W, Pan X. Current Perspectives on B Lymphocytes in the Immunobiology of Hepatocellular Carcinoma. Front Oncol 2021; 11:647854. [PMID: 34235074 PMCID: PMC8256159 DOI: 10.3389/fonc.2021.647854] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Immune cells infiltrating tumors are capable of significantly impacting carcinogenesis through cancer promotion and anticancer responses. There are many aspects of hepatocellular carcinoma (HCC) related T lymphocytes that are undergoing extensive studies, whereas the effect exerted by B lymphocytes remains a less researched area. In this study, the latest research on the effect of B lymphocytes as they infiltrate tumors in relation to HCC is presented. Their prognosis-related importance is analyzed, along with their function in the tumor microenvironment (TME), as well as the way that B cell biology can be employed to help create a B cell therapy strategy for HCC.
Collapse
Affiliation(s)
- Miaomiao Qin
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Danping Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yijiao Fang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhiying Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyang Liu
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liangliang Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bingqing Hui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shijie Ma
- Department of Gastroenterology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xiongxiong Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Qin Y, Peng F, Ai L, Mu S, Li Y, Yang C, Hu Y. Tumor-infiltrating B cells as a favorable prognostic biomarker in breast cancer: a systematic review and meta-analysis. Cancer Cell Int 2021; 21:310. [PMID: 34118931 PMCID: PMC8199375 DOI: 10.1186/s12935-021-02004-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/01/2021] [Indexed: 01/01/2023] Open
Abstract
Background Tumor-infiltrating B lymphocytes (TIL-Bs) is a heterogeneous population of lymphocytes. The prognostic value of TIL-Bs in patients with breast cancer remains controversial. Here we conducted this meta-analysis to clarify the association of TIL-Bs with outcomes of patients with breast cancer. Methods We searched PubMed, Embase, and Web of Science to identify relevant studies assessing the prognostic significance of TIL-Bs in patients with breast cancer. Fixed- or random-effects models were used to evaluate the pooled hazard ratios (HRs) for overall survival (OS), breast cancer-specific survival (BCSS), disease-free survival (DFS), and relapse-free survival (RFS) in breast cancer. Results
A total of 8 studies including 2628 patients were included in our study. Pooled analyses revealed that high level of TIL-Bs was associated with longer OS (pooled HR = 0.42, 95% CI 0.24–0.60), BCSS (pooled HR = 0.66, 95% CI 0.47–0.85), and DFS/RFS (pooled HR = 0.41, 95% CI 0.27–0.55). Conclusions This meta-analysis suggests that TIL-Bs could be a promising prognostic marker for breast cancer. Novel therapeutic strategies for breast cancer treatment could be developed by enhancement of B cell-mediated antitumor immunity. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02004-9.
Collapse
Affiliation(s)
- You Qin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Hubei, 430022, Wuhan, China
| | - Lisha Ai
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Hubei, 430022, Wuhan, China.
| | - Shidai Mu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Hubei, 430022, Wuhan, China
| | - Yuting Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chensu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Hubei, 430022, Wuhan, China.
| |
Collapse
|
10
|
Curtis LT, Sebens S, Frieboes HB. Modeling of tumor response to macrophage and T lymphocyte interactions in the liver metastatic microenvironment. Cancer Immunol Immunother 2021; 70:1475-1488. [PMID: 33180183 PMCID: PMC10992133 DOI: 10.1007/s00262-020-02785-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
The dynamic interactions between macrophages and T-lymphocytes in the tumor microenvironment exert both antagonistic and synergistic functions affecting tumor growth. Extensive experimental effort has been expended to investigate immunotherapeutic strategies targeting macrophage polarization as well as T-cell activation with the goal to promote tumor cell killing and cancer elimination. However, these interactions remain poorly understood, and cancer immunotherapeutic strategies are often disappointing. The complex system encompassing innate and adaptive immune cell activity in response to tumor growth could benefit from a systems perspective built upon mathematical modeling. This study develops a modeling system to help evaluate the effects of macrophage and T-lymphocyte interactions on tumor growth. The system enables simulating the combined cytotoxic and tumor-promoting interactions of these two immune cell populations in a vascularized organ microenvironment, such as in liver metastases. A hypothetical immunotherapeutic strategy is simulated to increase the number of tumor-suppressive (M1-phenotype) vs. tumor-promoting (M2-phenotype) macrophages to gauge their effects on CD8+ T-cells and CD4+ T-helper cells, which in turn affect the macrophage functions. The results highlight the dynamic interactions between macrophages and T-lymphocytes in the tumor microenvironment and show that with the chosen set of parameter values, the overall cytotoxic effect from macrophages and T-lymphocytes obtained by driving the M1:M2 ratio higher could saturate and fail to achieve tumor regression. Further expansion of this modeling platform to include additional tumor-immune cell interactions, coupled with parameters representing particular tumor characteristics, could enable systematic evaluation of immunotherapeutic strategies tailored to patient-tumor specific conditions, including metastatic disease.
