1
|
Wang L, Wang Y, Zhang L, Zhao J, Wu S, Yang Z. Binding Mechanism of Inhibitors to CDK6 Deciphered by Multiple Independent Molecular Dynamics Simulations and Free Energy Predictions. Molecules 2025; 30:979. [PMID: 40076203 PMCID: PMC11901890 DOI: 10.3390/molecules30050979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Cyclin-dependent kinase 6 (CDK6) has been identified as a potential drug target in various types of cancers. In our current study, multiple independent molecular dynamics simulations of four separate replicates and computations of binding free energies are carried out to decipher the binding mechanisms of three inhibitors, LQQ, 6ZV, and 0RS, to CDK6. The dynamic analyses indicate that the presence of inhibitors influences conformational alterations, motion modes, and the internal dynamics of CDK6. Binding free energies computed using the molecular mechanics generalized Born surface area (MM-GBSA) approach with four GB models demonstrate that hydrophobic interactions play essential roles in inhibitor-CDK6 binding. The computations of residue-based free energy decomposition verify that the side chains of residues I19, K29, M54, P55, F98, H100, and L152 significantly contribute to inhibitor-CDK6 binding, revealing the critical interaction sites of inhibitors for CDK6. The information revealed in our current study can provide theoretical aids for development of potent inhibitors targeting the CDK family.
Collapse
Affiliation(s)
- Lifei Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (L.W.); (Y.W.); (L.Z.); (J.Z.); (S.W.)
| | - Yan Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (L.W.); (Y.W.); (L.Z.); (J.Z.); (S.W.)
| | - Lulu Zhang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (L.W.); (Y.W.); (L.Z.); (J.Z.); (S.W.)
| | - Juan Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (L.W.); (Y.W.); (L.Z.); (J.Z.); (S.W.)
| | - Shiliang Wu
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (L.W.); (Y.W.); (L.Z.); (J.Z.); (S.W.)
| | - Zhiyong Yang
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
2
|
Meinag FE, Fatahi M, Vahedian V, Maroufi NF, Mosayyebi B, Ahmadi E, Rahmati M. Modulatory effects of miRNAs in doxorubicin resistance: A mechanistic view. Funct Integr Genomics 2024; 24:150. [PMID: 39222264 DOI: 10.1007/s10142-024-01431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs and play an important role in controlling vital biological processes, including cell cycle control, apoptosis, metabolism, and development and differentiation, which lead to various diseases such as neurological, metabolic disorders, and cancer. Chemotherapy consider as gold treatment approaches for cancer patients. However, chemotherapeutic is one of the main challenges in cancer management. Doxorubicin (DOX) is an anti-cancer drug that interferes with the growth and spread of cancer cells. DOX is used to treat various types of cancer, including breast, nervous tissue, bladder, stomach, ovary, thyroid, lung, bone, muscle, joint and soft tissue cancers. Also recently, miRNAs have been identified as master regulators of specific genes responsible for the mechanisms that initiate chemical resistance. miRNAs have a regulatory effect on chemotherapy resistance through the regulation of apoptosis process. Also, the effect of miRNAs p53 gene as a key tumor suppressor was confirmed via studies. miRNAs can affect main biological pathways include PI3K pathway. This review aimed to present the current understanding of the mechanisms and effects of miRNAs on apoptosis, p53 and PTEN/PI3K/Akt signaling pathway related to DOX resistance.
