1
|
Jiang J, Duo K, Zhu S, Wang Y, Xue H, Piao C, Ren Y, Lei X, Zhang Y, Liu J, Yang L, Zhang N. Investigation of the mechanism of Buyang Huanwu decoction in improving learning and memory impairment in Alzheimer's disease mice based on lipidomics. J Nat Med 2025:10.1007/s11418-025-01890-x. [PMID: 40195204 DOI: 10.1007/s11418-025-01890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025]
Abstract
In this study, a lipid disorder Alzheimer's disease (AD) model was developed with high-fat diet and D-galactose injected intraperitoneally (HFD & D-gal) to evaluate the activities of Buyang Huanwu Decoction (BYHWD) compared with donepezil hydrochloride. The learning and memory abilities of BYHWD were evaluated by Morris water maze test (MWM). The lipid levels in serum, histopathology, and immunohistochemistry of hyperphosphorylated tau protein in hippocampal neurons were conducted to prove the therapy effects of BYHWD. After the identification of constituents absorbed into the brain using LC-MS, UPLC-TQ-MS was employed to analyze endogenous lipid metabolites in the hippocampi of mice. Based on the validated differential markers identified through lipidomics analysis, we further substantiated potential therapeutic pathway of BYHWD through the application of molecular docking technology. The mechanism underlying BYHWD was subsequently confirmed by palmitic acid-injured HT22 cells. The results showed that BYHWD significantly improved the cognitive deficits and regulated the lipid levels of HFD & D-gal mice. BYHWD also protected the neuronal cell condition of hippocampal neurons, increased the density of dendritic spines, and reduced the expression of P-tau. Lipidomics revealed that 41 differential lipid metabolites were retuned after BYHWD administration, and this change may be related to the PPARγ pathway. Calycosin-7-glucoside showed good interaction with PPARγ in vivo composition analysis. Calycosin-7-glucoside increased the mRNA expression levels of lipid metabolism-related enzymes and PPARγ, as well as the expression of PPARγ protein in vitro study. BYHWD activated the PPARγ pathway to induce peroxisome proliferation and regulated lipid metabolism disorders in the AD mice brain.
Collapse
Affiliation(s)
- Jing Jiang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Heilongjiang Institute for Drug Control, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Kai Duo
- Heilongjiang Institute for Drug Control, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Siyu Zhu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yitong Wang
- Heilongjiang Institute for Drug Control, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Hui Xue
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chengyu Piao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yifan Ren
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xia Lei
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Yafeng Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China.
| | - Jianxin Liu
- School of Pharmaceutical Sciences, China-Pakistan, International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lihong Yang
- Heilongjiang Institute for Drug Control, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Harbin, Heilongjiang, China.
| | - Ning Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
2
|
Zhang Y, Zhang Y, Li S, Liu C, Liang J, Nong Y, Chen M, Sun R. Quaternity method for integrated screening, separation, extraction optimization, and bioactivity evaluation of acetylcholinesterase inhibitors from Sophora flavescens Aiton. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:52-67. [PMID: 38957046 DOI: 10.1002/pca.3415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Sophora flavescens Aiton (Fabaceae), a ubiquitous plant species in Asia, contains a wide range of pharmacologically active compounds, such as flavonoids, with potential anti-Alzheimer's disease (anti-AD) effects. OBJECTIVES The objective of the study is to develop a quaternity method for the screening, isolation, extraction optimization, and activity evaluation of acetylcholinesterase (AChE)-inhibiting compounds from S. flavescens to realize high-throughput screening of active substances in traditional Chinese medicine and to provide experimental data for the development of anti-AD drugs. METHODS With AChE as the target molecule, affinity ultrafiltration and liquid chromatography-mass spectrometry were applied to screen for potential inhibitors of the enzyme in S. flavescens. Orthogonal array experiments combined with the multi-objective Non-Dominated Sorting Genetic Algorithm III was used for the first time to optimize the process for extracting the active substances. Enzyme inhibition kinetics and molecular docking studies were performed to verify the potential anti-AD effects of the active compounds. RESULTS Five AChE-inhibiting compounds were identified: kushenol I, kurarinone, sophoraflavanone G, isokurarinone, and kushenol E. These were successfully separated at purities of 72.88%, 98.55%, 96.86%, 96.74%, and 95.84%, respectively, using the n-hexane/ethyl acetate/methanol/water (4.0/5.0/4.0/5.0, v/v/v/v), n-hexane/ethyl acetate/methanol/water (5.0/5.0/6.0/4.0, v/v/v/v), and n-hexane/ethyl acetate/methanol/water (4.9/5.1/5.7/4.3, v/v/v/v) mobile phase systems. Enzyme inhibition kinetics revealed that kushenol E had the best inhibitory effect. CONCLUSION This study elucidates the mechanism of action of five active AChE inhibitors in S. flavescens and provides a theoretical basis for the screening and development of anti-AD and other therapeutic drugs.