Collapse
Affiliation(s)
- Louis T Curtis
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY, 40292, USA
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel (CAU), Kiel, Germany
- University Medical Center Schleswig-Holstein (UK-SH), Campus Kiel, Kiel, Germany
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY, 40292, USA.
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
11
|
Lambin P, Lieverse RIY, Eckert F, Marcus D, Oberije C, van der Wiel AMA, Guha C, Dubois LJ, Deasy JO. Lymphocyte-Sparing Radiotherapy: The Rationale for Protecting Lymphocyte-rich Organs When Combining Radiotherapy With Immunotherapy. Semin Radiat Oncol 2020; 30:187-193. [PMID: 32381298 PMCID: PMC8412054 DOI: 10.1016/j.semradonc.2019.12.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is now strong clinical and preclinical evidence that lymphocytes, for example, CD8+ T cells, are key effectors of immunotherapy and that irradiation of large blood vessels, the heart, and lymphoid organs (including nodes, spleen, bones containing bone marrow, and thymus in children) causes transient or persistent lymphopenia. Furthermore, there is extensive clinical evidence, across multiple cancer sites and treatment modalities, that lymphopenia correlates strongly with decreased overall survival. At the moment, we lack quantitative evidence to establish the relationship between dose-volume and dose-rate to critical normal structures and lymphopenia. Therefore, we propose that data should be systematically recorded to characterise a possible quantitative relationship. This might enable us to improve the efficacy of radiotherapy and develop strategies to predict and prevent treatment-related lymphopenia. In anticipation of more quantitative data, we recommend the application of the principle of As Low As Reasonably Achievable to lymphocyte-rich regions for radiotherapy treatment planning to reduce the radiation doses to these structures, thus moving toward "Lymphocyte-Sparing Radiotherapy."
Collapse
Affiliation(s)
- Philippe Lambin
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Relinde I Y Lieverse
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Franziska Eckert
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Damiënne Marcus
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Cary Oberije
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Alexander M A van der Wiel
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY
| | - Ludwig J Dubois
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
12
|
Kimura S, Khalil IA, Elewa YHA, Harashima H. Spleen selective enhancement of transfection activities of plasmid DNA driven by octaarginine and an ionizable lipid and its implications for cancer immunization. J Control Release 2019; 313:70-79. [PMID: 31526828 DOI: 10.1016/j.jconrel.2019.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/13/2019] [Accepted: 09/14/2019] [Indexed: 12/21/2022]
Abstract
Efficiently delivering plasmid DNA (pDNA) to the spleen is particularly significant for DNA immunization. However, increasing the efficiency of gene expression in spleen cells for achieving a therapeutic effect remains a serious challenge. An ideal spleen-targeted system should avoid liver uptake and should efficiently transfect specific functional spleen cells. Here, we report on pDNA nanocarriers with enhanced transfection in spleen cells driven by synergism between an octaarginine (R8) peptide and YSK05; a pH-responsive ionizable lipid. A double-coating design is essential for enhancing spleen selective transfection which is significantly affected by the total amount of lipid and the composition of the outer coat. The optimized R8/YSK system shows a high gene expression in the spleen with a high spleen/liver ratio and a surprising ability to target spleen B cells. Compared to other organs, the high spleen activity cannot be explained based on the amount of pDNA delivered to each organ, indicating that the system is extremely efficient in transfecting spleen cells. The system can be used in cancer immunization where a strong anti-tumor effect was observed in mice immunized with the R8/YSK system encapsulating antigen-encoding pDNA. The R8/YSK system holds great promise for future applications in the field of DNA vaccination.
