1
|
Hejna M, Białowiec A. Volatile organic compounds release from carbonized solid fuels derived from municipal solid waste: Risks, mitigation, and regulatory challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125049. [PMID: 40127601 DOI: 10.1016/j.jenvman.2025.125049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/21/2025] [Accepted: 03/16/2025] [Indexed: 03/26/2025]
Abstract
With the global population surpassing 8 billion in 2022 and projected to exceed 10 billion by 2058, municipal solid waste (MSW) generation presents a formidable challenge. One approach to manage MSW is Waste-to-Energy. This includes the conversion of MSW into carbonized solid fuel (CSF) through thermochemical processes. However, concerns regarding volatile organic compounds (VOCs) release from CSF during storage and use have arisen. Such release can pose potential health and environmental risks, yet the issue remains underexplored. This review critically evaluates VOC release from waste-derived CSF, namely carbonized refuse-derived fuel. It focuses on gaps in existing research, inconsistencies in VOC quantification methods, and regulatory challenges. Unlike existing studies that primarily examine process emissions, this review emphasizes the release of VOCs during storage and handling. A framework to integrate process-condition modeling and post-production release assessment was proposed to provide insights into mitigation strategies for VOC release reduction during storage and handling. Our findings highlight critical research gaps in VOC characterization, predictive modeling, and long-term exposure risks. This review emphasizes the need for standardized methodologies and stricter regulatory oversight in the management of waste-derived solid fuels.
Collapse
Affiliation(s)
- Małgorzata Hejna
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630, Wrocław, Poland.
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630, Wrocław, Poland
| |
Collapse
|
2
|
Kavian M, Ghani M, Raoof JB. Porphyrin-Based Covalent Organic Framework Reinforced Hollow Fiber for Solid-Phase Microextraction of Tebuconazole and Propiconazole. J Sep Sci 2025; 48:e70077. [PMID: 39846343 DOI: 10.1002/jssc.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/24/2025]
Abstract
Herein, an amino-functionalized covalent organic framework was synthesized and accommodated in the pores of porous hollow fiber. In this context, tetra (4-aminophenyl) porphyrin was synthesized for preparing the desired covalent organic framework as the extracting sorbent and employed for hollow fiber solid-phase microextraction of tebuconazole and propiconazole. With respect to the amino groups of the as-synthesized porphyrin-based covalent organic framework, the extracting device has the ability of establishing a hydrogen bond with the selected model analytes. Under the optimum condition, the linear range of the method for both analytes were estimated in the range of 0.5-200 µg L-1 (the coefficient of determination of 0.9962 for tebuconazole and 0.9990 for propiconazole). The limits of detection of the method for tebuconazole and propiconazole were calculated to 0.02 µg g-1 and 0.03 µg g-1, respectively. The limits of quantification of the method were also estimated for two analytes equal to 0.07 and 0.08 µg g-1, respectively. The intra- and inter-day relative standard deviations, which fell between 1.8% and 4.7%, were computed to assess the accuracy of the suggested approach. The proposed method was used for the extraction and determination of tebuconazole and propiconazole in tomato, cucumber, apple, cabbage, and carrot, which the obtained results showed the success of the method in extracting and determining of these analytes from the target samples.
Collapse
Affiliation(s)
- Marzieh Kavian
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Milad Ghani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
3
|
Lu Q, Liu L, Li J, Song S, Kuang H, Xu C, Guo L. Rapid and sensitive quantitation of amitraz in orange, tomato, and eggplant samples using immunochromatographic assay. Food Chem 2024; 446:138899. [PMID: 38452506 DOI: 10.1016/j.foodchem.2024.138899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/11/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Amitraz (AMT) is a broad-spectrum formamidine insecticide and acaricide. In this study, we produced an anti-AMT monoclonal antibody (mAb) with high performance. The half-maximal inhibitory concentration of the anti-AMT mAb was 4.418 ng/mL, the cross reactivity with other insecticides was negligible, and an affinity constant was 2.06 × 109 mmol/L. Additionally, we developed an immunochromatographic assay for the rapid detection of AMT residues in oranges, tomatoes, and eggplants. The cut-off values were 2000 μg/kg in oranges and tomato samples and 1000 μg/kg in eggplant samples and the calculated limits of detection were 14.521 μg/kg, 6.281 μg/kg, and 3.518 μg/kg in oranges, tomatoes, and eggplants, respectively, meeting the detection requirements for AMT in fruits and vegetables. The recovery rates ranged between 95.8 % and 105.2 %, consistent with the recovery rates obtained via LC-MS/MS. Our developed immunochromatographic assay can effectively, accurately, and rapidly determine AMT residues in oranges, tomatoes, and eggplants.
