1
|
Bedair A, Hamed M, Mansour FR. Reshaping Capillary Electrophoresis With State-of-the-Art Sample Preparation Materials: Exploring New Horizons. Electrophoresis 2024. [PMID: 39345230 DOI: 10.1002/elps.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
Capillary electrophoresis (CE) is a powerful analysis technique with advantages such as high separation efficiency with resolution factors above 1.5, low sample consumption of less than 10 µL, cost-effectiveness, and eco-friendliness such as reduced solvent use and lower operational costs. However, CE also faces limitations, including limited detection sensitivity for low-concentration samples and interference from complex biological matrices. Prior to performing CE, it is common to utilize sample preparation procedures such as solid-phase microextraction (SPME) and liquid-phase microextraction (LPME) in order to improve the sensitivity and selectivity of the analysis. Recently, there have been advancements in the development of novel materials that have the potential to greatly enhance the performance of SPME and LPME. This review examines various materials and their uses in microextraction when combined with CE. These materials include carbon nanotubes, covalent organic frameworks, metal-organic frameworks, graphene and its derivatives, molecularly imprinted polymers, layered double hydroxides, ionic liquids, and deep eutectic solvents. The utilization of these innovative materials in extraction methods is being examined. Analyte recoveries and detection limits attained for a range of sample matrices are used to assess their effects on extraction selectivity, sensitivity, and efficiency. Exploring new materials for use in sample preparation techniques is important as it enables researchers to address current limitations of CE. The development of novel materials has the potential to greatly enhance extraction selectivity, sensitivity, and efficiency, thereby improving CE performance for complex biological analysis.
Collapse
Affiliation(s)
- Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Mahmoud Hamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Shah N, Shah M, Rehan T, Khan A, Majeed N, Hameed A, Bououdina M, Abumousa RA, Humayun M. Molecularly imprinted polymer composite membranes: From synthesis to diverse applications. Heliyon 2024; 10:e36189. [PMID: 39253174 PMCID: PMC11382202 DOI: 10.1016/j.heliyon.2024.e36189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
This review underscores the fundamentals of MIP-CMs and systematically summarizes their synthetic strategies and applications, and potential developments. MIP-CMs are widely acclaimed for their versatility, finding applications in separation, filtration, detection, and trace analysis, as well as serving as scaffolds in a range of analytical, biomedical and industrial contexts. Also characterized by extraordinary selectivity, remarkable sensitivity, and outstanding capability to bind molecules, those membranes are also cost-effective, highly stable, and configurable in terms of recognition and, therefore, inalienable in various application fields. Issues relating to the potential future for the paper are discussed in the last section with the focus on the improvement of resource practical application across different areas. Hence, this review can be seen as a kind of cookbook for the design and fabrication of MIP-CMs with an intention to expand the scope of their application.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Muffarih Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Touseef Rehan
- Department of Biochemistry Women University Mardan, Mardan, 23200, KP, Pakistan
| | - Abbas Khan
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Noor Majeed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Abdul Hameed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Rasha A Abumousa
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| |
Collapse
|
3
|
Luna Quinto M, Khan S, Vega-Chacón J, Mortari B, Wong A, Taboada Sotomayor MDP, Picasso G. Development and Characterization of a Molecularly Imprinted Polymer for the Selective Removal of Brilliant Green Textile Dye from River and Textile Industry Effluents. Polymers (Basel) 2023; 15:3709. [PMID: 37765563 PMCID: PMC10535355 DOI: 10.3390/polym15183709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
In this paper, we present an alternative technique for the removal of Brilliant Green dye (BG) in aqueous solutions based on the application of molecularly imprinted polymer (MIP) as a selective adsorbent for BG. The MIP was prepared by bulk radical polymerization using BG as the template; methacrylic acid (MAA) as the functional monomer, selected via computer simulations; ethylene glycol dimethacrylate (EGDMA) as cross-linker; and 2,2'-azobis(2-methylpropionitrile) (AIBN) as the radical initiator. Scanning electron microscopy (SEM) analyses of the MIP and non-molecularly imprinted polymer (NIP)-used as the control material-showed that the two polymers exhibited similar morphology in terms of shape and size; however, N2 sorption studies showed that the MIP displayed a much higher BET surface (three times bigger) compared to the NIP, which is clearly indicative of the adequate formation of porosity in the former. The data obtained from FTIR analysis indicated the successful formation of imprinted polymer based on the experimental procedure applied. Kinetic adsorption studies revealed that the data fitted quite well with a pseudo-second order kinetic model. The BG adsorption isotherm was effectively described by the Langmuir isotherm model. The proposed MIP exhibited high selectivity toward BG in the presence of other interfering dyes due to the presence of specific recognition sites (IF = 2.53) on its high specific surface area (112 m2/g). The imprinted polymer also displayed a great potential when applied for the selective removal of BG in real river water samples, with recovery ranging from 99 to 101%.
Collapse
Affiliation(s)
- Miguel Luna Quinto
- Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (M.L.Q.); (S.K.); (J.V.-C.)
| | - Sabir Khan
- Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (M.L.Q.); (S.K.); (J.V.-C.)
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara 14800-900, SP, Brazil; (B.M.); (A.W.); (M.D.P.T.S.)
- National Institute of Alternative Technologies for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara 14800-900, SP, Brazil
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid, Mossoro 59625-900, RN, Brazil
| | - Jaime Vega-Chacón
- Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (M.L.Q.); (S.K.); (J.V.-C.)
| | - Bianca Mortari
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara 14800-900, SP, Brazil; (B.M.); (A.W.); (M.D.P.T.S.)
| | - Ademar Wong
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara 14800-900, SP, Brazil; (B.M.); (A.W.); (M.D.P.T.S.)
- National Institute of Alternative Technologies for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara 14800-900, SP, Brazil
| | - Maria Del Pilar Taboada Sotomayor
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara 14800-900, SP, Brazil; (B.M.); (A.W.); (M.D.P.T.S.)
