1
|
Li Y, Li M, Zhang Y. A single-institution retrospective evaluation of noninvasive localization for non-palpable breast microcalcification. Asian J Surg 2024; 47:1776-1780. [PMID: 38143169 DOI: 10.1016/j.asjsur.2023.12.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023] Open
Abstract
TECHNIQUE From January 1, 2018, to December 31, 2021, we localized the breast microcalcification of 40 patients before the surgical excision. We measured the distance between the nipple and the center of the calcification on the CC view and the ML view, respectively. The operation proceeded around the intersection between two lines, slightly larger than the diameter of the microcalcification. We also analyze the pathological findings. RESULTS All 40 patients successfully detected calcification by mammograms preoperatively using the method mentioned above. 38 patients have the microcalcification removal within the one-time operation, while the other two underwent an extended lumpectomy. 20 of 40 calcifications (50 %) were malignant and 12(30 %) were precancerous lesions. In the group of women older than 45 years old, the percentages of malignant and atypical hyperplasias are 56.25 % (18/32) and 31.25 % (10/32) respectively. CONCLUSION Our non-invasive method of preoperative localization is safe and cost-effective. Furthermore, initial observations suggest that there may be a link between age and malignant microcalcification.
Collapse
Affiliation(s)
- Yunpeng Li
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical University, Dalian City, China; Department of Interventional Therapy, The Third Affiliated Hospital of Dalian Medical University, Dalian City, China
| | - Min Li
- Department of Mammary Gland, Dalian Women and Children's Medical Center (Group), Dalian City, China
| | - Yueqiu Zhang
- Department of Mammary Gland, Dalian Women and Children's Medical Center (Group), Dalian City, China.
| |
Collapse
|
2
|
Fulawka L, Blaszczyk J, Tabakov M, Halon A. Assessment of Ki-67 proliferation index with deep learning in DCIS (ductal carcinoma in situ). Sci Rep 2022; 12:3166. [PMID: 35210450 PMCID: PMC8873444 DOI: 10.1038/s41598-022-06555-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/31/2022] [Indexed: 12/26/2022] Open
Abstract
The proliferation index (PI) is crucial in histopathologic diagnostics, in particular tumors. It is calculated based on Ki-67 protein expression by immunohistochemistry. PI is routinely evaluated by a visual assessment of the sample by a pathologist. However, this approach is far from ideal due to its poor intra- and interobserver variability and time-consuming. These factors force the community to seek out more precise solutions. Virtual pathology as being increasingly popular in diagnostics, armed with artificial intelligence, may potentially address this issue. The proposed solution calculates the Ki-67 proliferation index by utilizing a deep learning model and fuzzy-set interpretations for hot-spots detection. The obtained region-of-interest is then used to segment relevant cells via classical methods of image processing. The index value is approximated by relating the total surface area occupied by immunopositive cells to the total surface area of relevant cells. The achieved results are compared to the manual calculation of the Ki-67 index made by a domain expert. To increase results reliability, we trained several models in a threefold manner and compared the impact of different hyper-parameters. Our best-proposed method estimates PI with 0.024 mean absolute error, which gives a significant advantage over the current state-of-the-art solution.
Collapse
Affiliation(s)
- Lukasz Fulawka
- Molecular Pathology Centre Cellgen, ul. Piwna 13, 50-353, Wroclaw, Poland.