Collapse
Affiliation(s)
- Qianqian Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinyan Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shanshan Song
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lingling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Pratap Singh Raman A, Thakur G, Pandey G, Kumari K, Singh P. An Updated Review on Functionalized Graphene as Sensitive Materials in Sensing of Pesticides. Chem Biodivers 2024; 21:e202302080. [PMID: 38578653 DOI: 10.1002/cbdv.202302080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
Numerous chemical pesticides were employed for a long time to manage pests, but their uncontrolled application harmed the health and the environment. Accurately quantifying pesticide residues is essential for risk evaluation and regulatory purposes. Numerous analytical methods have been developed and utilized to achieve sensitive and specific detection of pesticides in intricate sampl es like water, soil, food, and air. Electrochemical sensors based on amperometry, potentiometry, or impedance spectroscopy offer portable, rapid, and sensitive detection suitable for on-site analysis. This study examines the potential of electrochemical sensors for the accurate evaluation of various effects of pesticides. Emphasizing the use of Graphene (GR), Graphene Oxide (GO), Reduced Graphene Oxide (rGO), and Graphdiyne composites, the study highlights their enhanced performance in pesticide sensing by stating the account of many actual sensors that have been made for specific pesticides. Computational studies provide valuable insights into the adsorption kinetics, binding energies, and electronic properties of pesticide-graphene complexes, guiding the design and optimization of graphene-based sensors with improved performance. Furthermore, the discussion extends to the emerging field of biopesticides. While the GR/GO/rGO based sensors hold immense future prospects, and their existing limitations have also been discussed, which need to be solved with future research.
Collapse
Affiliation(s)
- Anirudh Pratap Singh Raman
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| | - Gauri Thakur
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Indian Institute of Technology, Madras, India
| | - Garima Pandey
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| |
Collapse
|
5
|
Xu Y, Li G, Xu W, Li Z, Qu H, Cheng J, Li H. Recent Advances of Food Hazard Detection Based on Artificial Nanochannel Sensors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11900-11916. [PMID: 38709250 DOI: 10.1021/acs.jafc.4c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Food quality and safety are related to the health and safety of people, and food hazards are important influencing factors affecting food safety. It is strongly necessary to develop food safety rapid detection technology to ensure food safety. As a new detection technology, artificial nanochannel-based electrochemical and other methods have the advantages of being real-time, simple, and sensitive and are widely used in the detection of food hazards. In this paper, we review artificial nanochannel sensors as a new detection technology in food safety for different types of food hazards: biological hazards (bacteria, toxins, viruses) and chemical hazards (heavy metals, organic pollutants, food additives). At the same time, we critically discuss the advantages and disadvantages of artificial nanochannel sensor detection, as well as the restrictions and solutions of detection, and finally look forward to the challenges and development prospects of food safety detection technology based on the limitations of artificial nanochannel detection. We expect to provide a theoretical basis and inspiration for the development of rapid real-time detection technology for food hazards and the production of portable detection equipment in the future.