Collapse
Affiliation(s)
- Seigo Kimura
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Ikramy A Khalil
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt; Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
13
|
Pancreatic adenocarcinomas with mature blood vessels have better overall survival. Sci Rep 2019; 9:1310. [PMID: 30718678 PMCID: PMC6362082 DOI: 10.1038/s41598-018-37909-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is known for its hypovascularity. Bevacizumab, an anti-angiogenic drug, added to standard chemotherapy demonstrated no improvement in outcome for PDAC. Therefore, we hypothesized that increased vascularity may be associated with improved outcomes in PDAC possibly due to better delivery of tumor specific immune cells. To test this hypothesis, PDAC patients were classified into either high or low CD31 expression groups utilizing mRNA expression from RNA-sequence data in The Cancer Genome Atlas (TCGA) pancreatic cancer cohort. High expression of CD31, which indicates presence of more vascular endothelial cells, was associated with significantly better OS (p = 0.002). Multivariate analysis demonstrated that residual tumor (R1, 2; p = 0.026) and CD31 low expression (p = 0.007) were the only independent predictors that negatively impacted OS. Vascular stability as well as immune response related pathways were significantly upregulated in the CD31 high expressing tumors. Furthermore, there were higher proportions of anti-cancer immune cells infiltration, including activated memory CD4+ T cells (p = 0.038), CD8+ T cells (p = 0.027), gamma-delta T cells (p < 0.001) as well as naïve B cells (p = 0.006), whereas lower proportions of regulatory T cell fractions (p = 0.009), which induce an immune tolerant microenvironment, in the CD31 high expressing tumors. These findings imply that stable vessels supply anti-cancer immune cells, which are at least partially responsible for better OS in the CD31 high expressing tumors. In conclusion, CD31 high expressing PDACs have better OS, which may be due to stable vessels that supply anti-cancer immune cells.
Collapse
|
14
|
Roh KH, Song HW, Pradhan P, Bai K, Bohannon CD, Dale G, Leleux J, Jacob J, Roy K. A synthetic stroma-free germinal center niche for efficient generation of humoral immunity ex vivo. Biomaterials 2018; 164:106-120. [PMID: 29500990 DOI: 10.1016/j.biomaterials.2018.02.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 01/22/2023]
Abstract
B cells play a major role in the adaptive immune response by producing antigen-specific antibodies against pathogens and imparting immunological memory. Following infection or vaccination, antibody-secreting B cells and memory B cells are generated in specialized regions of lymph nodes and spleens, called germinal centers. Here, we report a fully synthetic ex-vivo system that recapitulates the generation of antigen-specific germinal-center (GC) like B cells using material-surface driven polyvalent signaling. This synthetic germinal center (sGC) reaction was effectively induced using biomaterial-based artificial "follicular T helper cells (TFH)" that provided both natural CD40-CD40L ligation as well as crosslinking of CD40 and by mimicking artificial "follicular dendritic cells (FDC)" to provide efficient, polyvalent antigen presentation. The artificial sGC reaction resulted in efficient B cell expansion, immunoglobulin (Ig) class switching, and expression of germinal center phenotypes. Antigen presentation during sGC reaction selectively enhanced the antigen-specific B cell population and induced somatic hyper-mutations for potential affinity maturation. The resulting B cell population consisted primarily of GC-like B cells (centrocytes) as well as some plasma-like B cells expressing CD138. With concurrent cell sorting, we successfully created highly enriched populations of antigen-specific B cells. Adoptive transfer of these GC-like B cells into non-irradiated isogeneic or non-lethally irradiated congenic recipient mice showed successful engraftment and survival of the donor cells for the 4 week test period. We show that this material-surface driven sGC reaction can be successfully applied to not only splenic B cells but also B cells isolated from more therapeutically relevant sources such as peripheral blood mononuclear cells (PBMCs), thus making our current work an exciting prospect in the new era of personalized medicine and custom-immunotherapy.