- National Institute of Alternative Technologies for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara 14800-900, SP, Brazil
| | - Gino Picasso
- Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (M.L.Q.); (S.K.); (J.V.-C.)
| |
Collapse
|
4
|
Orbay S, Sanyal A. Molecularly Imprinted Polymeric Particles Created Using Droplet-Based Microfluidics: Preparation and Applications. MICROMACHINES 2023; 14:763. [PMID: 37420996 DOI: 10.3390/mi14040763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 07/09/2023]
Abstract
Recent years have witnessed increased attention to the use of droplet-based microfluidics as a tool for the fabrication of microparticles due to this method's ability to exploit fluid mechanics to create materials with a narrow range of sizes. In addition, this approach offers a controllable way to configure the composition of the resulting micro/nanomaterials. To date, molecularly imprinted polymers (MIPs) in particle form have been prepared using various polymerization methods for several applications in biology and chemistry. However, the traditional approach, that is, the production of microparticles through grinding and sieving, generally leads to poor control over particle size and distribution. Droplet-based microfluidics offers an attractive alternative for the fabrication of molecularly imprinted microparticles. This mini-review aims to present recent examples highlighting the application of droplet-based microfluidics to fabricate molecularly imprinted polymeric particles for applications in the chemical and biomedical sciences.
Collapse
Affiliation(s)
- Sinem Orbay
- Institute of Biomedical Engineering, Bogazici University, Istanbul 34684, Turkey
- Biomedical Engineering Department, Erzincan Binali Yildirim University, Erzincan 24002, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
5
|
Suzaei FM, Daryanavard SM, Abdel-Rehim A, Bassyouni F, Abdel-Rehim M. Recent molecularly imprinted polymers applications in bioanalysis. CHEMICAL PAPERS 2023; 77:619-655. [PMID: 36213319 PMCID: PMC9524737 DOI: 10.1007/s11696-022-02488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022]
Abstract
Molecular imprinted polymers (MIPs) as extraordinary compounds with unique features have presented a wide range of applications and benefits to researchers. In particular when used as a sorbent in sample preparation methods for the analysis of biological samples and complex matrices. Its application in the extraction of medicinal species has attracted much attention and a growing interest. This review focus on articles and research that deals with the application of MIPs in the analysis of components such as biomarkers, drugs, hormones, blockers and inhibitors, especially in biological matrices. The studies based on MIP applications in bioanalysis and the deployment of MIPs in high-throughput settings and optimization of extraction methods are presented. A review of more than 200 articles and research works clearly shows that the superiority of MIP techniques lies in high accuracy, reproducibility, sensitivity, speed and cost effectiveness which make them suitable for clinical usage. Furthermore, this review present MIP-based extraction techniques and MIP-biosensors which are categorized on their classes based on common properties of target components. Extraction methods, studied sample matrices, target analytes, analytical techniques and their results for each study are described. Investigations indicate satisfactory results using MIP-based bioanalysis. According to the increasing number of studies on method development over the last decade, the use of MIPs in bioanalysis is growing and will further expand the scope of MIP applications for less studied samples and analytes.
Collapse
Affiliation(s)
- Foad Mashayekhi Suzaei
- Toxicology Laboratories, Monitoring the Human Hygiene Condition & Standard of Qeshm (MHCS Company), Qeshm Island, Iran
| | - Seyed Mosayeb Daryanavard
- grid.444744.30000 0004 0382 4371Department of Chemistry, Faculty of Science, University of Hormozgan, Bandar-Abbas, Iran
| | - Abbi Abdel-Rehim
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK
| | - Fatma Bassyouni
- grid.419725.c0000 0001 2151 8157Chemistry of Natural and Microbial Products Department, Pharmaceutical industry Research Division, National Research Centre, Cairo, 12622 Egypt
| | - Mohamed Abdel-Rehim
- grid.5037.10000000121581746Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, Sweden and Med. Solutions, Stockholm, Sweden
| |
Collapse
|
6
|
Chen H, Guo J, Wang Y, Dong W, Zhao Y, Sun L. Bio-Inspired Imprinting Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202038. [PMID: 35908804 PMCID: PMC9534966 DOI: 10.1002/advs.202202038] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Indexed: 05/27/2023]
Abstract
Inspired by the recognition mechanism of biological molecules, molecular imprinting techniques (MITs) are imparted with numerous merits like excellent stability, recognition specificity, adsorption properties, and easy synthesis processes, and thus broaden the avenues for convenient fabrication protocol of bio-inspired molecularly imprinted polymers (MIPs) with desirable functions to satisfy the extensive demands of biomedical applications. Herein, the recent research progress made with respect to bio-inspired imprinting materials is discussed in this review. First, the underlying mechanism and basic components of a typical molecular imprinting procedure are briefly explored. Then, emphasis is put on the introduction of diverse MITs and novel bio-inspired imprinting materials. Following these two sections, practical applications of MIPs in the field of biomedical science are focused on. Last but not least, perspectives on the remaining challenges and future development of bio-inspired imprinting materials are presented.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Jiahui Guo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800P. R. China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| |
Collapse
|
7
|
Muguruma Y, Nunome M, Inoue K. A Review on the Foodomics Based on Liquid Chromatography Mass Spectrometry. Chem Pharm Bull (Tokyo) 2022; 70:12-18. [PMID: 34980727 DOI: 10.1248/cpb.c21-00765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Due to the globalization of food production and distribution, the food chain has become increasingly complex, making it more difficult to evaluate unexpected food changes. Therefore, establishing sensitive, robust, and cost-effective analytical platforms to efficiently extract and analyze the food-chemicals in complex food matrices is essential, however, challenging. LC/MS-based metabolomics is the key to obtain a broad overview of human metabolism and understand novel food science. Various metabolomics approaches (e.g., targeted and/or untargeted) and sample preparation techniques in food analysis have their own advantages and limitations. Selecting an analytical platform that matches the characteristics of the analytes is important for food analysis. This review highlighted the recent trends and applications of metabolomics based on "foodomics" by LC-MS and provides the perspectives and insights into the methodology and various sample preparation techniques in food analysis.