Collapse
Affiliation(s)
- Yuan Xu
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang Li
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Weiwei Xu
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Ziheng Li
- Hubei Central China Normal University Overseas Study Service Center, Central China Normal University, Wuhan 430079, P.R. China
| | - Haonan Qu
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jing Cheng
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Haibing Li
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
6
|
Pezhhanfar S, Farajzadeh MA, Hosseini-Yazdi SA, Mogaddam MRA. Streamlined Water-Leaching Preconcentration Method As a Novel Analytical Approach and Its Coupling to Dispersive Micro-Solid-Phase Extraction Based on Synthetically Modified (Fe/Co) Bimetallic MOFs. ACS OMEGA 2024; 9:9185-9201. [PMID: 38434905 PMCID: PMC10905590 DOI: 10.1021/acsomega.3c08218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
The streamlined water-leaching preconcentration method is introduced as a novel preconcentration method in this study. The approach has many benefits including low consumption of organic solvent and deionized water and operation time, energy-saving, no need for dispersion or evaporation, and implementation of more efficient preconcentration. Also, a methodological study was done on the synthesis of (Fe/Co) bimetallic-organic framework that eased the synthesis procedure, decreased its time, and enhanced its analytical performance by increasing its surface area, total pore volume, and average pore diameter parameters. To perform the extraction, bi-MOF particles were added into the solution of interest enriched with sodium sulfate. After vortexing to adsorb the analytes, centrifugation isolated the sorbent particles. A microliter-volume of acetonitrile and 1,2-dibromoethane mixture was used for desorption aim via vortexing. After the separation of the organic phase and transferring it into a conical bottom glass test tube, a milliliter volume of sodium chloride solution was applied to leach the organic phase. A gas chromatograph equipped with a flame ionization detector was applied for the injection of the extracted phase. The method was applied for the extraction and preconcentration of some pesticides from juice samples. Wide linear ranges (5.44-1600 μg L-1), low relative standard deviations (3.1-4.5% for intra- (n = 6) and 3.5-5.2% for interday (n = 4) precisions), high extraction recoveries (61-95%), enrichment factors (305-475), and low limits of detection (0.67-1.65 μg L-1) and quantification (2.21-5.44 μg L-1) were obtained for the developed method.
Collapse
Affiliation(s)
- Sakha Pezhhanfar
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666, Iran
| | - Mir Ali Farajzadeh
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666, Iran
- Engineering
Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| | | | - Mohammad Reza Afshar Mogaddam
- Food
and Drug Safety Research Center, Tabriz
University of Medical Sciences, Tabriz 51666, Iran
- Pharmaceutical
Analysis Research Center, Tabriz University
of Medical Sciences, Tabriz 51666, Iran
| |
Collapse
|
7
|
Wambua D, Roman W, Vidanage I, Vidal M, Calafat AM, Ospina M. Online solid phase extraction high-performance liquid chromatography - Isotope dilution - Tandem mass spectrometry quantification of organophosphate pesticides, synthetic pyrethroids, and selected herbicide metabolites in human urine. CHEMOSPHERE 2023; 340:139863. [PMID: 37598954 PMCID: PMC10530585 DOI: 10.1016/j.chemosphere.2023.139863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Analytical methods to quantify pesticide biomarkers in human population studies are critical for exposure assessment given the widespread use of pesticides for pest and weed control and their potential for affecting human health. We developed a method to quantify, in 0.2 mL of urine, concentrations of 10 pesticide biomarkers: four organophosphate insecticide metabolites (3,5,6-trichloro-2-pyridinol (TCPy), 2-isopropyl-6-methyl-4-pyrimidinol, para-nitrophenol, malathion dicarboxylic acid); five synthetic pyrethroid insecticide metabolites (4-fluoro-3-phenoxybenzoic acid, 3-phenoxybenzoic acid, cis and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (DCCA), cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid); and the herbicide 2,4-dichlorophenoxyacetic acid. he method is based on enzymatic hydrolysis of conjugated urinary metabolites, extraction and pre-concentration of the deconjugated metabolites using automated online solid-phase extraction, and separation and quantification using liquid chromatography-isotope dilution tandem mass spectrometry. Depending on the analyte, method detection limits were 0.1-0.6 ng/mL; mean accuracy, calculated as spike recoveries, was 91-102%, and total precision, given as percent variation coefficient, was 5.9-11.5%. Percent differences associated with three freeze-thaw cycles, 24-h benchtop storage, and short-term processed sample stability were <14%. Method suitability was assessed by recurring successful participation in external quality assessment schemes and by analyzing samples from subjects with suspected exposure to pesticides (n = 40) or who self-reported consuming an organic diet (n = 50). Interquartile ranges were considerably lower for people consuming an organic diet than for those potentially exposed for cis-DCCA (0.37 ng/mL vs 0.75 ng/mL), trans-DCCA (0.88 ng/mL vs 1.78 ng/mL) and TCPy (1.81 ng/mL vs 2.48 ng/mL). This method requires one-fifth of the sample used in our previous method and is suitable for assessing background exposures to select pesticides in large human populations and for studies with limited sample volumes.