Collapse
Affiliation(s)
- Kyung-Ho Roh
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Hannah W Song
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Pallab Pradhan
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Kevin Bai
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Caitlin D Bohannon
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gordon Dale
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jardin Leleux
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Joshy Jacob
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
15
|
Zhang F, Shu JL, Li Y, Wu YJ, Zhang XZ, Han L, Tang XY, Wang C, Wang QT, Chen JY, Chang Y, Wu HX, Zhang LL, Wei W. CP-25, a Novel Anti-inflammatory and Immunomodulatory Drug, Inhibits the Functions of Activated Human B Cells through Regulating BAFF and TNF-alpha Signaling and Comparative Efficacy with Biological Agents. Front Pharmacol 2017; 8:933. [PMID: 29311935 PMCID: PMC5743740 DOI: 10.3389/fphar.2017.00933] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/11/2017] [Indexed: 11/25/2022] Open
Abstract
Paeoniflorin-6′-O-benzene sulfonate (code: CP-25) was the chemistry structural modifications of Paeoniflorin (Pae). CP-25 inhibited B cells proliferation stimulated by B cell activating factor belonging to the TNF family (BAFF) or Tumor necrosis factor alpha (TNF-alpha). CP-25, Rituximab and Etanercept reduced the percentage and numbers of CD19+ B cells, CD19+CD20+ B cells, CD19+CD27+ B cells and CD19+CD20+CD27+ B cells induced by BAFF or TNF-alpha. There was significant difference between CP-25 and Rituximab or CP-25 and Etanercept. CP-25 down-regulated the high expression of BAFFR, BCMA, and TACI stimulated by BAFF or TNF-alpha. The effects of Rituximab and Etanercept on BAFFR or BCMA were stronger than that of CP-25. CP-25, Rituximab and Etanercept down-regulated significantly the expression of TNFR1 and TNFR2 on B cell stimulated by BAFF or TNF-alpha. CP-25, Rituximab and Etanercept down-regulated the expression of MKK3, P-p38, P-p65, TRAF2, and p52 in B cells stimulated by BAFF and the expression of TRAF2 and P-p65 in B cells stimulated by TNF-alpha. These results suggest that CP-25 regulated moderately activated B cells function by regulating the classical and alternative NF-κB signaling pathway mediated by BAFF and TNF-alpha-TRAF2-NF-κB signaling pathway. This study suggests that CP-25 may be a promising anti-inflammatory immune and soft regulation drug.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Jin-Ling Shu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Ying Li
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu-Jing Wu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xian-Zheng Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Le Han
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xiao-Yu Tang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Chen Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Qing-Tong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Jing-Yu Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yan Chang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Hua-Xun Wu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Ling-Ling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Punt S, Corver WE, van der Zeeuw SAJ, Kielbasa SM, Osse EM, Buermans HPJ, de Kroon CD, Jordanova ES, Gorter A. Whole-transcriptome analysis of flow-sorted cervical cancer samples reveals that B cell expressed TCL1A is correlated with improved survival. Oncotarget 2016; 6:38681-94. [PMID: 26299617 PMCID: PMC4770729 DOI: 10.18632/oncotarget.4526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 06/05/2015] [Indexed: 11/25/2022] Open
Abstract
Cervical cancer is typically well infiltrated by immune cells. Because of the intricate relationship between cancer cells and immune cells, we aimed to identify both cancer cell and immune cell expressed biomarkers. Using a novel approach, we isolated RNA from flow-sorted viable EpCAM+ tumor epithelial cells and CD45+ tumor-infiltrating immune cells obtained from squamous cell cervical cancer samples (n = 24). Total RNA was sequenced and differential gene expression analysis of the CD45+ immune cell fractions identified TCL1A as a novel marker for predicting improved survival (p = 0.007). This finding was validated using qRT-PCR (p = 0.005) and partially validated using immunohistochemistry (p = 0.083). Importantly, TCL1A was found to be expressed in a subpopulation of B cells (CD3−/CD19+/CD10+/CD34−) using multicolor immunofluorescence. A high TCL1A/CD20 (B cell) ratio, determined in total tumor samples from a separate patient cohort using qRT-PCR (n = 52), was also correlated with improved survival (p = 0.027). This is the first study demonstrating the prognostic value of separating tumor epithelial cells from tumor-infiltrating immune cells and determining their RNA expression profile for identifying putative cancer biomarkers. Our results suggest that intratumoral TCL1A+ B cells are important for controlling cervical cancer development.
