1
|
Isokawa M, Nakanishi K, Kanamori T, Sekiguchi T, Funatsu T, Shoji S, Tsunoda M. Pillar Array Mixer for Postcolumn Derivatization Integrated into Liquid Chromatography-Based Microfluidic Device. Anal Chem 2024; 96:11002-11008. [PMID: 38870183 DOI: 10.1021/acs.analchem.4c01669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The chemical derivatization of target analytes can enhance the sensitivity and selectivity of separation-based methods for metabolite analysis using microfluidic devices. However, the development of chromatography-based microfluidic devices with integrated derivatization units is challenging. In this study, a novel derivatization unit with a pillar array (PA)-based mixing channel was developed for postcolumn derivatization during on-chip liquid chromatography (LC). The PA mixer enhanced mixing between the derivatization reagents and analytes in the transverse direction, while preventing analyte dispersion in the flow direction. After the concept was confirmed using computational fluid dynamics analysis, microfluidic devices with a LC column and PA mixer were fabricated on a 20 × 20 mm silicon plate. Fluid experiments were performed using a PA mixer with a pillar size of 5 or 10 μm or a hollow-channel mixer, which revealed that the PA mixer enhanced transverse mixing without increasing the width of the analyte peak. Moreover, the developed device enabled the analysis of three amino acids within 40 s by separation via hydrophilic interaction chromatography followed by postcolumn fluorogenic derivatization with naphthalene-2,3-dicarboxaldehyde and fluorescence detection. Our results demonstrate the potential of integrated derivatization units for the development of micrototal analysis systems for use in bioanalysis.
Collapse
Affiliation(s)
- Muneki Isokawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kanki Nakanishi
- Department of Nanoscience and Nanoengineering, Waseda University, Tokyo 169-8555, Japan
| | - Takahiro Kanamori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tetsushi Sekiguchi
- Department of Nanoscience and Nanoengineering, Waseda University, Tokyo 169-8555, Japan
| | - Takashi Funatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shuichi Shoji
- Department of Nanoscience and Nanoengineering, Waseda University, Tokyo 169-8555, Japan
| | - Makoto Tsunoda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Leong SY, Ong HB, Tay HM, Kong F, Upadya M, Gong L, Dao M, Dalan R, Hou HW. Microfluidic Size Exclusion Chromatography (μSEC) for Extracellular Vesicles and Plasma Protein Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104470. [PMID: 34984816 DOI: 10.1002/smll.202104470] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/02/2021] [Indexed: 05/04/2023]
Abstract
Extracellular vesicles (EVs) are recognized as next generation diagnostic biomarkers due to their disease-specific biomolecular cargoes and importance in cell-cell communications. A major bottleneck in EV sample preparation is the inefficient and laborious isolation of nanoscale EVs (≈50-200 nm) from endogenous proteins in biological samples. Herein, a unique microfluidic platform is reported for EV-protein fractionation based on the principle of size exclusion chromatography (SEC). Using a novel rapid (≈20 min) replica molding technique, a fritless microfluidic SEC device (μSEC) is fabricated using thiol-ene polymer (UV glue NOA81, Young's modulus ≈1 GPa) for high pressure (up to 6 bar) sample processing. Controlled on-chip nanoliter sample plug injection (600 nL) using a modified T-junction injector is first demonstrated with rapid flow switching response time (<1.5 s). Device performance is validated using fluorescent nanoparticles (50 nm), albumin, and breast cancer cells (MCF-7)-derived EVs. As a proof-of-concept for clinical applications, EVs are directly isolated from undiluted human platelet-poor plasma using μSEC and show distinct elution profiles between EVs and proteins based on nanoparticle particle analysis (NTA), Western blot and flow cytometry analysis. Overall, the optically transparent μSEC can be readily automated and integrated with EV detection assays for EVs manufacturing and clinical diagnostics.
Collapse
Affiliation(s)
- Sheng Yuan Leong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hong Boon Ong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Min Tay
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Fang Kong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Megha Upadya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Lingyan Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ming Dao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Department of Material Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Rinkoo Dalan
- Endocrine and Diabetes, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building, Singapore, 308232, Singapore
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building, Singapore, 308232, Singapore
| |
Collapse
|
3
|
Badiye A, Kapoor N, Shukla RK. Detection and separation of proteins using micro/nanofluidics devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:59-84. [PMID: 35033290 DOI: 10.1016/bs.pmbts.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Microfluidics is the technology or system wherein the behavior of fluids' is studied onto a miniaturized device composed of chambers and tunnels. In biological and biomedical sciences, microfluidic technology/system or device serves as an ultra-high-output approach capable of detecting and separating the biomolecules present even in trace quantities. Given the essential role of protein, the identification and quantification of proteins help understand the various living systems' biological function regulation. Microfluidics has enormous potential to enable biological investigation at the cellular and molecular level and maybe a fair substitution of the sophisticated instruments/equipment used for proteomics, genomics, and metabolomics analysis. The current advancement in microfluidic systems' development is achieving momentum and opening new avenues in developing innovative and hybrid methodologies/technologies. This chapter attempts to expound the micro/nanofluidic systems/devices for their wide-ranging application to detect and separate protein. It covers microfluidic chip electrophoresis, microchip gel electrophoresis, and nanofluidic systems as protein separation systems, while methods such as spectrophotometric, mass spectrometry, electrochemical detection, magneto-resistive sensors and dynamic light scattering (DLS) are discussed as proteins' detection system.