Collapse
Affiliation(s)
- Dickson Wambua
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S103-2, Atlanta, GA, 30341, USA.
| | - William Roman
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S103-2, Atlanta, GA, 30341, USA
| | - Isuru Vidanage
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S103-2, Atlanta, GA, 30341, USA
| | - Meghan Vidal
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S103-2, Atlanta, GA, 30341, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S103-2, Atlanta, GA, 30341, USA
| | - Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S103-2, Atlanta, GA, 30341, USA
| |
Collapse
|
8
|
Ozalp O, Gumus ZP, Soylak M. Magnetic solid-phase extraction of atrazine with ACC@NiCo 2O 4@Fe 3O 4 nanocomposite in spice and water samples. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2168203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ozgur Ozalp
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Z. Pinar Gumus
- Central Research Testing and Analysis Laboratory Research and Application Center (EGE-MATAL), Ege University, İzmir, Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Ankara, Cankaya, Turkey
| |
Collapse
|
9
|
Yao W, Ge J, Hu Q, Ma J, Yuan D, Fu X, Qi Y, Volmer DA. An advanced LC-MS/MS protocol for simultaneous detection of pharmaceuticals and personal care products in the environment. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9397. [PMID: 36098176 DOI: 10.1002/rcm.9397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE The development of appropriate analytical screening techniques for pharmaceuticals and personal care products (PPCPs) is the basis for studying the distribution and environmental impact of emerging contaminants (ECs). Mass spectrometry-based screening methods vary with the complexity of the target compounds. It is challenging to balance both positive and negative ion quantification with a low detection limit. To establish a set of experimental methods including extraction, chromatography-separation and mass spectrometry screening is one of the most important topics in PPCP research. This paper describes a universal and efficient qualification and quantification protocol for the simultaneous detection of 34 PPCPs in different environmental samples in a single analytical data acquisition run. METHODS Thirty-four representative PPCPs, which are widely distributed in the environment with high ecological toxicity and complex chemical structures, were selected as representative target ECs. The extraction of the target PPCPs was achieved using only one solid-phase extraction cartridge without the need to adjust the pH of samples. The enriched samples were detected by LC-MS/MS in both positive and negative ion modes simultaneously. The protocol was evaluated based on the accuracy, precision, detection limits and matrix effects. RESULTS This method achieved simultaneous detection of PPCPs in both positive and negative ion modes, with a single analytical cycle of 12 min. The observed SPE recoveries were between 40% and 115%. The instrumental detection limits (IDL) varied from 0.01 to 1 pg, and the method detection limits (MDL) were between 0.002 and 3.323 ng/l in different matrices. Most of the PPCPs were subjected to matrix suppression below 30%. The method was successfully applied for quantitative analysis of the PPCPs in different environmental samples, including river samples, wastewater treatment plant (WWTP) samples and soil samples. CONCLUSIONS This protocol developed a rapid and efficient detection method to simultaneous qualitative and quantitative 34 representative PPCPs in the environment. The IDL ranged from 0.01 to 1 pg and the MDL ranged from 0.002 to 3.323 ng/l in different matrices. The detection limit was one order of magnitude lower compared to previous studies. The protocol also provided a wide application range for different environmental matrices, which permitted the migration and transformation of PPCPs to be explored.