Collapse
Affiliation(s)
- Yoshio Muguruma
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University
| | - Mari Nunome
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University
| | - Koichi Inoue
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
8
|
Synthesis of Molecularly Imprinted Polymers by Two-Step Swelling and Polymerization. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2359:1-8. [PMID: 34410655 DOI: 10.1007/978-1-0716-1629-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Synthesis of a molecularly imprinted polymer (MIP) by two-step swelling and polymerization is described. Monodisperse, spherical MIP particles, whose diameters are ca. 5-9μm, are prepared using a polystyrene particle as a shape template and dibutyl phthalate as an activating solvent. The obtained MIPs are suitable for separation media in liquid chromatography or solid-phase extraction media. Procedures for synthesis of MIPs and restricted access media (RAM)-MIP, packing of MIPs and RAM-MIPs, and application of MIPs and RAM-MIPs for selective separation and extraction of a target compound(s) are described.
Collapse
|
9
|
Carbon-Based Nanocomposite Smart Sensors for the Rapid Detection of Mycotoxins. NANOMATERIALS 2021; 11:nano11112851. [PMID: 34835617 PMCID: PMC8621137 DOI: 10.3390/nano11112851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 01/07/2023]
Abstract
Carbon-based nanomaterials have become the subject of intensive interest because their intriguing physical and chemical properties are different from those of their bulk counterparts, leading to novel applications in smart sensors. Mycotoxins are secondary metabolites with different structures and toxic effects produced by fungi. Mycotoxins have low molecular weights and highly diverse molecular structures, which can induce a spectrum of biological effects in humans and animals even at low concentrations. A tremendous amount of biosensor platforms based on various carbon nanocomposites have been developed for the determination of mycotoxins. Therefore, the contents of this review are based on a balanced combination of our own studies and selected research studies performed by academic groups worldwide. We first address the vital preparation methods of biorecognition unit (antibodies, aptamers, molecularly imprinted polymers)-functionalized carbon-based nanomaterials for sensing mycotoxins. Then, we summarize various types of smart sensors for the detection of mycotoxins. We expect future research on smart sensors to show a significant impact on the detection of mycotoxins in food products.
Collapse
|
10
|
Molecularly imprinted polymers for arbutin and rutin by modified precipitation polymerization and their application for selective extraction of rutin in nutritional supplements. J Pharm Biomed Anal 2021; 205:114294. [PMID: 34375783 DOI: 10.1016/j.jpba.2021.114294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022]
Abstract
Molecularly imprinted polymers (MIPs) for glycosides, arbutin (ARB) and rutin (RUT), were prepared using methacrylamide (MAM) and 4-vinylpyridine (4-VPY) as functional monomers and divinylbenzene as a crosslinker by modified precipitation polymerization. The template molecule, ARB or RUT, was first dissolved in methanol, followed by precipitation polymerization using a mixture of acetonitrile and toluene as a porogenic solvent. The molar ratios of the template molecule, MAM and 4-VPY were optimized to achieve a high molecular recognition ability for ARB and RUT. The retention and molecular recognition properties of these MIPs were evaluated in HILIC or normal-phase mode. With an increase in the acetonitrile content in the mobile phase, the retention factor of ARB or RUT was increased. Furthermore, the MIPs for ARB and RUT showed the highest imprinting factors of 3.65 and 66.5 for the template molecules, respectively. Hydrogen bonding interactions such as N⋯H-O, C=O⋯H-O and NH⋯O-H between 4-VPY or MAM and hydroxy groups of d-glucose or d-rutinose could function in the recognition of a glycone. Furthermore, hydrogen bonding interactions between functional monomers and the hydroxy group(s) of hydroquinone or quercetin could function in the recognition of an aglycone. These results suggest that the MIPs could recognize both a glycone and aglycone via hydrogen bonding interactions. Furthermore, MIPs for RUT were successfully applied to extract RUT in nutritional supplements.
Collapse
|
11
|
Tu X, Shi X, Zhao M, Zhang H. Molecularly imprinted dispersive solid-phase microextraction sorbents for direct and selective drug capture from the undiluted bovine serum. Talanta 2021; 226:122142. [PMID: 33676693 DOI: 10.1016/j.talanta.2021.122142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 11/26/2022]
Abstract
The preparation of well-defined new hydrophilic molecularly imprinted polymer (MIP) microspheres and their use as the dispersive solid-phase microextraction (dSPME) sorbents for direct and selective drug (i.e., propranolol) capture from the undiluted bovine serum are described. These MIPs have surface-grafted dense poly(2-hydroxyethyl methacrylate) (PHEMA) brushes with different molecular weights and grafting densities. They were readily prepared via the facile reversible addition-fragmentation chain transfer (RAFT) coupling chemistry. Both the molecular weights and grafting densities of PHEMA brushes showed significant influence on their complex biological sample-compatibility, and only those MIPs bearing PHEMA brushes with high enough molecular weights and grafting densities could selectively recognize propranolol in the undiluted pure milk and bovine serum. In particular, they have proven to be highly versatile dSPME sorbents for directly and selectively capturing propranolol from the undiluted bovine serum with satisfactory recoveries (85.2-97.4%) and high accuracy (RSD = 2.3-3.7%), even in the presence of one analogue of propranolol. The limit of detection was 0.002 μM with a linear correlation coefficient of 0.9994 in the range of 0.01-100 μM. Excellent precision was verified by both the intraday and interday analytical results. Their good reusability was also confirmed. This work demonstrates the high potential of such hydrophilic MIP-based dSPME sorbents for rapid, accurate, and reliable drug determination in complex biological samples.
