1
|
Fan C, Liu B, Li H, Quan K, Chen J, Qiu H. N-Vinyl pyrrolidone and undecylenic acid copolymerized on silica surface as mixed-mode stationary phases for reversed-phase and hydrophilic interaction chromatography. J Chromatogr A 2021; 1655:462534. [PMID: 34509123 DOI: 10.1016/j.chroma.2021.462534] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022]
Abstract
In this work, three new mixed-mode stationary phases were prepared, based on different ratio of N-vinyl pyrrolidone (NVP) copolymerized together with undecylenic acid (UA) on silica microspheres surface without silanization, which named Sil@NVPUA series. The combination of NVP and UA rendered the Sil@NVPUA suitable for reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC), and shown excellent methyl, planar, isomers and ion selectivity. Five types of model analytes including eight polycyclic aromatic hydrocarbons, six alkylbenzenes, eight nucleosides and nucleobases, seven ginsenosides and five oxazolidinones can be well separated on this stationary phase. The preparation method of NVP and UA modified silica-based stationary phase is simple, and it also provides a new idea for the design of synthetic polymers to develop mixed-mode chromatography.
Collapse
Affiliation(s)
- Chao Fan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hui Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Kaijun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Qiao L, Sun R, Tao Y, Yu C, Yan Y. Surface-confined guanidinium ionic liquid as a new type of stationary phase for hydrophilic interaction liquid chromatography. J Sep Sci 2021; 44:3357-3365. [PMID: 34270174 DOI: 10.1002/jssc.202100385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/05/2022]
Abstract
Guanidinium-based ionic liquids possess lower toxicity and greater designability than commonly used species and have presented good performances in liquid-phase extraction and stationary phase for capillary gas chromatography. In the present work, a novel type of surface-confined guanidinium ionic liquid stationary phase was developed by bonding a hexaalkylguanidinium ionic liquid N,N,N',N'-tetramethyl-N",N"-diallylguanidinium bromide onto the surface of 3-mercaptopropyl modified silica. The obtained surface-confined guanidinium ionic liquid silica materials were characterized by elemental analysis, infrared spectroscopy and thermogravimetric analysis, and then packed as a high-performance liquid chromatography column for the evaluation of chromatographic retention behavior. Typical polar compounds were used to evaluate the separation performances, and the changes of retention with water content in mobile phase further suggested the hydrophilic interaction liquid chromatography retention mechanism. Moreover, the effect of different chromatographic factors (salt concentration, mobile phase pH, and column temperature) on retention was investigated with a series of compounds as test solutes to gain insights into the retention mechanism. The results indicated that the surface-confined guanidinium ionic liquid stationary phase exhibited a hydrophilic interaction liquid chromatography/anion-exchange mixed-mode retention behavior and possessed promising potential in separating a wide range of compounds as an alternative stationary phase for high-performance liquid chromatography.
Collapse
Affiliation(s)
- Lizhen Qiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, P. R. China.,School of Chemical Engineering, Dalian University of Technology, Panjin, P. R. China
| | - Ruiting Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, P. R. China.,School of Chemical Engineering, Dalian University of Technology, Panjin, P. R. China
| | - Yuan Tao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, P. R. China.,School of Chemical Engineering, Dalian University of Technology, Panjin, P. R. China
| | - Chunmei Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, P. R. China.,School of Chemical Engineering, Dalian University of Technology, Panjin, P. R. China
| | - Yang Yan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, P. R. China.,School of Chemical Engineering, Dalian University of Technology, Panjin, P. R. China
| |
Collapse
|
3
|
|
4
|
Kravchenko A, Kolobova E, Kartsova L. Multifunction covalent coatings for separation of amino acids, biogenic amines, steroid hormones, and ketoprofen enantiomers by capillary electrophoresis and capillary electrochromatography. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.201900098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anastasia Kravchenko
- Saint Petersburg State UniversityInstitute of Chemistry 26 Universitetskii prospect St. Petersburg Peterhof 198504 Russia
| | - Ekaterina Kolobova
- Saint Petersburg State UniversityInstitute of Chemistry 26 Universitetskii prospect St. Petersburg Peterhof 198504 Russia