Collapse
Affiliation(s)
- Wenrui Yao
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Jinfeng Ge
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Qiaozhuan Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Jingying Ma
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Daohe Yuan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Xiaoli Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Yulin Qi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin, China
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
10
|
Fast and highly efficient liquid chromatographic methods for qualification and quantification of antibiotic residues from environmental waste. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Hao S, Wang H, Zhao W, Sun C, Gao R, Zhang Y. Simultaneous determination of trace level riot control agents in environmental water by solid-phase microextraction and gas chromatography coupled with a Flame Ionization Detector. J Sep Sci 2022; 45:2612-2620. [PMID: 35522798 DOI: 10.1002/jssc.202100851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/08/2022]
Abstract
In this paper, a direct immersion solid-phase microextraction procedure for the simultaneous analyses of four primary riot control agents: 2-Chloroacetophenone, o-chlorobenzylidene malonitrile, Dibenz (b, f)-1,4-Oxazepine, and oleoresin capsicum at μg·L-1 concentration from environmental water was developed. Several parameters that influence the extraction effectiveness were investigated, including fiber type, extraction temperature, extraction time, starring rate, and salinity. Under the recommended conditions, the optimized method had reasonable linearity and accuracy. The average recovery of this method ranged from 84% to 108.1%. The limit of detection for all the analytes ranged from 0.2 to 3 μg·L-1 and the limit of quantification ranged from 1 to 10 μg·L-1 , respectively. A relative standard deviation from 3.0% to 4.3% can be achieved depending on the compounds. The procedure was applied to analyze all the four riot control agents simultaneously in several environmental samples. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shangpeng Hao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Haitao Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Wenbo Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Chao Sun
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Runli Gao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yuanpeng Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| |
Collapse
|
12
|
Wang J, Teng Y, Zhai Y, Yue W, Pan Z. Spatiotemporal distribution and risk assessment of organophosphorus pesticides in surface water and groundwater on the North China Plain, China. ENVIRONMENTAL RESEARCH 2022; 204:112310. [PMID: 34762928 DOI: 10.1016/j.envres.2021.112310] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/27/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
90 groundwater samples and 14 surface water samples were collected in wet season (summer) and dry season (winter) in the North China Plain (NCP), and analyzed for 11 organophosphorus pesticides (OPPs). The results showed that the main types of OPPs in surface water and groundwater were dimethoate, dichlorvos, methyl-parathion, malathion in both summer and winter. The OPP concentrations in groundwater and surface water were higher in summer than in winter. In the vertical direction, the distribution characteristics of different four types of groundwater sampling points are different. In the horizontal direction: farmland adjacent to a river (FAR) > central farmland (CF) > nonfarm area adjacent to a river (NFAR) > central nonfarm area (CNF). The OPPs concentrations in surface water adjacent to farmland were higher than that in surface water adjacent to nonfarm area. The main factors influencing the distribution of OPPs in the groundwater and surface water were the interaction process between them, the groundwater flow field and the OPPs used in agricultural activities. The ecological risk of OPPs to surface water was greater in summer than in winter. Water Flea was at medium risk, and malathion had the greatest influence on Water Flea in both summer and winter. The non-carcinogenic and carcinogenic risks of the four main OPPs in surface water were higher than in groundwater, and were higher in summer than in winter, but they would not lead to adverse health effects on local residents.
Collapse
Affiliation(s)
- Jianwei Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation Ministry of Education, Beijing 100875, China.
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Weifeng Yue
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Zhenzhen Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
13
|
Gu YX, Yan TC, Yue ZX, Li MH, Zheng H, Wang SL, Cao J. Dispersive Micro-solid-Phase Extraction of Acaricides from Fruit Juice and Functional Food Using Cucurbituril as Sorbent. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02209-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Hu B, Ouyang G. In situ solid phase microextraction sampling of analytes from living human objects for mass spectrometry analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116368] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
da Silva Sousa J, do Nascimento HO, de Oliveira Gomes H, do Nascimento RF. Pesticide residues in groundwater and surface water: recent advances in solid-phase extraction and solid-phase microextraction sample preparation methods for multiclass analysis by gas chromatography-mass spectrometry. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106359] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Tazarv M, Faraji H, Moghimi A, Azizinejad F. Bursting-bubble flow microextraction combined with gas chromatography to analyze organophosphorus pesticides in aqueous samples. J Sep Sci 2021; 44:2965-2971. [PMID: 34021710 DOI: 10.1002/jssc.202001213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 12/26/2022]
Abstract
Bubble-bursting flow microextraction combined with gas chromatography as a green and sustainable microextraction method is used to determine some organophosphorus pesticide residues in water samples. The extraction process occurs at the surface of liquid-gas contact, where the analytes interact with the gas molecules in the bubble. The analytes are transferred to the surface of the sample solution by moving the gas bubbles upwards. The bursting of gas bubbles causes the analytes to disperse in the headspace. Eventually, they are collected for injection into the chromatography system. A one-factor-at-one-time approach was applied to optimize the independent variables in the proposed method. Validation studies were performed according to reliable guidelines. Under optimal conditions, the method indicated a dynamic linear range from 1.0 to 100.0 μg/L. The limit of detection and quantification of the method was 0.29-0.38 and 1.21-1.70 μg/L, respectively. The proposed method was successfully utilized to determine malathion, diazinon, profenofos, and ethion as the target analytes in various water samples with satisfactory relative recoveries ranged from 90.1 to 102.2%.