Collapse
Affiliation(s)
- Xiaozheng Tu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaohui Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Man Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
12
|
Haginaka J, Kubo A, Kimachi T, Kobayashi Y. Retention and molecular-recognition mechanisms of molecularly imprinted polymers for warfarin derivatives and their application for the determination of warfarin in human serum. Talanta 2021; 232:122419. [PMID: 34074406 DOI: 10.1016/j.talanta.2021.122419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022]
Abstract
Monodisperse molecularly imprinted polymers (MIPs) for warfarin (WF), 4'-chlorowarfarin (CWF), 4'-bromowarfarin (BWF), 4'-nitrowarfarin (NWF) and 4'-methylwarfarin (MWF) (MIPWF, MIPCWF, MIPBWF, MIPNWF and MIPMWF, respectively) were prepared using 4-vinylpyridine (4-VPY) and ethylene glycol dimethacrylate as a functional monomer and crosslinker, respectively, by multi-step swelling and polymerization. The retention and molecular-recognition properties of those MIPs were evaluated in HILIC, and reversed- and normal-phase modes. According to 1H NMR studies, one-to-three complex formation of one WF or CWF molecule with three 4-VPY molecules occurred. Via computational approaches, the intermolecular interaction modes and energies between WF derivatives and 4-VPYs were evaluated by semi-empirical quantum chemistry methods and density functional theory calculations. Three major possible hydrogen bonding interaction modes were identified: the interactions between the 4-hydroxy group, α-proton (methylene C-H) and α-proton (methyl C-H) of the WF derivative and the nitrogen atoms of 4-VPYs. In HILIC and normal-phase modes, the interaction energies showed satisfactory correlations with the retention factors of the WF derivatives. In reversed-phase mode, the retention factors of the WF derivatives were described by the hydrophobicity and the acidity of the 4-hydroxy groups of the WF derivatives. These results demonstrate that three hydrogen bonding interactions in HILIC and normal-phase modes, and hydrogen bonding or ionic interactions and hydrophobic interactions in reversed-phase mode play important roles in the retention and molecular-recognition of the WF derivatives on MIPs. Furthermore, MIPBWF was successfully applied to the determination of WF in human serum by column-switching LC with high accuracy, precision and selectivity and without template-leakage problems.
Collapse
Affiliation(s)
- Jun Haginaka
- Institute for Biosciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, 663-8179, Japan.
| | - Arisa Kubo
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, 663-8179, Japan
| | - Tetsutaro Kimachi
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, 663-8179, Japan
| | - Yusuke Kobayashi
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8414, Japan
| |
Collapse
|
13
|
Enantioseparation of warfarin derivatives on molecularly imprinted polymers for (S)- and (R)-chlorowarfarin. J Chromatogr A 2021; 1641:461995. [PMID: 33611112 DOI: 10.1016/j.chroma.2021.461995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/22/2022]
Abstract
Monodisperse molecularly imprinted polymers (MIPs) for warfarin (WF), 4'-chlorowarfarin (CWF), (S)-CWF and (R)-CWF (MIPWF, MIPCWF, MIP(S)-CWF and MIP(R)-CWF, respectively) were prepared using 4-vinylpyridine (4-VPY) and ethylene glycol dimethacrylate (EDMA) as a functional monomer and a crosslinker, respectively, by multi-step swelling and polymerization. The molar ratio of a template molecule, 4-VPY to EDMA was 6:18:25 or 4:18:25. The retention and molecular recognition properties of MIPWF and MIPCWF were evaluated using a mixture of sodium phosphate buffer or ammonium formate and acetonitrile in reversed-phase LC. WF and CWF on these MIPs gave the maximal retentions at mobile phase pH 7, and those retentions were decreased with an increase of acetonitrile content. The retention and imprinting factors were in the order of WF < CWF < 4'-bromowarfarin (BWF) on MIPWF and MIPCWF in neutral mobile phases. On the other hands, in acidic mobile phases the retention factors were in the same order with those in neutral mobile phases, while the imprinting factors of WF and CWF were higher on the respective MIPs. These results suggest that ionic or hydrogen bonding interactions, hydrophobic interactions and π-π interactions could work for the retention and molecular recognition of WF, CWF and BWF on these MIPs in a reversed-phase mode. Furthermore, MIP(S)-CWF and MIP(R)-CWF could separate WF, CWF and BWF enantiomers in acidic mobile phases.
Collapse
|
14
|
Optimising factors affecting solid phase extraction performances of molecular imprinted polymer as recent sample preparation technique. Heliyon 2021; 7:e05934. [PMID: 33553728 PMCID: PMC7848654 DOI: 10.1016/j.heliyon.2021.e05934] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/30/2020] [Accepted: 01/06/2021] [Indexed: 01/20/2023] Open
Abstract
Molecular imprinted solid-phase extraction is the technique that uses molecular imprinted polymer as the sorbent in solid phase extraction. Molecular imprinted solid-phase extraction is effective and efficient for the extraction process and cleaning as compared with solid phase extraction (SPE) without molecular imprinted polymer. The complexity of variables in molecular imprinted solid-phase extraction arise as problems in the analysis, therefore it is necessary to optimize the extraction conditions of molecular imprinted solid-phase extraction. To achieve the sorption equilibrium and achieve the shortest time, certain parameters such as contact time, ion strength of sample, pH of sample, amount of sorbent, sample flow rate, addition of salt and buffer solution, washing solvent, elution solvent, and loading solvent need to be optimized. The selection of suitable properties and quantities of each factor greatly affect the formation of appropriate interactions between the sorbent and analytes. Percentage recovery is also influenced by formation of the appropriate bonds, sample flow rates, extraction time, salt addition, and sorbent mass. Therefore, in the future, molecular imprinted solid-phase extraction optimization has to consider and adjust various factors reviewed in this paper to form appropriate interactions between the absorbent and target molecules which have an impact on the optimal results.