- The Federal State Institute of Public Health ‘The Nikiforov Russian Center of Emergency and Radiation Medicine’The Ministry of Russian Federation for Civil DefenceEmergencies and Elimination of Consequences of Natural Disasters 54, Optikov st. St. Petersburg 197082 Russia
| | - Liudmila Kartsova
- Saint Petersburg State UniversityInstitute of Chemistry 26 Universitetskii prospect St. Petersburg Peterhof 198504 Russia
| |
Collapse
|
5
|
Gao J, Luo G, Li Z, Li H, Zhao L, Qiu H. A new strategy for the preparation of mixed-mode chromatographic stationary phases based on modified dialdehyde cellulose. J Chromatogr A 2020; 1618:460885. [PMID: 31964512 DOI: 10.1016/j.chroma.2020.460885] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/12/2020] [Accepted: 01/12/2020] [Indexed: 11/25/2022]
Abstract
A new strategy for the preparation of mixed-mode chromatographic stationary phases based on modified dialdehyde cellulose was proposed. Two novel mixed-mode chromatographic stationary phases, dicarboxyl cellulose-modified silica (DCC/SiO2) and (S)-α-phenylethylamine-bonded DCC/SiO2 ((S)-α-PEA/DCC/SiO2), were prepared by utilizing the easy functionalization characteristics of dialdehyde cellulose. The chromatographic evaluation showed that DCC/SiO2 column could be used in hydrophilic interaction liquid chromatography (HILIC) and ion exchange chromatography (IEC) modes, (S)-α-PEA/DCC/SiO2 column could be used in HILIC, IEC and chiral separation modes. The DCC/SiO2 column and (S)-α-PEA/DCC/SiO2 column exhibited excellent chromatographic performance by separating strongly polar compounds, phenylamines and chiral compounds in the above separation modes. The preparation method of modified dialdehyde cellulose-based mixed-mode chromatographic stationary phases was simple, and also provided a new idea for the development of the subsequent novel mixed-mode chromatographic stationary phases.
Collapse
Affiliation(s)
- Jie Gao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoying Luo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhan Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hui Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Liang Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
6
|
Treder N, Bączek T, Wychodnik K, Rogowska J, Wolska L, Plenis A. The Influence of Ionic Liquids on the Effectiveness of Analytical Methods Used in the Monitoring of Human and Veterinary Pharmaceuticals in Biological and Environmental Samples-Trends and Perspectives. Molecules 2020; 25:E286. [PMID: 31936806 PMCID: PMC7024248 DOI: 10.3390/molecules25020286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/27/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Recent years have seen the increased utilization of ionic liquids (ILs) in the development and optimization of analytical methods. Their unique and eco-friendly properties and the ability to modify their structure allows them to be useful both at the sample preparation stage and at the separation stage of the analytes. The use of ILs for the analysis of pharmaceuticals seems particularly interesting because of their systematic delivery to the environment. Nowadays, they are commonly detected in many countries at very low concentration levels. However, due to their specific physiological activity, pharmaceuticals are responsible for bioaccumulation and toxic effects in aquatic and terrestrial ecosystems as well as possibly upsetting the body's equilibrium, leading to the dangerous phenomenon of drug resistance. This review will provide a comprehensive summary of the use of ILs in various sample preparation procedures and separation methods for the determination of pharmaceuticals in environmental and biological matrices based on liquid-based chromatography (LC, SFC, TLC), gas chromatography (GC) and electromigration techniques (e.g., capillary electrophoresis (CE)). Moreover, the advantages and disadvantages of ILs, which can appear during extraction and separation, will be presented and attention will be given to the criteria to be followed during the selection of ILs for specific applications.
Collapse
Affiliation(s)
- Natalia Treder
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (N.T.); (T.B.)
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (N.T.); (T.B.)
| | - Katarzyna Wychodnik
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Dębowa 23 A, 80-204 Gdańsk, Poland; (K.W.); (J.R.); (L.W.)
| | - Justyna Rogowska
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Dębowa 23 A, 80-204 Gdańsk, Poland; (K.W.); (J.R.); (L.W.)
| | - Lidia Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Dębowa 23 A, 80-204 Gdańsk, Poland; (K.W.); (J.R.); (L.W.)
| | - Alina Plenis
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (N.T.); (T.B.)