Collapse
Affiliation(s)
- Fatemeh Ebadi Meinag
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Fatahi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Vahedian
- Department of Hematology, Transfusion Medicine and Cellular Therapy/Cell Therapy Center (CTC-USP), Clinical Hospital and Cancer Institute (ICESP), Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil
- Department of Clinical Medicine, Division of Medical Investigation Laboratory (LIM/31), Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology and Immuno-Oncology, Clinical Hospital, Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil
- Comprehensive Center for Translational and Precision Oncology (CTO), SP State Cancer Institute (ICESP), Sao Paulo, Brazil
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bashir Mosayyebi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
The Multiple Myeloma Landscape: Epigenetics and Non-Coding RNAs. Cancers (Basel) 2022; 14:cancers14102348. [PMID: 35625953 PMCID: PMC9139326 DOI: 10.3390/cancers14102348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Recent findings in multiple myeloma have led to therapies which have improved patient life quality and expectancy. However, frequent relapse and drug resistance emphasize the need for more efficient therapeutic approaches. The discovery of non-coding RNAs as key actors in multiple myeloma has broadened the molecular landscape of this disease, together with classical epigenetic factors such as methylation and acetylation. microRNAs and long non-coding RNAs comprise the majority of the described non-coding RNAs dysregulated in multiple myeloma, while circular RNAs are recently emerging as promising molecular targets. This review provides a comprehensive overview of the most recent knowledge on this topic and suggests new therapeutic strategies. Abstract Despite advances in available treatments, multiple myeloma (MM) remains an incurable disease and represents a challenge in oncohematology. New insights into epigenetic factors contributing to MM development and progression have improved the knowledge surrounding its molecular basis. Beyond classical epigenetic factors, including methylation and acetylation, recent genome analyses have unveiled the importance of non-coding RNAs in MM pathogenesis. Non-coding RNAs have become of interest, as their dysregulation opens the door to new therapeutic approaches. The discovery, in the past years, of molecular techniques, such as CRISPR-Cas, has led to innovative therapies with potential benefits to achieve a better outcome for MM patients. This review summarizes the current knowledge on epigenetics and non-coding RNAs in MM pathogenesis.
Collapse
|
4
|
Zhang T, Wang LL, Guan J, Zhou Y, Cheng P, Zou L. MicroRNA-125a/b-5p promotes malignant behavior in multiple myeloma cells and xenograft tumor growth by targeting DIS3. Kaohsiung J Med Sci 2022; 38:574-584. [PMID: 35394705 DOI: 10.1002/kjm2.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 11/11/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy with a high prevalence and is characterized by the clonal expansion of malignant plasma cells. As a new tumor suppressor, defective in sister chromatid joining (DIS3) was reported to be a gene closely related to MM. This study elucidated the biological functions and underlying mechanisms of DIS3 in MM. DIS3 mRNA and protein levels were detected using RT-qPCR and western blotting, respectively. Methyl thiazolyl tetrazolium assays, flow cytometry analyses, Transwell assays, and wound healing assays were performed to detect the proliferation, apoptosis, invasion, and migration of MM cells. The binding relationship between miR-125a/b-5p and DIS3 was verified using luciferase reporter assays and RNA pulldown assays. Xenograft tumor models were established in nude mice to investigate the effects of miR-125a/b-5p and DIS3 on tumor growth in vivo. DIS3 levels were downregulated in MM cells, and DIS3 upregulation inhibited the malignant behaviors of MM cells. Mechanistically, miR-125a/b-5p directly targeted the 3' untranslated region of DIS3. The expression of miR-125a/b-5p was upregulated in MM cells, miR-125a/b-5p knockdown inhibited the malignant behaviors of MM cells, and the inhibitory effect was reversed by DIS3 downregulation. The results of in vivo experiments indicated that miR-125a/b-5p promoted tumor growth by downregulating DIS3. Overall, miR-125a/b-5p promotes MM cellular processes and xenograft tumor growth by targeting DIS3.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| | - Lan-Lan Wang
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| | - Jun Guan
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| | - Ying Zhou
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| | - Ping Cheng
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| | - Liang Zou
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
5
|
Luo Z, Yin Y, Tan X, Liu K, Chao Z, Xia H. Circ_SEC61A1 contributes to the progression of multiple myeloma cells via regulating miR-660-5p/CDK6 axis. Leuk Res 2021; 113:106774. [PMID: 35030455 DOI: 10.1016/j.leukres.2021.106774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/16/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) have been reported to play critical roles in the malignant progression of diverse human cancers, including multiple myeloma (MM). This study aimed to explore the functional role and underlying mechanism of circ_SEC61A1 in MM progression. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) assay was performed to detect the expression levels of circ_SEC61A1, microRNA (miR)-660-5p and cyclin-dependent kinase 6 (CDK6) mRNA. The localization of circ_SEC61A1 in MM cells was tested by the subcellular fractionation location assay. Actinomycin D assay was conducted to determine the characteristics of circ_SEC61A1. Cell proliferation was evaluated by colony formation assay, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay and 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Western blot assay was exploited to examine the expression of proteins. Cell migration and invasion were tested via transwell assay, and cell apoptosis was measured by flow cytometry analysis. Dual-luciferase reporter assay was utilized to confirm the interaction between miR-660-5p and circ_SEC61A1 or CDK6. RESULTS Circ_SEC61A1 level was increased in MM tissues and cells. Circ_SEC61A1 was a stable circRNA and mainly located in cytoplasm. Circ_SEC61A1 silence restrained the proliferation, metastasis and expedited the apoptosis in MM cells. CDK6 was identified as the target of miR-660-5p, and circ_SEC61A1 sponged miR-660-5p to positively regulate CDK6 expression. The inhibitory impacts of circ_SEC61A1 knockdown on the progression of MM cells were mitigated by miR-660-5p inhibition. MiR-660-5p overexpression blocked the malignant phenotypes of MM cells by targeting CDK6. CONCLUSION Our study manifested that circ_SEC61A1 could accelerate MM progression at least partially through modulating miR-660-5p/CDK6 axis.