Collapse
Affiliation(s)
- Yutong Zhang
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Yuchi Zhang
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Jiaqi Liang
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Yuyu Nong
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Ming Chen
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Ruijun Sun
- Central Laboratory, Changchun Normal University, Changchun, China
| |
Collapse
|
3
|
Liu Q, Nong Y, Li S, Zhou Y, Liu X, Liu D, Li Y. Fast and Efficient Screening and Separation Based on AUF-MS Combined With Molecular Docking Technology and Network Pharmacology Method for Potential Xanthine Oxidase Inhibitors From Pinelliae Rhizoma Praeparatum. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39740249 DOI: 10.1002/pca.3485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION Studies show that Pinelliae Rhizoma Praeparatum (PRP) has some pharmacological effects in enhancing immunity and against gout. OBJECTIVES A mathematical model was created for extraction process optimization, analysis and identification, activity screening, and isolation and purification; moreover, the mechanism of action was studied. METHODS First, the extraction of PRP was investigated using the gray wolf optimization mathematical regression model; the extraction variables were optimized to maximize the yield. Second, we used network pharmacological analysis to predict potential targets for PRP in treating gout; xanthine oxidase inhibitors (XODIs) were rapidly screened using AUF-MS and enzyme-catalyzed reaction kinetics. The potential antigout effects of the obtained active substances were verified using molecular docking and molecular dynamics simulation analysis. Finally, with activity screening as the guide, an HSCCC method combined with consecutive injection using the UNIFAC mathematical model and semipreparative HSCCC was successfully developed for the separation and purification of XODIs. RESULTS The results verified that uridine, guanosine, adenosine, liquiritin, and liquiritigenin of PRP exhibited high biological affinity toward XOD. CONCLUSION This study clarifies the mechanisms of action of a medicinal plant of interest at the molecular level and can provide more opportunities for the discovery and development of new therapeutic drugs from other food resources.
Collapse
Affiliation(s)
- Qiang Liu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Yuyu Nong
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Yang Zhou
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Xuanlin Liu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Duo Liu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Yanjie Li
- Central Laboratory, Changchun Normal University, Changchun, China
| |
Collapse
|
4
|
Liang J, Zhang Y, Liu C, Li S, Li R, Zhang Y, Chen M, Sun R. High-Speed Countercurrent Chromatography Isolation of Active Components from Evodia Rutaecarpa and Affinity Ultrafiltration Screening for Their Acetylcholinesterase Inhibitor Activity. J Sep Sci 2024; 47:e70002. [PMID: 39466023 DOI: 10.1002/jssc.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Acetylcholinesterase inhibitors from Evodia rutaecarpa were screened, prepared, and evaluated. To screen the lipophilic alkaloid active constituents in E. rutaecarpa, we improved and optimized an ultrafiltration system. Three acetylcholinesterase (AChE) inhibitors, dehydroevodiamine, evodiamine, and rutecarpine, were screened. Addressing the limitations of the traditional response surface methodology (RSM) for multiobjective screening, we integrated RSM with the Non-dominated Sorting Genetic Algorithm III to achieve the optimal extraction of these active ingredients. High-speed countercurrent chromatography was used to isolate the active components using a two-phase solvent system: n-hexane/ethyl acetate/methanol/water (3.0:2.5:3.5:2.0, v/v/v/v) and ethyl acetate/methanol/water (3.0:1.0:4.0, v/v/v). The nuclear magnetic resonance spectroscopy confirmed the structures of the compounds, and molecular docking and dynamics simulations assessed the inhibitory effects of the chemical components on AChE, which were consistent with the findings of the ultrafiltration experiments. We also confirmed the neuroprotective properties of these compounds against glutamate-induced apoptosis in PC12 cells. Overall, we achieved the systematic optimization of multitarget compound extraction and lipophilic alkaloid ultrafiltration screening, as well as preparation and activity validation, laying the groundwork for the development of AChE inhibitors from lipophilic alkaloids.