Collapse
|
15
|
Combining capillary electromigration with molecular imprinting techniques towards an optimal separation and determination. Talanta 2021; 221:121546. [DOI: 10.1016/j.talanta.2020.121546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 01/24/2023]
|
16
|
Highly efficient and selective removal of cadmium from aqueous solutions based on magnetic graphitic carbon nitride materials with molecularly imprinted polymers. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Li S, Zhang Q, Chen M, Zhang X, Liu P. Determination of veterinary drug residues in food of animal origin: Sample preparation methods and analytical techniques. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1798247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shuling Li
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiongyao Zhang
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengdi Chen
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuejiao Zhang
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Liu
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
18
|
Development of highly sensitive and selective sensor for ethionamide guided by molecular modelling via electropolymerized molecularly imprinted films. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Evaluation of molecularly imprinted polymers for chlorpromazine and bromopromazine prepared by multi-step swelling and polymerization method—The application for the determination of chlorpromazine and its metabolites in rat plasma by column-switching LC. J Pharm Biomed Anal 2019; 174:248-255. [DOI: 10.1016/j.jpba.2019.05.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 11/19/2022]
|
20
|
Turiel E, Martín-Esteban A. Molecularly imprinted polymers-based microextraction techniques. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Haginaka J, Nishimura K, Kimachi T, Inamoto K, Takemoto Y, Kobayashi Y. Retention and molecular-recognition mechanisms of molecularly imprinted polymers for promazine derivatives. Talanta 2019; 205:120149. [PMID: 31450460 DOI: 10.1016/j.talanta.2019.120149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 01/30/2023]
Abstract
Monodisperse molecularly imprinted polymers (MIPs) for promazine derivatives [promazine (PZ), methylpromazine (MPZ), chlorpromazine (CPZ) and bromopromazine (BPZ)], MIPPZ, MIPMPZ, MIPCPZ and MIPBPZ, were prepared using methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate as a crosslinker by multi-step swelling and polymerization. The retention and molecular-recognition properties of the obtained MIPs were evaluated using LC in hydrophilic interaction chromatography (HILIC) and reversed-phase modes. In computational approaches, intermolecular interaction modes and energies between PZ derivatives and MAAs were evaluated at the HF/6-311G(d,p) level. The interaction energies of PZ, MPZ, CPZ and BPZ with 4 equivalents of MAAs were calculated. The results indicated that the interaction of the aliphatic amine moiety of a PZ derivative with MAA gave almost similar interaction energies at the HF/6-311G(d,p) level, and that the interaction of the sulfur atom of a phenothiazine scaffold with MAA was also the case. The third interaction of the aromatic amine of a PZ derivative with MAA was in the order of MPZ > PZ > CPZ > BPZ presumably due to the change of basicity by the electron-donating or electron-withdrawing effect of a subsituent. Furthermore, the fourth attractive modes of CPZ and BPZ were suggested to be the interaction of their halogen atoms with MAA through both halogen bonding and hydrogen bonding, while PZ and MPZ were suggested to have the weak C-H ⋅⋅⋅ π interaction with MAA. In HILIC mode, the interaction energies at the HF method had good correlation with the retention factor of a PZ derivative on each MIP, indicating that in addition to the shape recognition, the attractive electrostatic interactions would be more responsible for its retention rather than the dispersion energies. Furthermore, in addition to the shape recognition, ionic and hydrophobic interactions, and halogen bonding and hydrogen bonding (the last interaction seems to be weak) seem to work for the retention and molecular-recognition of PZ derivatives on the MIPs in reversed-phase mode.
Collapse
Affiliation(s)
- Jun Haginaka
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Japan; Institute for Biosciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Japan.
| | - Kanae Nishimura
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Tetsutaro Kimachi
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Kiyofumi Inamoto
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Kobayashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
22
|
NISHIMURA K, HAGINAKA J. Preparation and Evaluation of Molecularly Imprinted Polymers for Promazine and Chlorpromazine by Multi-step Swelling and Polymerization: the Application for the Determination of Promazine in Rat Serum by Column-switching LC. ANAL SCI 2019; 35:659-664. [DOI: 10.2116/analsci.19p011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Kanae NISHIMURA
- Department of Pharmacy, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
| | - Jun HAGINAKA
- Department of Pharmacy, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
- Institute for Biosciences, Mukogawa Women’s University
| |
Collapse
|
23
|
Zuin VG, Budarin VL, De Bruyn M, Shuttleworth PS, Hunt AJ, Pluciennik C, Borisova A, Dodson J, Parker HL, Clark JH. Polysaccharide-derived mesoporous materials (Starbon®) for sustainable separation of complex mixtures. Faraday Discuss 2019; 202:451-464. [PMID: 28660921 DOI: 10.1039/c7fd00056a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The recovery and separation of high value and low volume extractives are a considerable challenge for the commercial realisation of zero-waste biorefineries. Using solid-phase extractions (SPE) based on sustainable sorbents is a promising method to enable efficient, green and selective separation of these complex extractive mixtures. Mesoporous carbonaceous solids derived from renewable polysaccharides are ideal stationary phases due to their tuneable functionality and surface structure. In this study, the structure-separation relationships of thirteen polysaccharide-derived mesoporous materials and two modified types as sorbents for ten naturally-occurring bioactive phenolic compounds were investigated. For the first time, a comprehensive statistical analysis of the key molecular and surface properties influencing the recovery of these species was carried out. The obtained results show the possibility of developing tailored materials for purification, separation or extraction, depending on the molecular composition of the analyte. The wide versatility and application span of these polysaccharide-derived mesoporous materials offer new sustainable and inexpensive alternatives to traditional silica-based stationary phases.
Collapse
Affiliation(s)
- Vânia G Zuin
- Department of Chemistry, Federal University of Sao Carlos, Rod. Washington Luís, km 235, Sao Carlos, SP, Sao Paulo, Brazil13.565-905.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Guzzella L, Casatta N, Dahchour A, Baggiani C, Pozzoni F. Molecularly imprinted polymers for the detection of benomyl residues in water and soil samples. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:702-708. [PMID: 31112093 DOI: 10.1080/03601234.2018.1473970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Benomyl is a benzimidazol fungicide used against various crop pathogens. Although banned in many countries, it is still widely used worldwide and is listed in different monitoring programs among the substances to be monitored to assess human exposure to pesticide residues. The assessment of benomyl is mainly based on the analysis of the residues of its most important metabolite, carbendazim. Existing methods often lack of selectivity and display a limited performance because of the presence of co-extracted compounds. Molecularly imprinted polymers (MIPs) offer an alternative methodology, adsorbing preferentially those target molecules for which the polymers are specifically prepared. In this study, we optimized the synthesis of a polymer imprinted with benomyl. Tests of specificity recognition showed a good performance for carbendazim compared with other similar pesticides. The mean recovery of benomyl (measured as carbendazim) from water samples was estimated to be 90% for MIPs while with real soil samples collected in Morocco the recovery efficiency was 62%. Preliminary tests also suggest that this MIP can implement traditional SPE techniques for assessing benomyl residual concentrations in environmental samples.