Collapse
Affiliation(s)
- Zimian Luo
- Department of Hematology, Central Hospital of XiangTan, China
| | - Yafei Yin
- Department of Hematology, Central Hospital of XiangTan, China
| | - Xiaojun Tan
- Fertility & Genetic Center, Central Hospital of XiangTan, China
| | - Kang Liu
- Department of Hematology, Central Hospital of XiangTan, China
| | - Zhi Chao
- Department of Hematology, Central Hospital of XiangTan, China
| | - Hong Xia
- Epartment of Orthopedics, Central Hospital of XiangTan, China.
| |
Collapse
|
6
|
Torki Z, Ghavi D, Hashemi S, Rahmati Y, Rahmanpour D, Pornour M, Alivand MR. The related miRNAs involved in doxorubicin resistance or sensitivity of various cancers: an update. Cancer Chemother Pharmacol 2021; 88:771-793. [PMID: 34510251 DOI: 10.1007/s00280-021-04337-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022]
Abstract
Doxorubicin (DOX) is an effective chemotherapy agent against a wide variety of tumors. However, intrinsic or acquired resistance diminishes the sensitivity of cancer cells to DOX, which leads to a cancer relapse and treatment failure. Resolutions to this challenge includes identification of the molecular pathways underlying DOX sensitivity/resistance and the development of innovative techniques to boost DOX sensitivity. DOX is classified as a Topoisomerase II poison, which is cytotoxic to rapidly dividing tumor cells. Molecular mechanisms responsible for DOX resistance include effective DNA repair and resumption of cell proliferation, deregulated development of cancer stem cell and epithelial to mesenchymal transition, and modulation of programmed cell death. MicroRNAs (miRNAs) have been shown to potentiate the reversal of DOX resistance as they have gene-specific regulatory functions in DOX-responsive molecular pathways. Identifying the dysregulation patterns of miRNAs for specific tumors following treatment with DOX facilitates the development of novel combination therapies, such as nanoparticles harboring miRNA or miRNA inhibitors to eventually prevent DOX-induced chemoresistance. In this article, we summarize recent findings on the role of miRNAs underlying DOX sensitivity/resistance molecular pathways. Also, we provide latest strategies for utilizing deregulated miRNA patterns as biomarkers or miRNAs as tools to overcome chemoresistance and enhance patient's response to DOX treatment.
Collapse
Affiliation(s)
- Zahra Torki
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Ghavi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Hashemi
- Department of Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yazdan Rahmati
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dara Rahmanpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Pornour
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran.
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Peixoto da Silva S, Caires HR, Bergantim R, Guimarães JE, Vasconcelos MH. miRNAs mediated drug resistance in hematological malignancies. Semin Cancer Biol 2021; 83:283-302. [PMID: 33757848 DOI: 10.1016/j.semcancer.2021.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/11/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Despite improvements in the therapeutic approaches for hematological malignancies in the last decades, refractory disease still occurs, and cancer drug resistance still remains a major hurdle in the clinical management of these cancer patients. The investigation of this problem has been extensive and different mechanism and molecules have been associated with drug resistance. MicroRNAs (miRNAs) have been described as having an important action in the emergence of cancer, including hematological tumors, and as being major players in their progression, aggressiveness and response to treatments. Moreover, miRNAs have been strongly associated with cancer drug resistance and with the modulation of the sensitivity of cancer cells to a wide array of anticancer drugs. Furthermore, this role has also been reported for miRNAs packaged into extracellular vesicles (EVs-miRNAs), which in turn have been described as essential for the horizontal transfer of drug resistance to sensitive cells. Several studies have been suggesting the use of miRNAs as biomarkers for drug response and clinical outcome prediction, as well as promising therapeutic tools in hematological diseases. Indeed, the combination of miRNA-based therapeutic tools with conventional drugs contributes to overcome drug resistance. This review addresses the role of miRNAs in the pathogenesis of hematological malignances, namely multiple myeloma, leukemias and lymphomas, highlighting their important action (either in their cell-free circulating form or within circulating EVs) in drug resistance and their potential clinical applications.