Collapse
Affiliation(s)
- Simone Punt
- Department of Pathology, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Willem E Corver
- Department of Pathology, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Sander A J van der Zeeuw
- Department of Sequencing Analysis Support Core, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Szymon M Kielbasa
- Department of Bioinformatics Center of Expertise, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Elisabeth M Osse
- Department of Pathology, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Henk P J Buermans
- Department of Leiden Genome Technology Center, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Cornelis D de Kroon
- Department of Gynaecology, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Ekaterina S Jordanova
- Department of Pathology, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands.,Center for Gynecological Oncology Amsterdam, VUMC, De Boelelaan, Amsterdam, The Netherlands
| | - Arko Gorter
- Department of Pathology, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| |
Collapse
|
17
|
Deng J, Pennati A, Cohen JB, Wu Y, Ng S, Wu JH, Flowers CR, Galipeau J. GIFT4 fusokine converts leukemic B cells into immune helper cells. J Transl Med 2016; 14:106. [PMID: 27118475 PMCID: PMC4847253 DOI: 10.1186/s12967-016-0865-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/12/2016] [Indexed: 01/22/2023] Open
Abstract
Background Chronic lymphocytic leukemia (CLL) remains incurable with standard therapy, and is characterized by excessive expansion of monoclonal abnormal mature B cells and more regulatory immune properties of T cell compartment. Thus, developing novel strategies to enhance immune function merits further investigation as a possible therapy for CLL. Methods We generated a fusion cytokine (fusokine) arising from the combination of human GM-CSF and IL-4 (named GIFT4). Primary CLL cells were treated with GIFT4 or GM-CSG and IL-4 in vitro. GIFT4-triggered STAT5 signaling in CLL cells was examined by Western blot. The phenotype and secretome of GIFT4-treated CLL cells (GIFT4-CLL cells), and the immune stimulatory function of GIFT4-CLL cells on autologous T cells were analyzed by flow cytometry and luminex assay. Results GIFT4-CLL up-regulated the expression of co-stimulatory molecules CD40, CD80 and CD86 and adhesion molecule CD54. GIFT4-CLL cells secreted IL-1β, IL-6, ICAM-1 and substantial IL-2 relative to unstimulated CLL cells. GIFT4 treatment led to JAK1, JAK2 and JAK3-mediated hyper-phosphorylation of STAT5 in primary CLL cells, which is essential for GIFT4-triggered conversion of CLL cells. GIFT4-CLL cells directly propelled the expansion of autologous IFN-γ-producing CD314+ cytotoxic T cells in vitro, and that these could lyse autologous CLL cells. Furthermore, administration of GIFT4 protein promoted the expansion of human T cells in NOD-scid IL2Rγnull immune deficient mice adoptively pre-transferred with peripheral blood mononuclear cells from subjects with CLL. Conclusion GIFT4 has potent capability to converts primary CLL cells into APC-like immune helper cells that initiate a T cell driven anti-CLL immune response.
Collapse
Affiliation(s)
- Jiusheng Deng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA.
| | - Andrea Pennati
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA
| | - Jonathon B Cohen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA
| | - Yuanqiang Wu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA
| | - Spencer Ng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA
| | - Jian Hui Wu
- Department of Oncology, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | - Christopher R Flowers
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA
| | - Jacques Galipeau
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA.
| |
Collapse
|
18
|
Quan H, Fang L, Pan H, Deng Z, Gao S, Liu O, Wang Y, Hu Y, Fang X, Yao Z, Guo F, Lu R, Xia K, Tang Z. An adaptive immune response driven by mature, antigen-experienced T and B cells within the microenvironment of oral squamous cell carcinoma. Int J Cancer 2016; 138:2952-62. [PMID: 26815146 DOI: 10.1002/ijc.30019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/16/2015] [Accepted: 01/19/2016] [Indexed: 12/15/2022]
Abstract
Lymphocyte infiltrates have been observed in the microenvironment of oral cancer; however, little is known about whether the immune response of the lymphocyte infiltrate affects tumor biology. For a deeper understanding of the role of the infiltrating-lymphocytes in oral squamous cell carcinoma (OSCC), we characterized the lymphocyte infiltrate repertoires and defined their features. Immunohistochemistry revealed considerable T and B cell infiltrates and lymphoid follicles with germinal center-like structures within the tumor microenvironment. Flow cytometry demonstrated that populations of antigen-experienced CD4+ and CD8+ cells were present, as well as an enrichment of regulatory T cells; and T cells expressing programmed death-1 (PD-1) and T cell Ig and mucin protein-3 (Tim-3), indicative of exhaustion, within the tumor microenvironment. Characterization of tumor-infiltrating B cells revealed clear evidence of antigen exposure, in that the cardinal features of an antigen-driven B cell response were present, including somatic mutation, clonal expansion, intraclonal variation and isotype switching. Collectively, our results point to an adaptive immune response occurring within the OSCC microenvironment, which may be sustained by the expression of specific antigens in the tumor.