Collapse
Affiliation(s)
- Licia Guzzella
- Water Research Institute-National Research Council (IRSA-CNR) , Brugherio ( MI) , Italy
| | - Nadia Casatta
- Water Research Institute-National Research Council (IRSA-CNR) , Brugherio ( MI) , Italy
| | - Abdelmalek Dahchour
- Département des Sciences Fondamentales et Appliquées, Institut Agronomique et Vétérinaire Hassan II , Instituts , Rabat , Morocco
| | | | - Fiorenzo Pozzoni
- Water Research Institute-National Research Council (IRSA-CNR) , Brugherio ( MI) , Italy
| |
Collapse
|
25
|
A novel molecularly imprinted sensing platform based on MWCNTs/AuNPs decorated 3D starfish like hollow nickel skeleton as a highly conductive nanocomposite for selective and ultrasensitive analysis of a novel pan-genotypic inhibitor velpatasvir in body fluids. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.105] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Li Y, Xu W, Zhao X, Huang Y, Kang J, Qi Q, Zhong C. Electrochemical sensors based on molecularly imprinted polymers on Fe 3O 4/graphene modified by gold nanoparticles for highly selective and sensitive detection of trace ractopamine in water. Analyst 2018; 143:5094-5102. [PMID: 30209459 DOI: 10.1039/c8an00993g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel molecular imprinting polymer (MIP)-based electrochemical senor, consisting of Fe3O4 nanobeads and gold nanoparticles on a reduced graphene oxide (RGO) substrate, was fabricated to detect ractopamine (RAC) in water using the reversible addition fragmentation chain transfer (RAFT) polymerization technique. The Au nanoparticles widely dispersed on RGO can significantly increase the response current for RAC detection in water, which is confirmed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and theoretical calculations. By means of the differential pulse voltammetry technique, the as-prepared MIP-based electrode shows a dynamic linear range of 0.002 to 0.1 μM with a correlation coefficient of 0.992 and a remarkably low detection limit of 0.02 nM (S/N = 3). Additionally, the sensor exhibits high binding affinity and selectivity towards RAC with excellent reproducibility. Our study demonstrates the potential for the proposed electrochemical sensors in monitoring organic pollutants in water.
Collapse
Affiliation(s)
- Ying Li
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, State Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin 300387, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Nakamura Y, Masumoto S, Kubo A, Matsunaga H, Haginaka J. Preparation of molecularly imprinted polymers for warfarin and coumachlor by multi-step swelling and polymerization method and their imprinting effects. J Chromatogr A 2017; 1516:71-78. [DOI: 10.1016/j.chroma.2017.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/24/2017] [Accepted: 08/05/2017] [Indexed: 10/19/2022]
|
28
|
Nakamura Y, Masumoto S, Matsunaga H, Haginaka J. Molecularly imprinted polymer for glutathione by modified precipitation polymerization and its application to determination of glutathione in supplements. J Pharm Biomed Anal 2017; 144:230-235. [DOI: 10.1016/j.jpba.2016.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/11/2016] [Accepted: 12/03/2016] [Indexed: 11/25/2022]
|
29
|
Özer ET, Osman B, Yazıcı T. Dummy molecularly imprinted microbeads as solid-phase extraction material for selective determination of phthalate esters in water. J Chromatogr A 2017; 1500:53-60. [DOI: 10.1016/j.chroma.2017.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 11/26/2022]
|
30
|
Jagadeesan KK, Rossetti C, Abdel Qader A, Reubsaet L, Sellergren B, Laurell T, Ekström S. Filter Plate-Based Screening of MIP SPE Materials for Capture of the Biomarker Pro-Gastrin-Releasing Peptide. SLAS DISCOVERY 2017; 22:1253-1261. [PMID: 28346098 DOI: 10.1177/2472555216689494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Affinity-based solid-phase extraction (SPE) is an attractive low-cost sample preparation strategy for biomarker analysis. Molecularly imprinted polymers (MIPs) as affinity sorbents offer unique opportunities for affinity SPE, due to their low manufacturing cost and high robustness. A limitation is the prediction of their affinity; therefore, screening of analyte recovery and specificity within a large range of SPE conditions is important in order to ensure high-sensitivity detection and assay reproducibility. Here, a µ-SPE method for screening of the MIP-SPE materials using a commercial 384-well filter plate is presented. The method allows for rapid and automated screening using 10-30 µL of packed SPE sorbent per well and sample volumes in the range of 10-70 µL. This enables screening of many different SPE sorbents while simultaneously identifying optimal SPE conditions. In addition, the 384-well format also facilitates detection with a multitude of analytical platforms. Performance of the µ-MIP-SPE method was investigated using a series of MIPs designed to capture pro-gastrin-releasing peptide (ProGRP). Fractions coming from sample load, cartridge wash, and elution were collected and analyzed using mass spectrometry (MS). The top-performing MIPs were identified, together with proper SPE conditions.
Collapse
Affiliation(s)
| | - Cecilia Rossetti
- 2 Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Abed Abdel Qader
- 3 Department of Environmental Chemistry and Analytical Chemistry, Institute for Environmental Research (INFU), Technical University of Dortmund, Dortmund, Germany
| | - Léon Reubsaet
- 2 Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Börje Sellergren
- 4 Department of Biomedical Sciences, Faculty of Health and Society, University of Malmö, Malmö, Sweden
| | - Thomas Laurell
- 1 Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Simon Ekström
- 1 Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
31
|
Li C, Ma X, Zhang X, Wang R, Li X, Liu Q. Preparation of magnetic molecularly imprinted polymer nanoparticles by surface imprinting by a sol-gel process for the selective and rapid removal of di-(2-ethylhexyl) phthalate from aqueous solution. J Sep Sci 2017; 40:1621-1628. [DOI: 10.1002/jssc.201601190] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Chunying Li
- School of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou China
| | - Xiaoguo Ma
- School of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou China
| | - Xiaojun Zhang
- School of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou China
| | - Rui Wang
- School of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou China
| | - Xin Li
- School of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou China
| | - Qianjun Liu
- School of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou China
| |
Collapse
|
32
|