Collapse
Affiliation(s)
- Ashish Badiye
- Department of Forensic Science, Government Institute of Forensic Sciences, Nagpur, Maharashtra, India
| | - Neeti Kapoor
- Department of Forensic Science, Government Institute of Forensic Sciences, Nagpur, Maharashtra, India
| | - Ritesh K Shukla
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India.
| |
Collapse
|
4
|
Rezvani O, Baraazandeh M, Bagheri H. Toward higher extraction and enrichment factors via a double‐reservoirs microfluidic device as a micro‐extractive platform. J Sep Sci 2019; 42:2985-2992. [DOI: 10.1002/jssc.201801320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Omid Rezvani
- Environmental and Bio‐Analytical LaboratoriesDepartment of ChemistrySharif University of Technology Tehran Iran
| | - Maryam Baraazandeh
- Environmental and Bio‐Analytical LaboratoriesDepartment of ChemistrySharif University of Technology Tehran Iran
| | - Habib Bagheri
- Environmental and Bio‐Analytical LaboratoriesDepartment of ChemistrySharif University of Technology Tehran Iran
| |
Collapse
|
5
|
Haghighi F, Talebpour Z, Nezhad AS. Towards fully integrated liquid chromatography on a chip: Evolution and evaluation. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Rodríguez-Ruiz I, Babenko V, Martínez-Rodríguez S, Gavira JA. Protein separation under a microfluidic regime. Analyst 2017; 143:606-619. [PMID: 29214270 DOI: 10.1039/c7an01568b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lab-on-a-Chip (LoC), or micro-Total Analysis Systems (μTAS), is recognized as a powerful analytical technology with high capabilities, though end-user products for protein purification are still far from being available on the market. Remarkable progress has been achieved in the separation of nucleic acids and proteins using electrophoretic microfluidic devices, while pintsize devices have been developed for protein isolation according to miniaturized chromatography principles (size, charge, affinity, etc.). In this work, we review the latest advances in the fabrication of components, detection methods and commercial implementation for the separation of biological macromolecules based on microfluidic systems, with some critical remarks on the perspectives of their future development towards standardized microfluidic systems and protocols. An outlook on the current needs and future applications is also presented.
Collapse
Affiliation(s)
| | - V Babenko
- Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-University of Granada, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain.
| | - S Martínez-Rodríguez
- Department of Biochemistry and Molecular Biology III and Immunology. University of Granada, Granada, Spain
| | - J A Gavira
- Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-University of Granada, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain.
| |
Collapse
|
7
|
Knob R, Sahore V, Sonker M, Woolley AT. Advances in monoliths and related porous materials for microfluidics. BIOMICROFLUIDICS 2016; 10:032901. [PMID: 27190564 PMCID: PMC4859832 DOI: 10.1063/1.4948507] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/20/2016] [Indexed: 05/06/2023]
Abstract
In recent years, the use of monolithic porous polymers has seen significant growth. These materials present a highly useful support for various analytical and biochemical applications. Since their introduction, various approaches have been introduced to produce monoliths in a broad range of materials. Simple preparation has enabled their easy implementation in microchannels, extending the range of applications where microfluidics can be successfully utilized. This review summarizes progress regarding monoliths and related porous materials in the field of microfluidics between 2010 and 2015. Recent developments in monolith preparation, solid-phase extraction, separations, and catalysis are critically discussed. Finally, a brief overview of the use of these porous materials for analysis of subcellular and larger structures is given.
Collapse
Affiliation(s)
- Radim Knob
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, USA
| | - Vishal Sahore
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, USA
| | - Mukul Sonker
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, USA
| |
Collapse
|
8
|
Šesták J, Moravcová D, Kahle V. Instrument platforms for nano liquid chromatography. J Chromatogr A 2015; 1421:2-17. [DOI: 10.1016/j.chroma.2015.07.090] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 11/25/2022]
|
9
|
Kutter JP. Liquid phase chromatography on microchips. J Chromatogr A 2012; 1221:72-82. [DOI: 10.1016/j.chroma.2011.10.044] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/12/2011] [Accepted: 10/17/2011] [Indexed: 01/12/2023]
|
10
|
Lavrik N, Taylor L, Sepaniak M. Nanotechnology and chip level systems for pressure driven liquid chromatography and emerging analytical separation techniques: A review. Anal Chim Acta 2011; 694:6-20. [DOI: 10.1016/j.aca.2011.03.059] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/25/2011] [Accepted: 03/29/2011] [Indexed: 01/13/2023]
|