Collapse
Affiliation(s)
- Hongzhi Quan
- State Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Liangjuan Fang
- Department of Immunobiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Hao Pan
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Zhiyuan Deng
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Shan Gao
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Department of Molecular Biology, University of Aarhus, Aarhus C, DK-8000, Denmark
| | - Ousheng Liu
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Yuehong Wang
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Yanjia Hu
- Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Xiaodan Fang
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Zhigang Yao
- State Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Department of Oral Pathology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Feng Guo
- Department of Oral Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Ruohuang Lu
- Department of Oral Maxillofacial Surgery, Xiangya Third Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Kun Xia
- State Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zhangui Tang
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, Hunan, 410078, People's Republic of China
| |
Collapse
|
19
|
Improvement of the Antitumor Efficacy of Intratumoral Administration of Cucurbitacin Poly(Lactic-co-Glycolic Acid) Microspheres Incorporated in In Situ-Forming Sucrose Acetate Isobutyrate Depots. J Pharm Sci 2016; 105:205-11. [DOI: 10.1002/jps.24695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/27/2015] [Accepted: 09/22/2015] [Indexed: 12/31/2022]
|
20
|
Sterle HA, Barreiro Arcos ML, Valli E, Paulazo MA, Méndez Huergo SP, Blidner AG, Cayrol F, Díaz Flaqué MC, Klecha AJ, Medina VA, Colombo L, Rabinovich GA, Cremaschi GA. The thyroid status reprograms T cell lymphoma growth and modulates immune cell frequencies. J Mol Med (Berl) 2015; 94:417-29. [PMID: 26564151 DOI: 10.1007/s00109-015-1363-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/12/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023]
Abstract
UNLABELLED In spite of considerable evidence on the regulation of immunity by thyroid hormones, the impact of the thyroid status in tumor immunity is poorly understood. Here, we evaluated the antitumor immune responses evoked in mice with different thyroid status (euthyroid, hyperthyroid, and hypothyroid) that developed solid tumors or metastases after inoculation of syngeneic T lymphoma cells. Hyperthyroid mice showed increased tumor growth along with increased expression of cell cycle regulators compared to hypothyroid and control tumor-bearing mice. However, hypothyroid mice showed a higher frequency of metastases than the other groups. Hyperthyroid mice bearing tumors displayed a lower number of tumor-infiltrating T lymphocytes, lower percentage of functional IFN-γ-producing CD8(+) T cells, and higher percentage of CD19(+) B cells than euthyroid tumor-bearing mice. However, no differences were found in the distribution of lymphocyte subpopulations in tumor-draining lymph nodes (TDLNs) or spleens among different experimental groups. Interestingly, hypothyroid TDLN showed an increased percentage of regulatory T (Treg) cells, while hyperthyroid mice displayed increased number and activity of splenic NK cells, which frequency declined in spleens from hypothyroid mice. Moreover, a decreased number of splenic myeloid-derived suppressor cells (MDSCs) were found in tumor-bearing hyperthyroid mice as compared to hypothyroid or euthyroid mice. Additionally, hyperthyroid mice showed increased cytotoxic activity, which declined in hypothyroid mice. Thus, low levels of intratumoral cytotoxic activity would favor tumor local growth in hyperthyroid mice, while regional and systemic antitumor response may contribute to tumor dissemination in hypothyroid animals. Our results highlight the importance of monitoring the thyroid status in patients with T cell lymphomas. KEY MESSAGES T cell lymphoma phenotype is paradoxically influenced by thyroid status. Hyperthyroidism favors tumor growth and hypothyroidism rises tumor dissemination. Thyroid status affects the distribution of immune cell types in the tumor milieu. Thyroid status also modifies the nature of local and systemic immune responses.