| |
Collapse
|
7
|
Synthesis of Octyl-Quaternary Ammonium Mixed-Mode Stationary Phase by Vapor Deposition Approach and Its Application in Compound Preparation Separation. Chromatographia 2019. [DOI: 10.1007/s10337-019-03774-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Cui G, Yu H, Ma Y. Ionic liquids as mobile phase additives for determination of thiocyanate and iodide by liquid chromatography. J Sep Sci 2019; 42:1733-1739. [DOI: 10.1002/jssc.201801277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/30/2019] [Accepted: 02/24/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Ge Cui
- Heilongjiang Province Key Laboratory of Photochemical Biomaterials and Energy Storage MaterialsCollege of Chemistry and Chemical EngineeringHarbin Normal University Harbin P. R. China
| | - Hong Yu
- Heilongjiang Province Key Laboratory of Photochemical Biomaterials and Energy Storage MaterialsCollege of Chemistry and Chemical EngineeringHarbin Normal University Harbin P. R. China
| | - Ya‐jie Ma
- Heilongjiang Province Key Laboratory of Photochemical Biomaterials and Energy Storage MaterialsCollege of Chemistry and Chemical EngineeringHarbin Normal University Harbin P. R. China
| |
Collapse
|
9
|
Patil SK, Bhise SC, Awale DV, Vadiyar MM, Patil SA, Gunjal DB, Kolekar GB, Ghorpade UV, Kim JH, Kolekar SS. “Seems Bad Turns Good” – traces of precursor in dicationic ionic liquid lead to analytical application. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Lee YR, Ma W, Row KH. Determination of Polysaccharides in Undaria pinnatifida by Ionic Liquid-Modified Silica Gel Size Exclusion Chromatography. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1413384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yu Ri Lee
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| | - Wanwan Ma
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| |
Collapse
|
11
|
De Conto JF, Oliveira MR, Oliveira MM, Brandão TG, Campos KV, Santana CC, Egues SM. One-pot synthesis and modification of silica nanoparticles with 3-chloropropyl-trimethoxysilane assisted by microwave irradiation. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2017.1406349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Juliana F. De Conto
- Institute of Technology and Research (ITP), Synthesis Materials and Chromatography Laboratory (LSINCROM), Tiradentes University (UNIT), Aracaju, SE, Brazil
| | - Marília R. Oliveira
- Institute of Technology and Research (ITP), Synthesis Materials and Chromatography Laboratory (LSINCROM), Tiradentes University (UNIT), Aracaju, SE, Brazil
| | - Matheus M. Oliveira
- Institute of Technology and Research (ITP), Synthesis Materials and Chromatography Laboratory (LSINCROM), Tiradentes University (UNIT), Aracaju, SE, Brazil
| | - Thadeu G. Brandão
- Institute of Technology and Research (ITP), Synthesis Materials and Chromatography Laboratory (LSINCROM), Tiradentes University (UNIT), Aracaju, SE, Brazil
| | - Kelvis V. Campos
- Institute of Technology and Research (ITP), Synthesis Materials and Chromatography Laboratory (LSINCROM), Tiradentes University (UNIT), Aracaju, SE, Brazil
| | - Cesar C. Santana
- Institute of Technology and Research (ITP), Synthesis Materials and Chromatography Laboratory (LSINCROM), Tiradentes University (UNIT), Aracaju, SE, Brazil
| | - Silvia M. Egues
- Institute of Technology and Research (ITP), Synthesis Materials and Chromatography Laboratory (LSINCROM), Tiradentes University (UNIT), Aracaju, SE, Brazil
| |
Collapse
|
12
|
Wu Q, Sun Y, Gao J, Chen L, Dong S, Luo G, Li H, Wang L, Zhao L. Ionic liquid-functionalized graphene quantum dot-bonded silica as multi-mode HPLC stationary phase with enhanced selectivity for acid compounds. NEW J CHEM 2018. [DOI: 10.1039/c7nj05200f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel IL/GQD/SiO2 stationary phase for reversed-phase/normal-phase/ionic exchange and hydrophilic interaction liquid chromatography.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Yaming Sun
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Jie Gao
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Lixiao Chen
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Shuqing Dong
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Guoying Luo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Hui Li
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Litao Wang
- Department of Pharmacy
- Jining Medical University
- Rizhao
- China
| | - Liang Zhao
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| |