| | - Jakub Blaszczyk
- Department of Computational Intelligence, Wroclaw University of Science and Technology, wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Martin Tabakov
- Department of Computational Intelligence, Wroclaw University of Science and Technology, wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Agnieszka Halon
- Department of General and Experimental Pathology, Wroclaw Medical University, ul. Borowska 213, 50-556, Wroclaw, Poland
| |
Collapse
|
3
|
Metastatic behavior analyses of tetraspanin TM4SF5-expressing spheres in three-dimensional (3D) cell culture environment. Arch Pharm Res 2020; 43:1162-1172. [PMID: 33222072 DOI: 10.1007/s12272-020-01291-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022]
Abstract
Cancer metastasis involves diverse cellular functions via bidirectional communications between intracellular and extracellular spaces. To achieve development of the anti-metastatic drugs, one needs to consider the efficacy and mode of action (MOA) of the drug candidates to block the metastatic potentials of cancerous cells. Rather than under two-dimensional environment, investigation of the metastatic potentials under three-dimensional environment would be much pharmaceutically beneficent, since it can mimic the in vivo tumor lesions in cancer patients, leading to allowance of drug candidates analyzed in the 3D culture systems to lower failure rates during the anti-metastatic drug development. Here we have reviewed on the analyses of metastatic potentials of certain cancer models in 3D culture systems surrounded with extracellular matrix proteins, which could be supported by TM4SF5- and/or EMT-mediated actions. We particularly focused the initial events of the cancer metastasis, such as invasive outgrowth and dissemination from the cancer cell masses, spheroids, embedded in the 3D gel culture systems. This review summarizes the significance of tetraspanin TM4SF5 and Snail1 that are related to EMT in the metastatic potentials explored in the 3D gel systems.
Collapse
|
4
|
Abdollahi A, Jahanian S, Hemmati N, Mohammadpour H. The Difference of Expression of 18 Genes in Axillary Invasion and Vascular Invasion Compared to Control Samples in Breast Cancer. IRANIAN JOURNAL OF PATHOLOGY 2019; 14:223-231. [PMID: 31582999 PMCID: PMC6742730 DOI: 10.30699/ijp.2019.92094.1894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 06/17/2019] [Indexed: 11/06/2022]
Abstract
Background & Objective: Recent studies from gene profiling have revealed some genes that are overexpressed in the epithelial-mesenchymal transition (EMT) process and are responsible for its initiation and activation resulting in tumor progression and metastasis. The present study aimed to assess the role of genes involved in the EMT process and the association of these genes with axillary lymph node and vascular invasion in breast cancer (BC) patients. Methods: In this case-control study, the tumor samples were initially extracted from 33 BC patients. The samples of 15 BC tissues without vascular and axillary invasion were also prepared from the biobank as a control group. RNAs from both tumor and control samples were extracted and stabilized. For assessing overexpression in tumor tissues of selected 18 genes, the real time technique was employed. Results: There was a significant increase in MMP-2 gene fold expression in tumor cells with vascular invasion regardless of axillary involvement compared to the control group (P=0.0008) and also in the comparison of the control group with those with vascular invasion and not axillary lymph node involvement (P=0.003). In addition, gene fold expression of tissue inhibitors of metalloproteinase-1(TIMP-1) was decreased in axillary involving tumor cells compared to control group (P=0.045), and also in comparison with all samples that did not present any axillary lymph node involvements including the control group and the group with isolated vascular invasion (P=0.012). Conclusion: Overexpression of MMP-2 and under-expression of TIMP-1 were associated with more invasive behavior in breast tumor cells.