Liu Y, Liu J, Liu J, Gan W, Ye BC, Li Y. Highly sensitive and selective voltammetric determination of dopamine using a gold electrode modified with a molecularly imprinted polymeric film immobilized on flaked hollow nickel nanospheres. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2124-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Chen N, He J, Wu C, Li Y, Suo A, Wei H, He L, Zhang S. Synthesis of molecularly imprinted polymers by atom transfer radical polymerization for the solid-phase extraction of phthalate esters in edible oil. J Sep Sci 2017; 40:1327-1333. [DOI: 10.1002/jssc.201601108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Ningning Chen
- School of Chemistry and Chemical Engineering; Henan University of Technology; Zhengzhou P.R. China
| | - Juan He
- School of Chemistry and Chemical Engineering; Henan University of Technology; Zhengzhou P.R. China
| | - Chaojun Wu
- School of Chemistry and Chemical Engineering; Henan University of Technology; Zhengzhou P.R. China
| | - Yuanyuan Li
- School of Chemistry and Chemical Engineering; Henan University of Technology; Zhengzhou P.R. China
| | - An Suo
- School of Chemistry and Chemical Engineering; Henan University of Technology; Zhengzhou P.R. China
| | - Hongliang Wei
- School of Chemistry and Chemical Engineering; Henan University of Technology; Zhengzhou P.R. China
| | - Lijun He
- School of Chemistry and Chemical Engineering; Henan University of Technology; Zhengzhou P.R. China
| | - Shusheng Zhang
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou P.R. China
| |
Collapse
|
34
|
New materials for sample preparation techniques in bioanalysis. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1043:81-95. [DOI: 10.1016/j.jchromb.2016.10.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/20/2016] [Accepted: 10/29/2016] [Indexed: 11/23/2022]
|
35
|
Feng Y, Liu Q, Ye L, Wu Q, He J. Ordered macroporous quercetin molecularly imprinted polymers: Preparation, characterization, and separation performance. J Sep Sci 2017; 40:971-978. [DOI: 10.1002/jssc.201601011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Yonggang Feng
- School of Chinese Materia Medica Guangzhou University of Chinese Medicine Guangzhou P.R. China
| | - Qin Liu
- School of Chinese Materia Medica Guangzhou University of Chinese Medicine Guangzhou P.R. China
| | - Lifang Ye
- School of Chinese Materia Medica Guangzhou University of Chinese Medicine Guangzhou P.R. China
| | - Quanzhou Wu
- School of Chinese Materia Medica Guangzhou University of Chinese Medicine Guangzhou P.R. China
| | - Jianfeng He
- School of Chinese Materia Medica Guangzhou University of Chinese Medicine Guangzhou P.R. China
| |
Collapse
|
36
|
Chen GN, Li N, Luo T, Dong YM. Enantiomers Recognition of Propranolol Based on Organic–Inorganic Hybrid Open-Tubular MIPs-CEC Column Using 3-(Trimethoxysilyl)Propyl Methacrylate as a Cross-Linking Monomer. J Chromatogr Sci 2017; 55:471-476. [DOI: 10.1093/chromsci/bmw204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/14/2016] [Indexed: 11/12/2022]
|
37
|
Rusen E, Diacon A, Mocanu A, Rizea F, Bucur B, Bucur MP, Radu GL, Bacalum E, Cheregi M, David V. Synthesis and retention properties of molecularly imprinted polymers for antibiotics containing a 5-nitrofuran ring. RSC Adv 2017. [DOI: 10.1039/c7ra10196a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Impedimetric sensor based on molecularly imprinted polymers synthetized for antibiotics containing a 5-nitrofuran ring.
Collapse
|
38
|
Chen F, Dong Y, Zhao Y. Synthesis and characterization of photo-responsive magnetic molecularly imprinted microspheres for the detection of sulfonamides in aqueous solution. J Sep Sci 2016; 39:4866-4875. [DOI: 10.1002/jssc.201600983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Fangfang Chen
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry and Materials Science; Northwest University; Xi'an China
| | - Yunhong Dong
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry and Materials Science; Northwest University; Xi'an China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry and Materials Science; Northwest University; Xi'an China
| |
Collapse
|
39
|
Magnetic molecularly imprinted polymer nanoparticles-based solid-phase extraction coupled with gas chromatography–mass spectrometry for selective determination of trace di-(2-ethylhexyl) phthalate in water samples. Anal Bioanal Chem 2016; 408:7857-7864. [DOI: 10.1007/s00216-016-9889-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/30/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
|
40
|
Miura C, Matsunaga H, Haginaka J. Molecularly imprinted polymer for caffeic acid by precipitation polymerization and its application to extraction of caffeic acid and chlorogenic acid from Eucommia ulmodies leaves. J Pharm Biomed Anal 2016; 127:32-8. [DOI: 10.1016/j.jpba.2015.12.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/08/2015] [Accepted: 12/24/2015] [Indexed: 01/26/2023]
|
41
|
Gao D, Yang F, Xia Z, Zhang Q. Molecularly imprinted polymer for the selective extraction of luteolin fromChrysanthemum morifoliumRamat. J Sep Sci 2016; 39:3002-10. [DOI: 10.1002/jssc.201600520] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Die Gao
- School of Chemistry & Chemical Engineering; Chongqing University; Chongqing China
| | - Fengqing Yang
- School of Chemistry & Chemical Engineering; Chongqing University; Chongqing China
| | - Zhining Xia
- School of Chemistry & Chemical Engineering; Chongqing University; Chongqing China
| | - Qihui Zhang
- School of Chemistry & Chemical Engineering; Chongqing University; Chongqing China
| |
Collapse
|
42
|
Wu X, Huang M, Zhou T, Mao J. Recognizing removal of norfloxacin by novel magnetic molecular imprinted chitosan/γ-Fe2O3 composites: Selective adsorption mechanisms, practical application and regeneration. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.03.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
He X, Tan L, Wu W, Wang J. Determination of sulfadiazine in eggs using molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography. J Sep Sci 2016; 39:2204-12. [DOI: 10.1002/jssc.201600233] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Xiuping He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education; Ocean University of China; Qingdao P. R. China
| | - Liju Tan
- College of Chemistry and Chemical Engineering; Ocean University of China; Qingdao P. R. China
| | - Wei Wu
- College of Chemistry and Chemical Engineering; Ocean University of China; Qingdao P. R. China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education; Ocean University of China; Qingdao P. R. China
- College of Chemistry and Chemical Engineering; Ocean University of China; Qingdao P. R. China
| |
Collapse
|
44
|
Nakamura Y, Matsunaga H, Haginaka J. Preparation of molecularly imprinted polymers for strychnine by precipitation polymerization and multistep swelling and polymerization and their application for the selective extraction of strychnine from nux-vomica
