1
|
Stilz CR, Kunkel MR, Keel MK, Fenton H, Weyna AAW, Niedringhaus KD, Andreasen VA, McKinney AS, Maboni G, Nemeth NM. Aspergillosis in 41 wild bird species in the eastern United States: a 22-year retrospective review. J Vet Diagn Invest 2025; 37:305-316. [PMID: 39865964 PMCID: PMC11773499 DOI: 10.1177/10406387241313484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
Aspergillosis is the most commonly and widely reported fungal infection in birds. Disease development is often secondary to stressors that cause immunocompromise, and it is typically regarded as a disease of captivity. We retrospectively evaluated data from 133 birds diagnosed with aspergillosis at the Southeastern Cooperative Wildlife Disease Study from 2001-2023 to assess diversity and relative frequency across avian taxa, gross and histologic lesion patterns, and comorbidities. Of 10 taxonomic orders represented, Charadriiformes (shorebirds; n = 35) and Accipitriformes (raptors; n = 32) were most common. Among them, the laughing gull (Leucophaeus atricilla; n = 20) and bald eagle (Haliaeetus leucocephalus; n = 14) were infected most commonly. Gross lesions were most frequent in lung (n = 80), air sac (n = 71), or celomic cavity lining (n = 42). Four distinct gross lesion patterns were identified: 1) tan caseous plaques (n = 106), 2) hollow masses lined with mold (n = 26), 3) red pulmonary nodules (n = 15), and 4) necrotic brown plaques (n = 3). Histologically, fungal hyphae were most common in lung (n = 107) and air sac (n = 49). Comorbidities were diagnosed in 67 birds with a spectrum of viral (n = 19), bacterial (n = 11), parasitic (n = 6), other fungal (n = 4), and non-infectious (n = 50) causes. Six birds each were diagnosed with highly pathogenic avian influenza or salmonellosis. Twenty-two birds were emaciated. Free-ranging birds are susceptible to myriad stressors that can predispose them to the development of aspergillosis.
Collapse
Affiliation(s)
- C. Robert Stilz
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
- Department of Pathology, University of Georgia, Athens, GA, USA
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Melanie R. Kunkel
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
- Northeast Association of Fish and Wildlife Agencies, Ithaca, NY, USA
| | - M. Kevin Keel
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
| | - Heather Fenton
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
| | - Alisia A. W. Weyna
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
| | - Kevin D. Niedringhaus
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
| | - Victoria A. Andreasen
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
- College of Veterinary Medicine, Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Amy S. McKinney
- Athens Veterinary Diagnostic Laboratory, University of Georgia, Athens, GA, USA
| | - Grazieli Maboni
- Athens Veterinary Diagnostic Laboratory, University of Georgia, Athens, GA, USA
| | - Nicole M. Nemeth
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
- Department of Pathology, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Katzner TE, Pain DJ, McTee M, Brown L, Cuadros S, Pokras M, Slabe VA, Watson RT, Wiemeyer G, Bedrosian B, Hampton JO, Parish CN, Pay JM, Saito K, Schulz JH. Lead poisoning of raptors: state of the science and cross-discipline mitigation options for a global problem. Biol Rev Camb Philos Soc 2024; 99:1672-1699. [PMID: 38693847 DOI: 10.1111/brv.13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
Lead poisoning is an important global conservation problem for many species of wildlife, especially raptors. Despite the increasing number of individual studies and regional reviews of lead poisoning of raptors, it has been over a decade since this information has been compiled into a comprehensive global review. Here, we summarize the state of knowledge of lead poisoning of raptors, we review developments in manufacturing of non-lead ammunition, the use of which can reduce the most pervasive source of lead these birds encounter, and we compile data on voluntary and regulatory mitigation options and their associated sociological context. We support our literature review with case studies of mitigation actions, largely provided by the conservation practitioners who study or manage these efforts. Our review illustrates the growing awareness and understanding of lead exposure of raptors, and it shows that the science underpinning this understanding has expanded considerably in recent years. We also show that the political and social appetite for managing lead ammunition appears to vary substantially across administrative regions, countries, and continents. Improved understanding of the drivers of this variation could support more effective mitigation of lead exposure of wildlife. This review also shows that mitigation strategies are likely to be most effective when they are outcome driven, consider behavioural theory, local cultures, and environmental conditions, effectively monitor participation, compliance, and levels of raptor exposure, and support both environmental and human health.