Collapse
Affiliation(s)
- Alireza Abdollahi
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Jahanian
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Hemmati
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hadis Mohammadpour
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Li S, Pu T, Xiao L, Gao H, Li L, Ye F, Liu Y, Bu H. Screening of Recurrence Related MicroRNA in Ductal Carcinoma In Situ and Functional Study of MicroRNA-654-5p. J Breast Cancer 2019; 22:52-66. [PMID: 30941233 PMCID: PMC6438835 DOI: 10.4048/jbc.2019.22.e4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 11/16/2018] [Indexed: 02/05/2023] Open
Abstract
Purpose Ductal carcinoma in situ (DCIS) contributes to 20%–30% of newly diagnosed cases of breast cancer in China. Although the breast cancer-specific mortality of DCIS is extremely low, a small proportion of DCIS patients still show relapse or metastasis, leading to poor prognosis. Little is known about the molecular mechanism for DCIS metastasis, partly due to the limited number of poor prognosis patients. This study analyzed the clinicopathological features and screened key microRNAs (miRNAs) contributing to local or distant recurrence. Methods The clinicopathological features of DCIS were evaluated and survival analysis were performed to clarify risk factors associated with poor prognosis. Using miRNA arrays and real-time quantitative polymerase chain reaction (RT-qPCR) on DCIS formalin-fixed and paraffin-embedded samples with or without microinvasion with different clinical outcomes, potential DCIS metastasis-related miRNAs were screened out and further validated. The influence of one identified miRNA, miRNA-654-5p, on DCIS progression was analyzed. Results Poor prognosis was significantly associated with larger tumor size and higher lymph node metastasis rate (both p < 0.05). Both were independent prognostic factors for DCIS. According to RT-qPCR results, distinct miRNA expression profiles were identified between DCIS and DCIS with microinvasion (DCIS-Mi) patients. In the DCIS panel, miRNA-654-5p was significantly upregulated in the patients with poor prognosis. In vitro, miRNA-654-5p promoted MDA-MB-231 cell mobility in healing tests and metastasis in the Transwell study. Conclusion The panel of high-risk miRNAs in DCIS and DCIS-Mi differs markedly. miRNA-654-5p is significantly upregulated DCIS patients having poor prognosis and may be essential for local and distant recurrence in DCIS.
Collapse
Affiliation(s)
- Shi Li
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tianjie Pu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Xiao
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongwei Gao
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Breast Cancer Center, Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Chengdu, China
| | - Li Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Breast Cancer Center, Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Chengdu, China
| | - Feng Ye
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Breast Cancer Center, Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Chengdu, China
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Breast Cancer Center, Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Chengdu, China
| |
Collapse
|
6
|
Szynglarewicz B, Kasprzak P, Donizy P, Biecek P, Halon A, Matkowski R. Biological Aggressiveness of Subclinical No-Mass Ductal Carcinoma In Situ (DCIS) Can Be Reflected by the Expression Profiles of Epithelial-Mesenchymal Transition Triggers. Int J Mol Sci 2018; 19:ijms19123941. [PMID: 30544617 PMCID: PMC6320898 DOI: 10.3390/ijms19123941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) have been recently implicated in the process of cancer progression. The aim of this study was to assess how the preoperative expression patterns of EMT biomarkers correlate with the risk of postoperative invasion in ductal carcinoma in situ (DCIS) found on stereotactic breast biopsies. N-cadherin, Snail1, and secreted protein acidic and rich in cysteine (SPARC) immunoreactivity was observed in 8%, 62%, and 38% of tumors, respectively. Snail1 and SPARC expressions were significantly related to N-cadherin expression and to each other. The postoperative upgrading rate was associated with a positive preoperative expression of all biomarkers. Significance of Snail1 and SPARC persisted in multivariate analysis, but the impact of SPARC on invasion was more significant. When these two EMT triggers were considered together, the risk of invasion did not significantly differ between the subtypes of DCIS with single positive expression (SPARC−/Snail1+ vs. SPARC+/Snail1−). However, it was significantly lower in single-positive DCIS when compared to lesions of a double-positive profile (SPARC+/Snail1+). Moreover, there were no cases in the double-negative DCIS (SPARC−/Snail1−), with foci of infiltrating cancer found postoperatively in residual postbiopsy lesions. In contrast, DCIS with a combined high SPARC and Snail1 expression (intermediate or strong) had an invasive component in 66–100% of tumors.
Collapse
Affiliation(s)
- Bartlomiej Szynglarewicz
- Breast Unit, Department of Surgical Oncology, Lower Silesia Oncology Center, 53-413 Wroclaw, Poland.
- Department of Oncology, Faculty of Postgraduate Medical Training, Wroclaw Medical University, 53-413 Wroclaw, Poland.
| | - Piotr Kasprzak
- Department of Breast Imaging, Lower Silesia Oncology Center, 53-413 Wroclaw, Poland.
| | - Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, 53-413 Wroclaw Medical University, Wroclaw, Poland.
| | - Przemyslaw Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology 00-662 Warsaw, Poland.
| | - Agnieszka Halon
- Department of Pathomorphology and Oncological Cytology, 53-413 Wroclaw Medical University, Wroclaw, Poland.
| | - Rafal Matkowski
- Breast Unit, Department of Surgical Oncology, Lower Silesia Oncology Center, 53-413 Wroclaw, Poland.