extract powder. J Sep Sci 2016; 39:1542-50. [DOI: 10.1002/jssc.201600027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/12/2016] [Accepted: 02/14/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Yukari Nakamura
- School of Pharmacy and Pharmaceutical Sciences; Mukogawa Women's University; Nishinomiya Japan
| | - Hisami Matsunaga
- School of Pharmacy and Pharmaceutical Sciences; Mukogawa Women's University; Nishinomiya Japan
| | - Jun Haginaka
- School of Pharmacy and Pharmaceutical Sciences; Mukogawa Women's University; Nishinomiya Japan
| |
Collapse
|
45
|
Khansari MR, Bikloo S, Shahreza S. Determination of donepezil in serum samples using molecularly imprinted polymer nanoparticles followed by high-performance liquid chromatography with ultraviolet detection. J Sep Sci 2016; 39:1000-8. [DOI: 10.1002/jssc.201501178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Mehdi Rajabnia Khansari
- Research Center, School of Chemical Engineering; Iran University of Science and Technology; Tehran Iran
- Research Center, Faculty of Pharmacy; Shaheed Beheshtee University of Medical Sciences; Tehran Iran
| | - Shahrzad Bikloo
- Research Center, Faculty of Pharmacy; Shaheed Beheshtee University of Medical Sciences; Tehran Iran
| | - Sara Shahreza
- Research Center, School of Chemical Engineering; Iran University of Science and Technology; Tehran Iran
| |
Collapse
|
46
|
de Oliveira FM, Segatelli MG, Tarley CRT. Evaluation of a new water-compatible hybrid molecularly imprinted polymer combined with restricted access for the selective recognition of folic acid in binding assays. J Appl Polym Sci 2016. [DOI: 10.1002/app.43463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Fernanda Midori de Oliveira
- Departamento De Química; Universidade Estadual De Londrina; Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário Londrina PR CEP 86051-990 Brazil
| | - Mariana Gava Segatelli
- Departamento De Química; Universidade Estadual De Londrina; Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário Londrina PR CEP 86051-990 Brazil
| | - César Ricardo Teixeira Tarley
- Departamento De Química; Universidade Estadual De Londrina; Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário Londrina PR CEP 86051-990 Brazil
- Departamento De Química Analítica; Instituto Nacional De Ciência E Tecnologia (INCT) De Bioanalítica, Universidade Estadual De Campinas (UNICAMP), Instituto De Química; Cidade Universitária Zeferino Vaz S/N Campinas SP CEP 13083-970 Brazil
| |
Collapse
|
47
|
Spano G, Giovannoli C, Di Nardo F, Anfossi L, Baggiani C. Full vs. partial competitive binding behaviour in molecularly imprinted polymers. The case for a chlorinated phenoxyacids-binding polymer. RSC Adv 2016. [DOI: 10.1039/c6ra13383e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The parameters governing the binding of a MIP towards a ligand are not conditioned by the presence of other competitors.
Collapse
Affiliation(s)
- G. Spano
- Department of Chemistry
- University of Torino
- Torino 10125
- Italy
| | - C. Giovannoli
- Department of Chemistry
- University of Torino
- Torino 10125
- Italy
| | - F. Di Nardo
- Department of Chemistry
- University of Torino
- Torino 10125
- Italy
| | - L. Anfossi
- Department of Chemistry
- University of Torino
- Torino 10125
- Italy
| | - C. Baggiani
- Department of Chemistry
- University of Torino
- Torino 10125
- Italy
| |
Collapse
|
48
|
Yang X, Xia Y. Selective enrichment and separation of phosphotyrosine peptides by thermosensitive molecularly imprinted polymers. J Sep Sci 2015; 39:419-26. [DOI: 10.1002/jssc.201501063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoqing Yang
- Research Center for Analytical Sciences, College of Chemistry; Nankai University; Tianjin China
| | - Yan Xia
- Research Center for Analytical Sciences, College of Chemistry; Nankai University; Tianjin China
| |
Collapse
|
49
|
Miura C, Li H, Matsunaga H, Haginaka J. Molecularly imprinted polymer for chlorogenic acid by modified precipitation polymerization and its application to extraction of chlorogenic acid from Eucommia ulmodies leaves. J Pharm Biomed Anal 2015; 114:139-44. [DOI: 10.1016/j.jpba.2015.04.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 11/29/2022]
|
50
|
Li Y, Liu Y, Yang Y, Yu F, Liu J, Song H, Liu J, Tang H, Ye BC, Sun Z. Novel electrochemical sensing platform based on a molecularly imprinted polymer decorated 3D nanoporous nickel skeleton for ultrasensitive and selective determination of metronidazole. ACS APPLIED MATERIALS & INTERFACES 2015; 7:15474-15480. [PMID: 26126643 DOI: 10.1021/acsami.5b03755] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel electrochemical sensor has been developed by using a composite element of three-dimensional (3D) nanoporous nickel (NPNi) and molecularly imprinted polymer (MIP). NPNi is introduced in order to enhance the electron-transport ability and surface area of the sensor, while the electrosynthesized MIP layer affords simultaneous identification and quantification of the target molecule by employing Fe(CN)6(3-/4-) as the probe to indicate the current intensity. The morphology of the hybrid film was observed by scanning electron microscopy, and the properties of the sensor were examined by cyclic voltammetry and electrochemical impedance spectroscopy. By using metronidazole (MNZ) as a model analyte, the sensor based on the MIP/NPNi hybrid exhibits great features such as a remarkably low detection limit of 2 × 10(-14) M (S/N = 3), superb selectivity in discriminating MNZ from its structural analogues, and good antiinterference ability toward several coexisting substances. Moreover, the proposed method also demonstrates excellent repeatability and stability, with relative standard deviations of less than 1.12% and 1.4%, respectively. Analysis of MNZ in pharmaceutical dosage form and fish tissue is successfully carried out without assistance of complicated pretreatment. The MIP/NPNi composite presented here with admirable merits makes it a promising candidate for developing electrochemical sensor devices and plays a role in widespread fields.
Collapse
Affiliation(s)
- Yingchun Li
- †Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China
- ‡Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Yuan Liu
- †Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Yang Yang
- †Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Feng Yu
- ‡Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Jie Liu
- †Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Han Song
- †Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Jiang Liu
- †Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Hui Tang
- †Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Bang-Ce Ye
- ‡Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhipeng Sun
- §Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Urumqi 830011, China
| |
Collapse
|