Collapse
Affiliation(s)
- Jiaqi Liang
- Central Laboratory, Changchun Normal University, Changchun, Jilin, China
| | - Yuchi Zhang
- Central Laboratory, Changchun Normal University, Changchun, Jilin, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, Changchun, Jilin, China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, Changchun, Jilin, China
| | - Ruizhe Li
- Central Laboratory, Changchun Normal University, Changchun, Jilin, China
| | - Yutong Zhang
- Central Laboratory, Changchun Normal University, Changchun, Jilin, China
| | - Ming Chen
- Central Laboratory, Changchun Normal University, Changchun, Jilin, China
| | - Ruijun Sun
- Central Laboratory, Changchun Normal University, Changchun, Jilin, China
| |
Collapse
|
5
|
Shahrivari-Baviloliaei S, Erdogan Orhan I, Abaci Kaplan N, Konopacka A, Waleron K, Plenis A, Viapiana A. Characterization of Phenolic Profile and Biological Properties of Astragalus membranaceus Fisch. ex Bunge Commercial Samples. Antioxidants (Basel) 2024; 13:993. [PMID: 39199238 PMCID: PMC11351125 DOI: 10.3390/antiox13080993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Astragalus membranaceus Fisch. ex Bunge (syn. Astragalus mongholicus Bunge) is one of the notable medicinal and food plants. Therefore, the aim of this study was to calculate the phenolic composition and antioxidant, antimicrobial, as well as enzyme inhibitory [acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase (TYR)] activities with chemometric approaches of the hydromethanolic and water extracts of commercial A. membranaceus samples. Ten individual phenolic compounds were determined using high-performance liquid chromatography (HPLC), and only quercetin was found at a level of above 80 µg/g DW in both extracts. Moreover, the highest antioxidant activity in DPPH, FRAP, ABTS, and CUPRAC assays was found in the sample containing the roots in loose form from USA. A. membranaceus extracts displayed the inhibition zone diameters within the range from 10 to 22 mm antimicrobial activity against S. aureus, while there were no inhibition zones in any extracts in case of E. coli. The extracts of A. membranaceous showed an inhibition rate below 40% against TYR, and among tested extracts, only two samples were able to inhibit BChE with IC50 values of above 30 µg/mL. Correlation analysis showed a highly positive relationship between their phenolic composition and antioxidant activity. Concluding, the obtained results confirmed that A. membranaceus commercial samples could be an important dietary source of natural antioxidants.
Collapse
Affiliation(s)
- Saba Shahrivari-Baviloliaei
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland;
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye; (N.A.K.); (I.E.O.)
- Department of Pharmacognosy, Faculty of Pharmacy, Lokman Hekim University, 06510 Ankara, Türkiye
| | - Nurten Abaci Kaplan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye; (N.A.K.); (I.E.O.)
| | - Agnieszka Konopacka
- Department of Pharmaceutical Microbiology, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland; (A.K.); (K.W.)
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland; (A.K.); (K.W.)
| | - Alina Plenis
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland;
| | - Agnieszka Viapiana
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland;
| |
Collapse
|
6
|
Yan MQ, Xu F, Kuang HX, Shi XP, Cao F, Yang BY, Wang ZB. 10-Secocycloartane (=9,19-cyclo-9,10-secolanostane) triterpenoid saponins: Huangqiyenins M-X from Astragalus membranaceus (Fisch.) Bge. PHYTOCHEMISTRY 2024; 222:114072. [PMID: 38561105 DOI: 10.1016/j.phytochem.2024.114072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Phytochemical investigations of the leaves of Astragalus membranaceus (Fisch.) Bge. have led to the isolation of 12 undescribed triterpenoid saponins named huangqiyenins M-X. The structures of the undescribed compounds were determined using NMR and HRESIMS data. The cytotoxicity of these compounds against the RKO and HT-29 colon cancer cell lines was evaluated. Among these compounds, huangqiyenin W exhibited the highest cytotoxic activity against RKO colon cancer cells, whereas huangqiyenin Q and W showed moderate cytotoxic activity against HT-29 colon cancer cells. The network pharmacology results indicated that STAT3, IL-2 and CXCR1 are the correlated targets of huangqiyenin W against colon cancer, with AGE-RAGE and Th17 cell differentiation as the key signaling pathways.
Collapse
Affiliation(s)
- Meng-Qi Yan
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Feng Xu
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Xue-Peng Shi
- College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Feng Cao
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Zhi-Bin Wang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China.
| |
Collapse
|