Collapse
Affiliation(s)
- H A Sterle
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - M L Barreiro Arcos
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - E Valli
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - M A Paulazo
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - S P Méndez Huergo
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - A G Blidner
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - F Cayrol
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - M C Díaz Flaqué
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - A J Klecha
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina.,Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica (FFyB), UBA, Buenos Aires, Argentina
| | - V A Medina
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina.,Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica (FFyB), UBA, Buenos Aires, Argentina
| | - L Colombo
- Area de Investigación, Instituto de Oncología "Angel H. Roffo", UBA, CONICET, Buenos Aires, Argentina
| | - G A Rabinovich
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - G A Cremaschi
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina. .,Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica (FFyB), UBA, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Reed CM, Cresce ND, Mauldin IS, Slingluff CL, Olson WC. Vaccination with Melanoma Helper Peptides Induces Antibody Responses Associated with Improved Overall Survival. Clin Cancer Res 2015; 21:3879-87. [PMID: 25967144 PMCID: PMC4558239 DOI: 10.1158/1078-0432.ccr-15-0233] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/04/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE A melanoma vaccine incorporating six peptides designed to induce helper T-cell responses to melanoma antigens has induced Th1-dominant CD4(+) T-cell responses in most patients, and induced durable clinical responses or stable disease in 24% of evaluable patients. The present study tested whether this vaccine also induced antibody (Ab) responses to each peptide, and whether Ab responses were associated with T-cell responses and with clinical outcome. EXPERIMENTAL DESIGN Serum samples were studied from 35 patients with stage III-IV melanomas vaccinated with 6 melanoma helper peptides (6MHP). IgG Ab responses were measured by ELISA. Associations with immune response and overall survival were assessed by log-rank test and χ(2) analysis of Kaplan-Meier data. RESULTS Ab responses to 6MHP were detected by week 7 in 77% of patients, and increased to peak 6 weeks after the last vaccine and persisted to 6 months. Ab responses were induced most frequently to longer peptides. Of those with T-cell responses, 82% had early Ab responses. Survival was improved for patients with early Ab response (P = 0.0011) or with early T-cell response (P < 0.006), and was best for those with both Ab and T-cell responses (P = 0.0002). CONCLUSIONS Vaccination with helper peptides induced both Ab responses and T-cell responses, associated with favorable clinical outcome. Such immune responses may predict favorable clinical outcome to guide combination immunotherapy. Further studies are warranted to understand mechanisms of interaction of these Abs, T-cell responses, and tumor control.
Collapse
Affiliation(s)
- Caroline M Reed
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Nicole D Cresce
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Ileana S Mauldin
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Craig L Slingluff
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Walter C Olson
- Department of Surgery, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
22
|
Chen Y, Qu F, He X, Bao G, Liu X, Wan S, Xing J. Short leukocyte telomere length predicts poor prognosis and indicates altered immune functions in colorectal cancer patients. Ann Oncol 2014; 25:869-876. [PMID: 24608194 DOI: 10.1093/annonc/mdu016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Numerous studies indicate that the leukocyte telomere length is associated with the risk of cancers, including colorectal cancer (CRC). However, the prognostic value of leukocyte telomere length in CRC patients has not been investigated. PATIENTS AND METHODS Relative telomere length (RTL) of peripheral blood leukocytes (PBLs) from 571 CRC patients receiving surgical resection was measured using a polymerase chain reaction-based method. The Cox proportional hazards ratio model and the Kaplan-Meier curve were used to estimate the association between RTL and the clinical outcome of CRC patients in the training set (90 patients) and the testing set (86 patients). Finally, an independent cohort of 395 patients was used as an external validation set. The immunophenotype of PBLs and the plasma concentration of several immune-related cytokines were determined by flow cytometry and enzyme-linked immunosorbent assay, respectively. RESULTS Patients with shorter RTL had significantly poorer overall survival and relapse-free survival than those with longer RTL in the training, testing and validation sets. Furthermore, leukocyte RTL and Tumor-Node-Metastasis (TNM) stage exhibited a significant joint effect in the prognosis prediction of combined CRC patients, indicating that patients with both short RTL and advanced stages had the worst prognosis, when compared with other subgroups. In addition, patients with short RTL showed the higher percentage of CD4(+) T cell and the lower percentage of B cell in peripheral blood mononuclear cells, as well as the lower concentration of plasma transforming growth factor-β1, suggesting a possibility that the immune functions changed with RTL alteration. CONCLUSIONS Our study for the first time demonstrates that leukocyte RTL is an independent prognostic marker complementing TNM stage and associated with the immune functions in CRC patients.
Collapse
Affiliation(s)
- Y Chen
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an
| | - F Qu
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an
| | - X He
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an
| | - G Bao
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an
| | - X Liu
- Deparment of Gastroenterology, Xijing Hospital of Digestive Disease, Fourth Military Medical University, Xi'an
| | - S Wan
- Pharmaceutical College, Henan University, Kaifeng, People's Republic of China
| | - J Xing
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an.
| |
Collapse
|