Collapse
Affiliation(s)
- Maryam Tazarv
- Department of Chemistry, Varamin-Pishva Branch, Islamic Azad University, Varamin, 338177489, Iran
| | - Hakim Faraji
- Department of Chemistry, Varamin-Pishva Branch, Islamic Azad University, Varamin, 338177489, Iran
| | - Ali Moghimi
- Department of Chemistry, Varamin-Pishva Branch, Islamic Azad University, Varamin, 338177489, Iran
| | - Fariborz Azizinejad
- Department of Chemistry, Varamin-Pishva Branch, Islamic Azad University, Varamin, 338177489, Iran
| |
Collapse
|
17
|
Wang J, Zhang C, Liao X, Teng Y, Zhai Y, Yue W. Influence of surface-water irrigation on the distribution of organophosphorus pesticides in soil-water systems, Jianghan Plain, central China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111874. [PMID: 33385909 DOI: 10.1016/j.jenvman.2020.111874] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/09/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Surface-water irrigation is one of the most important irrigation methods in areas with abundant surface water. Although this method of irrigation is both economical and convenient, many contaminants are also introduced into the soil-water systems such as organophosphorus pesticides (OPPs). To study the influence of surface-water irrigation on the distribution of OPPs in soil-water systems, 42 water samples (38 groundwater and four surface water) and 85 soil samples (78 profile soil samples and seven topsoil samples) were taken from Shahu in the Jianghan Plain, China. Shahu is a typical Chinese surface-water irrigation district. During sampling, three types of areas were considered: surface-water irrigated areas, groundwater-irrigated areas away from rivers, and non-irrigated areas adjacent to rivers. The results showed that the concentrations of OPPs in the groundwater and soil in the surface-water irrigated farmland were higher than those in groundwater-irrigated farmland. The groundwater flow field and surface-water irrigation were responsible for the OPPs. Thus, it is clear that the surface-water irrigation had a strong influence on the distribution of OPPs in soil-water systems. Principal component analysis for OPPs content in groundwater showed that the key influencing factors on the distribution of OPPs in groundwater were the groundwater flow field and current pesticide use.
Collapse
Affiliation(s)
- Jianwei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Caixiang Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoping Liao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Weifeng Yue
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
18
|
Ghosson H, Raviglione D, Salvia MV, Bertrand C. Online Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry-based untargeted volatile metabolomics for studying emerging complex biopesticides: A proof of concept. Anal Chim Acta 2020; 1134:58-74. [DOI: 10.1016/j.aca.2020.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
|
19
|
Marín-San Román S, Rubio-Bretón P, Pérez-Álvarez EP, Garde-Cerdán T. Advancement in analytical techniques for the extraction of grape and wine volatile compounds. Food Res Int 2020; 137:109712. [PMID: 33233285 DOI: 10.1016/j.foodres.2020.109712] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
The grape and wine aroma is one of the most determining factors of quality, therefore the study of their volatile composition is a very important topic in vitiviniculture. The range of concentrations in which many of these compounds are found is quite low, in concentrations of ng/L; due to this, a sample preparation stage is necessary before doing the chromatographic analysis of the volatile compounds. In this review, the main analytical techniques used for the extraction of volatile compounds in grapes and wines are studied. The techniques presented are liquid-liquid extraction (LLE), solid phase extraction (SPE), solid phase microextraction (SPME), stir bar sorptive extraction (SBSE), and thin film solid phase microextraction (TF-SPME). For each of these techniques, a description was made, and the different characteristics were numbered, as well as their main advantages and disadvantages. Furthermore, from the second technique, a comparison is made with the previous techniques, explaining the reasons why new techniques have emerged. Throughout the review it is possible to see the different techniques that have been emerging in the past years as an improvement of the classical techniques.