Collapse
|
13
|
Bionic multi-tentacled ionic liquid-modified silica gel for adsorption and separation of polyphenols from green tea ( Camellia sinensis ) leaves. Food Chem 2017; 230:637-648. [DOI: 10.1016/j.foodchem.2017.03.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/22/2017] [Accepted: 03/09/2017] [Indexed: 01/08/2023]
|
14
|
Yang B, Liu H, Chen J, Guan M, Qiu H. Preparation and evaluation of 2-methylimidazolium-functionalized silica as a mixed-mode stationary phase for hydrophilic interaction and anion-exchange chromatography. J Chromatogr A 2016; 1468:79-85. [DOI: 10.1016/j.chroma.2016.09.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/02/2016] [Accepted: 09/11/2016] [Indexed: 02/09/2023]
|
15
|
Zhang L, Dai Q, Qiao X, Yu C, Qin X, Yan H. Mixed-mode chromatographic stationary phases: Recent advancements and its applications for high-performance liquid chromatography. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.05.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Wang H, Zhang L, Ma T, Zhang L, Qiao X. Imidazolium‐embedded iodoacetamide‐functionalized silica‐based stationary phase for hydrophilic interaction/reversed‐phase mixed‐mode chromatography. J Sep Sci 2016; 39:3498-504. [DOI: 10.1002/jssc.201600448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Huizhen Wang
- Electrical and Information Engineering Department of Hebei Jiaotong Vocational & Technical College Shijiazhuang China
| | - Lu Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Pharmaceutical SciencesHebei University Baoding China
| | - Teng Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Pharmaceutical SciencesHebei University Baoding China
| | - Liyuan Zhang
- Liaoning Provincial Key Laboratory for ProteomicsDalian Medical University Dalian China
| | - Xiaoqiang Qiao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Pharmaceutical SciencesHebei University Baoding China
| |
Collapse
|
17
|
Sun M, Feng J, Bu Y, Luo C. Ionic liquid coated copper wires and tubes for fiber-in-tube solid-phase microextraction. J Chromatogr A 2016; 1458:1-8. [DOI: 10.1016/j.chroma.2016.06.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
|
18
|
Recent advances in materials for stationary phases of mixed-mode high-performance liquid chromatography. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.04.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Fast separation of triterpenoid saponins using supercritical fluid chromatography coupled with single quadrupole mass spectrometry. J Pharm Biomed Anal 2016; 121:22-29. [DOI: 10.1016/j.jpba.2015.12.056] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/26/2015] [Accepted: 12/29/2015] [Indexed: 11/16/2022]
|
20
|
Li P, Sun XY, Shen JS, Liu B. A novel photoluminescence sensing system sensitive for and selective to bromate anions based on carbon dots. RSC Adv 2016. [DOI: 10.1039/c6ra12936f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A simple, highly sensitive and selective PL sensing method for bromate anions has been developed.
Collapse
Affiliation(s)
- Ping Li
- College of Chemical Engineering
- Huaqiao University
- Xiamen 361021
- China
- Department of Chemistry
| | - Xiang-Ying Sun
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Jiang-Shan Shen
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Bin Liu
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021
- China
| |
Collapse
|
21
|
Recent development of ionic liquid stationary phases for liquid chromatography. J Chromatogr A 2015; 1420:1-15. [PMID: 26463427 DOI: 10.1016/j.chroma.2015.09.090] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/28/2022]
Abstract
Based on their particular physicochemical characteristics, ionic liquids have been widely applied in many fields of analytical chemistry. Many types of ionic liquids were immobilized on a support like silica or monolith as stationary phases for liquid chromatography. Moreover, different approaches were developed to bond covalently ionic liquids onto the supporting materials. The obtained ionic liquid stationary phases show multi-mode mechanism including hydrophobic, hydrophilic, hydrogen bond, anion exchange, π-π, and dipole-dipole interactions. Therefore, they could be used in different chromatographic modes including ion-exchange, RPLC, NPLC and HILIC to separate various classes of compounds. This review mainly summarizes the immobilized patterns and types of ionic liquid stationary phases, their retention mechanisms and applications in the recent five years.