- Department of Oncology, Faculty of Postgraduate Medical Training, Wroclaw Medical University, 53-413 Wroclaw, Poland.
| |
Collapse
|
7
|
Nelson AC, Machado HL, Schwertfeger KL. Breaking through to the Other Side: Microenvironment Contributions to DCIS Initiation and Progression. J Mammary Gland Biol Neoplasia 2018; 23:207-221. [PMID: 30168075 PMCID: PMC6237657 DOI: 10.1007/s10911-018-9409-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023] Open
Abstract
Refinements in early detection, surgical and radiation therapy, and hormone receptor-targeted treatments have improved the survival rates for breast cancer patients. However, the ability to reliably identify which non-invasive lesions and localized tumors have the ability to progress and/or metastasize remains a major unmet need in the field. The current diagnostic and therapeutic strategies focus on intrinsic alterations within carcinoma cells that are closely associated with proliferation. However, substantial accumulating evidence has indicated that permissive changes in the stromal tissues surrounding the carcinoma play an integral role in breast cancer tumor initiation and progression. Numerous studies have suggested that the stromal environment surrounding ductal carcinoma in situ (DCIS) lesions actively contributes to enhancing tumor cell invasion and immune escape. This review will describe the current state of knowledge regarding the mechanisms through which the microenvironment interacts with DCIS lesions focusing on recent studies that describe the contributions of myoepithelial cells, fibroblasts and immune cells to invasion and subsequent progression. These mechanisms will be considered in the context of developing biomarkers for identifying lesions that will progress to invasive carcinoma and/or developing approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
| | - Heather L Machado
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
8
|
Li J, Khan MA, Wei C, Cheng J, Chen H, Yang L, Ijaz I, Fu J. Thymoquinone Inhibits the Migration and Invasive Characteristics of Cervical Cancer Cells SiHa and CaSki In Vitro by Targeting Epithelial to Mesenchymal Transition Associated Transcription Factors Twist1 and Zeb1. Molecules 2017; 22:2105. [PMID: 29207526 PMCID: PMC6149891 DOI: 10.3390/molecules22122105] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 11/16/2022] Open
Abstract
Cervical cancer is one of the most common gynecological malignant tumors worldwide, for which chemotherapeutic strategies are limited due to their non-specific cytotoxicity and drug resistance. The natural product thymoquinone (TQ) has been reported to target a vast number of signaling pathways in carcinogenesis in different cancers, and hence is regarded as a promising anticancer molecule. Inhibition of epithelial to mesenchymal transition (EMT) regulators is an important approach in anticancer research. In this study, TQ was used to treat the cervical cancer cell lines SiHa and CaSki to investigate its effects on EMT-regulatory proteins and cancer metastasis. Our results showed that TQ has time-dependent and dose-dependent cytotoxic effects, and it also inhibits the migration and invasion processes in different cervical cancer cells. At the molecular level, TQ treatment inhibited the expression of Twist1, Zeb1 expression, and increased E-Cadherin expression. Luciferase reporter assay showed that TQ decreases the Twist1 and Zeb1 promoter activities respectively, indicating that Twist1 and Zeb1 might be the direct target of TQ. TQ also increased cellular apoptosis in some extent, but apoptotic genes/proteins we tested were not significant affected. We conclude that TQ inhibits the migration and invasion of cervical cancer cells, probably via Twist1/E-Cadherin/EMT or/and Zeb1/E-Cadherin/EMT, among other signaling pathways.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China.
| | - Md Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China.
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China.
| | - Hanchun Chen
- Department of Biochemistry, School of Life Sciences, Central South University, Changsha 410013, China.
| | - Lisha Yang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China.
| | - Iqra Ijaz
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China.
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
- Medical College, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|