Collapse
Affiliation(s)
- Sandra Marín-San Román
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Ctra. de Burgos, Km. 6., 26007 Logroño, Spain
| | - Pilar Rubio-Bretón
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Ctra. de Burgos, Km. 6., 26007 Logroño, Spain
| | - Eva P Pérez-Álvarez
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Ctra. de Burgos, Km. 6., 26007 Logroño, Spain; Centro de Edafología y Biología Aplicada del Segura (CEBAS), Campus Universitario de Espinardo, Ed. 25, 30100 Murcia, Spain
| | - Teresa Garde-Cerdán
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Ctra. de Burgos, Km. 6., 26007 Logroño, Spain.
| |
Collapse
|
20
|
Multidimensional capillary liquid chromatography-tandem mass spectrometry for the determination of multiclass pesticides in "sugarcane spirits" (cachaças). Anal Bioanal Chem 2020; 412:7789-7797. [PMID: 32929570 DOI: 10.1007/s00216-020-02907-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 02/02/2023]
Abstract
Cachaça or "sugarcane spirit" is a Brazilian beverage considered the third most consumed beverage worldwide. Sugarcane, its raw material, is one of the main crops developed in the country, placing Brazil as the largest producer of this commodity on a global scale. Considering the growth in sugarcane production, many farmers use pesticides in their crops. However, excess pesticides can be accumulated in products derived from sugarcane, creating an environmental and public health concern. In this context, the development of analytical methods capable of identifying residues of pesticides in cachaças and other sugarcane-derived products is essential to ensure the beverage's quality. This work presents a method to quantify multiclass pesticides in Brazilian sugarcane spirits (cachaças) through an automated multidimensional system. The first dimension consists of an extraction column packed with a graphene-silica phase, followed by a capillary liquid chromatography-tandem mass spectrometry system as the second dimension. The method was optimized by an experimental design, in which the influence of three variables was evaluated on the extraction process: percentage of acetonitrile, loading flow, and loading time. Afterward, twenty-two cachaças were analyzed to ascertain the applicability of the proposed method. The analyses reported five samples containing clomazone (a type of herbicide widely used in sugarcane production). The method showed good linearity under optimized conditions, with correlation coefficients greater than 0.981, and limits of detection and quantification of 5 μg L-1 and 10 μg L-1, respectively. The herein discussed results suggest that the proposed method could be a practical option for identifying pesticides in beverages. Graphical Abstract.
Collapse
|
21
|
Li X, Lan H, Hartonen K, Jussila M, Wang X, Riekkola ML. Layered double hydroxide/poly(vinylpyrrolidone) coated solid phase microextraction Arrow for the determination of volatile organic compounds in water. J Sep Sci 2020; 43:3285-3293. [PMID: 32506760 DOI: 10.1002/jssc.202000239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/06/2022]
Abstract
Today, wide variety of adsorbents have been developed for sample pretreatment to concentrate and separate harmful substances. However, only a few solid phase microextraction Arrow adsorbents are commercially available. In this study, we developed a new solid phase microextraction Arrow coating, in which nanosheets layered double hydroxides and poly(vinylpyrrolidone) were utilized as the extraction phase and poly(vinyl chloride) as the adhesive. This new coating entailed higher extraction capacity for several volatile organic compounds (allyl methyl sulfide, methyl propyl sulfide, 3-pentanone, 2-butanone, and methyl isobutyl ketone) compared to the commercial Carboxen 1000/polydimethylsiloxane coating. Fabrication parameters for the coating were optimized and extraction and desorption conditions were investigated. The validation of the new solid phase microextraction Arrow coating was accomplished using water sample spiked with volatile organic compounds. Under the optimal conditions, the limits of quantification for the five volatile organic compounds by the new solid phase microextraction Arrow coating and developed gas chromatography with mass spectrometry method were in the range of 0.2-4.6 ng/mL. The proposed method was briefly applied for enrichment of volatile organic compounds in sludge.