Collapse
|
22
|
Zhang M, Mallik AK, Takafuji M, Ihara H, Qiu H. Versatile ligands for high-performance liquid chromatography: An overview of ionic liquid-functionalized stationary phases. Anal Chim Acta 2015; 887:1-16. [DOI: 10.1016/j.aca.2015.04.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 01/26/2023]
|
23
|
Shahruzzaman M, Takafuji M, Ihara H. Porous silica particles grafted with an amphiphilic side-chain polymer as a stationary phase in reversed-phase high-performance liquid chromatography. J Sep Sci 2015; 38:2403-13. [DOI: 10.1002/jssc.201500189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/12/2015] [Accepted: 04/24/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Md. Shahruzzaman
- Department of Applied Chemistry and Biochemistry; Kumamoto University; Kurokami Kumamoto Japan
- Department of Natural Sciences; Daffodil International University; Dhanmondi Dhaka Bangladesh
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry; Kumamoto University; Kurokami Kumamoto Japan
- Kumamoto Institute of Photo-Electro Organics (PHOENICS); Higashimachi Higashiku; Kumamoto Japan
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry; Kumamoto University; Kurokami Kumamoto Japan
- Kumamoto Institute of Photo-Electro Organics (PHOENICS); Higashimachi Higashiku; Kumamoto Japan
| |
Collapse
|
24
|
Qiao X, Zhang L, Zhang N, Wang X, Qin X, Yan H, Liu H. Imidazolium embedded C8 based stationary phase for simultaneous reversed-phase/hydrophilic interaction mixed-mode chromatography. J Chromatogr A 2015; 1400:107-16. [PMID: 25981287 DOI: 10.1016/j.chroma.2015.04.060] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/26/2015] [Accepted: 04/28/2015] [Indexed: 11/27/2022]
Abstract
A new imidazolium embedded C8 based stationary phase (SIL-MPS-VOL) was facilely prepared by two steps and characterized by Fourier transform infrared spectrometry and thermogravimetric analysis. Due to the introduction of quaternary imidazolium group to the traditional C8 stationary phase, the developed SIL-MPS-VOL column demonstrated both reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) retention mechanisms. A series of hydrophobic and hydrophilic test samples, including benzene homologues, anilines, positional isomers, nucleosides and nucleotides, were used to evaluate the developed SIL-MPS-VOL stationary phase. A rapid separation time, high separation efficiency and planar selectivity were achieved, compared with the commercially available C8 column. Moreover, the developed stationary phase was further used to detect and separate of melamine in powdered infant formula and high polar component of secondary metabolites of Trichoderma, and improved separation efficiency was achieved, indicating the potential merits of the developed SIL-MPS-VOL stationary phase for simultaneous separation of complex hydrophobic and hydrophilic samples with high selectivity.
Collapse
Affiliation(s)
- Xiaoqiang Qiao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education and Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| | - Lu Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education and Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Niu Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education and Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Xin Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education and Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Xinying Qin
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education and Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education and Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Haiyan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education and Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| |
Collapse
|
25
|
Zhao K, Yang F, Xia H, Wang F, Song Q, Bai Q. Preparation of a weak anion exchange/hydrophobic interaction dual-function mixed-mode chromatography stationary phase for protein separation using click chemistry. J Sep Sci 2015; 38:703-10. [DOI: 10.1002/jssc.201401020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/08/2014] [Accepted: 12/08/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Kailou Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Institute of Modern Separation Science; Northwest University; Xi'an China
- Department of Applied Chemistry; He Nan Vocational College of Chemical Technology; Zheng Zhou China
| | - Fan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Institute of Modern Separation Science; Northwest University; Xi'an China
| | - Hongjun Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Institute of Modern Separation Science; Northwest University; Xi'an China
| | - Fei Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Institute of Modern Separation Science; Northwest University; Xi'an China
| | - Qingguo Song
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Institute of Modern Separation Science; Northwest University; Xi'an China
| | - Quan Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Institute of Modern Separation Science; Northwest University; Xi'an China
| |
Collapse
|
26
|
Hu K, Deng Z, Wang B, Cui Y, Miao M, Liu W, Jiang Q, Zhao W, Huang Y, Zhang S. Development of a decaaza-cyclophane stationary phase for high-performance liquid chromatography. J Sep Sci 2014; 38:60-6. [DOI: 10.1002/jssc.201400836] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 10/06/2014] [Accepted: 10/10/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Kai Hu
- Henan University of Traditional Chinese Medicine; Zhengzhou P.R. China
| | - Zhifen Deng
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou P.R. China
| | - Bei Wang
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou P.R. China
| | - Yongxia Cui
- Henan University of Traditional Chinese Medicine; Zhengzhou P.R. China
| | - Mingsan Miao
- Henan University of Traditional Chinese Medicine; Zhengzhou P.R. China
| | - Wei Liu
- Henan University of Traditional Chinese Medicine; Zhengzhou P.R. China
| | - Qiong Jiang
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou P.R. China
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering; Henan University of Technology; Zhengzhou P.R. China
| | - Yanjie Huang
- Henan University of Traditional Chinese Medicine; Zhengzhou P.R. China
| | - Shusheng Zhang
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou P.R. China
| |
Collapse
|
27
|
Liquid chromatographic behavior of two alanine-substituted calix[4]arene-bonded silica gel stationary phases. J Sep Sci 2014; 37:3268-75. [DOI: 10.1002/jssc.201400366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/12/2014] [Accepted: 08/18/2014] [Indexed: 11/07/2022]
|