Collapse
Affiliation(s)
- Todd E Katzner
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 230 North Collins Road, Boise, ID, 83702, USA
| | - Deborah J Pain
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Zoology Department, University of Cambridge, Downing St, Cambridge, CB2 3EJ, UK
| | - Michael McTee
- MPG Ranch, 19400 Lower Woodchuck Road, Florence, MT, 59833, USA
| | - Leland Brown
- Oregon Zoo, North American Non-lead Partnership, 4001 SW Canyon Rd, Portland, OR, 97221, USA
| | - Sandra Cuadros
- Hawk Mountain Sanctuary, 410 Summer Valley Rd, Orwigsburg, PA, 17961, USA
- Department of Biology, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, V1V 1V7, Canada
| | - Mark Pokras
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd, North Grafton, MA, 01536, USA
| | - Vincent A Slabe
- Conservation Science Global, Bozeman, MT, USA
- The Peregrine Fund, 5668 West Flying Hawk Lane, Boise, ID, 83709, USA
| | - Richard T Watson
- The Peregrine Fund, 5668 West Flying Hawk Lane, Boise, ID, 83709, USA
| | - Guillermo Wiemeyer
- CONICET- Facultad de Ciencias Veterinarias, Universidad Nacional de La Pampa, Calle 5 esq. 116 MO L6360, Gral. Pico, La Pampa, Argentina
| | | | - Jordan O Hampton
- Faculty of Science, University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | | | - James M Pay
- School of Natural Sciences, University of Tasmania, Churchill Ave, Hobart, Tasmania, 7005, Australia
| | - Keisuke Saito
- Institute for Raptor Biomedicine Japan 2-2101 Hokuto, Kushiro, Hokkaido, 084-0922, Japan
| | - John H Schulz
- School of Natural Resources, University of Missouri, 1111 Rollins St, Columbia, MO, 65203, USA
| |
Collapse
|
3
|
Jones EM, Koch AJ, Pay JM, Jones ME, Hamede RK, Hampton JO. Lead exposure and source attribution for a mammalian scavenger before and after a culling program. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173686. [PMID: 38830425 DOI: 10.1016/j.scitotenv.2024.173686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
Lead-based ammunition is a significant source of environmental lead and threatens species that scavenge lead-shot carcasses, particularly in areas with intensive shooting. With the impacts of lead on avian scavengers well established, there is increasing focus on the effects of lead on mammalian scavengers. We investigated lead exposure in a morphologically specialized mammalian scavenger, the Tasmanian devil (Sarcophilus harrisii), by analyzing their blood lead levels (BLLs) before and after a marsupial culling program using linear mixed effects models. We compared lead isotope signatures in devil blood to those in the culling ammunition to inform potential source attributions. We sampled 23 devils before culling and 15 after culling, finding no significant difference in mean BLLs pre and post-culling. However, devils captured closer to forestry coupes where culling had occurred had higher BLLs, and a greater proportion of devils displayed elevated BLLs post-culling (33 % compared to 18 % pre-culling). The highest BLL (7.93 μg/dL) was found in a devil post-culling and this individual had lead isotope signatures that matched the ammunition samples analyzed, suggesting the individual was exposed to lead from scavenging on culled carcasses. While 18 % of the devil blood lead samples had isotope signatures consistent with the ammunition samples, most were measurably different, indicating other sources of lead in the landscape. BLLs in our study landscape were similar to published BLLs for wild devils across Tasmania. That said, lead isotope signatures in the blood of individual devils sampled both before and after culling shifted closer to those of ammunition samples post-culling. Our results indicate that while some individual devils may have been exposed to lead from culling, most devils in the landscape did not show evidence of recent exposure. However, even low lead levels can adversely impact wildlife health and immunity, a particular concern for devils, a species endangered by disease.
Collapse
Affiliation(s)
- Evie M Jones
- School of the Environment, Yale University, New Haven, CT 06511, USA; School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| | - Amelia J Koch
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia; Forest Practices Authority, 30 Patrick St, Hobart, TAS 7001, Australia
| | - James M Pay
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Rodrigo K Hamede
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Jordan O Hampton
- Faculty of Science, University of Melbourne, Parkville, Victoria 3052, Australia; Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| |
Collapse
|