Collapse
Affiliation(s)
- Xinpei Li
- School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Hangzhen Lan
- Department of Chemistry and Institute for Atmospheric and Earth System Research, P.O. Box 55, FI-00014 University of Helsinki, Helsinki, Finland
| | - Kari Hartonen
- Department of Chemistry and Institute for Atmospheric and Earth System Research, P.O. Box 55, FI-00014 University of Helsinki, Helsinki, Finland
| | - Matti Jussila
- Department of Chemistry and Institute for Atmospheric and Earth System Research, P.O. Box 55, FI-00014 University of Helsinki, Helsinki, Finland
| | - Xinghua Wang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Marja-Liisa Riekkola
- Department of Chemistry and Institute for Atmospheric and Earth System Research, P.O. Box 55, FI-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Li Y, Li Y, Yang Y. Rapid screening of amitraz and its metabolite residues in honey using a quick, easy, cheap, effective, rugged, and safe extraction method coupled with UHPLC and Q Exactive. J Sep Sci 2020; 43:1466-1473. [PMID: 32052934 DOI: 10.1002/jssc.201900801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/15/2020] [Accepted: 02/08/2020] [Indexed: 12/14/2022]
Abstract
A method for determining amitraz and 2,4-dimethylaniline in honey was established by using ultra-high-performance liquid chromatoghaphy and Q Exactive after applying quick, easy, cheap, effective, rugged, and safe extracting process. A suitable extraction method was designed to extract the amitraz and 2,4-dimethylaniline after a suitable amount of honey samples was dissolved. A Thermo Syncronis C18 column (100 × 2.1 mm, 1.7 μm) was used for chromatographic separation of the samples. Then the two compounds were quantitatively analyzed via a program of Q Exactive. The linearity of amitraz and 2,4-dimethylaniline was good in the concentration range of 0.5-100 μg/L, and the correlation coefficient R2 was >0.99. The average recovery and relative standard deviation of each component were 81.3-90.0% and 5.1-7.2%. The 24- and 48-h test results showed that the sample needed to be tested within 24 h. The limit of detection was 0.1 μg/kg for amitraz and 2,4-dimethylaniline, whereas for both the limit of quantitation was 0.3 μg/kg.
Collapse
Affiliation(s)
- Yanping Li
- Fujian Inspection and Research Institute for Product Quality, Fujian, P. R. China
| | - Yuxiang Li
- Fujian Provincial Key Laboratory of Zoonosis Research (Fujian Center for Disease Control & Prevention), Fuzhou, P. R. China
| | - Yan Yang
- Fujian Provincial Key Laboratory of Zoonosis Research (Fujian Center for Disease Control & Prevention), Fuzhou, P. R. China
| |
Collapse
|
23
|
|
24
|
Roussev M, Lehotay SJ, Pollaehne J. Cryogenic Sample Processing with Liquid Nitrogen for Effective and Efficient Monitoring of Pesticide Residues in Foods and Feeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9203-9209. [PMID: 31369261 DOI: 10.1021/acs.jafc.9b04006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the monitoring of hundreds of pesticides in food and feed, the comminution step is equally crucial as any other to achieve valid results. However, sample processing is often underestimated in its importance and practical difficulty to produce consistent test portions for analysis. The scientific literature is rife with descriptions of microextraction methods, but ironically, sample comminution is often ignored or dismissed as being prosaic, despite it being the foundation upon which the viability of such techniques relies. Cryogenic sample processing using dry ice (-78 °C) is generally accepted in practice, but studies have not shown it to yield representative test portions of <1 g. Remarkably, liquid nitrogen has rarely been used as a cryogenic agent in pesticide residue analysis, presumably as a result of access, cost, and safety concerns. However, real-world implementation of blending unfrozen bulk food portions with liquid nitrogen (-196 °C) using common food processing devices has demonstrated this approach to be safe, simple, fast, and cost-effective and yield high-quality results for various commodities, including increased stability of labile or volatile analytes. For example, analysis of dithiocarbamates as carbon disulfide has shown a significant increase of thiram recoveries (up to 95%) using liquid nitrogen during sample comminution. This perspective is intended to allay concerns among working laboratories about the practical use of liquid nitrogen for improved sample processing in the routine monitoring of pesticide residues in foods and feeds, which also gives promise for feasible test sample size reduction in high-throughput miniaturized methods.
Collapse
Affiliation(s)
- Manol Roussev
- WESSLING GmbH , Haynauer Straße 60 , D-12249 Berlin ; Germany
| | - Steven J Lehotay
- Eastern Regional Research Center, Agricultural Research Service , United States Department of Agriculture , 600 East Mermaid Lane , Wyndmoor , Pennsylvania 19038 , United States
| | | |
Collapse
|