Collapse
Affiliation(s)
- Sara Peixoto da Silva
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal
| | - Hugo R Caires
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal
| | - Rui Bergantim
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Clinical Hematology, Hospital São João, 4200-319, Porto, Portugal; Clinical Hematology, FMUP - Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - José E Guimarães
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Clinical Hematology, FMUP - Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; Instituto Universitário de Ciências da Saúde, Cooperativa de Ensino Superior Politécnico e Universitário, IUCSCESPU, 4585-116, Gandra, Paredes, Portugal
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
8
|
Zi Y, Zhang Y, Wu Y, Zhang L, Yang R, Huang Y. Downregulation of microRNA‑25‑3p inhibits the proliferation and promotes the apoptosis of multiple myeloma cells via targeting the PTEN/PI3K/AKT signaling pathway. Int J Mol Med 2021; 47:8. [PMID: 33448321 PMCID: PMC7834966 DOI: 10.3892/ijmm.2020.4841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022] Open
Abstract
Numerous studies have confirmed that microRNAs (miRNAs or miRs) have important roles in cancer biogenesis and development including multiple myeloma (MM). MicroRNA-25-3p (miR-25-3p) has been proven to promote cancer progression, whereas its functions in MM has not yet been reported, at least to the best of our knowledge. Therefore, the present study aimed to investigate the function of miR-25-3p in MM and to identify the potential underlying mechanistic pathway. Herein, it was found that miR-25-3p expression was significantly increased in MM tissues and cell lines. The upregulation of miR-25-3p was closely associated with anemia, renal function impairment international staging system (ISS) staging and Durie-Salmon (D-S) staging. A high level of miR-25-3p was predictive of a poor prognosis of patients with MM. In vitro, the knockdown of miR-25-3p suppressed the proliferation and promoted the apoptosis of RPMI-8226 and U266 cells, while the overexpression of miR-25-3p exerted opposite effects. In addition, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a well-known tumor suppressor, was confirmed as a target of miR-25-3p in MM cells. Moreover, it was found that the PTEN expression levels were decreased, and inversely correlated with miR-25-3p expression levels in MM tissues. Further analyses revealed that the overexpression of PTEN exerted effects similar to those of miR-25-3p knockdown, whereas the knockdown of PTEN partially abolished the effects of miR-25-3p inhibitor on MM cells. Accompanied by PTEN induction, miR-25-3p promoted PI3K/AKT signaling pathway activation in MM cells. Collectively, these findings demonstrate critical roles for miR-25-3p in the pathogenesis of MM, and suggest that miR-25-3p may serve as a novel prognostic biomarker and therapeutic target of MM.
Collapse
Affiliation(s)
- Youmei Zi
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Yingzi Zhang
- Department of Blood Transfusion, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Yanwei Wu
- Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Lina Zhang
- Central Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Ru Yang
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Yan Huang
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
9
|
Guo WL, Li N, Ma JL, Chen XM, Shi FY. Inhibiting microRNA-301b suppresses cell growth and targets RNF38 in cervical carcinoma. Kaohsiung J Med Sci 2020; 36:878-884. [PMID: 32643846 DOI: 10.1002/kjm2.12273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 01/04/2023] Open
Abstract
It has been reported microRNA-301b (miR-301b) was involved in the tumorigenesis of some cancers, but it has not been investigated in cervical carcinoma yet. In this study, miR-301b was found significantly upregulated in cervical carcinoma, and patients with high miR-301b expression had a shorter overall survival. When miR-301b was knocked down in cervical carcinoma cells, the cell growth could be significantly abolished. Our further studies showed miR-301b targeted RNF38, and inhibited its expression in cervical carcinoma cells. Moreover, RNF38 was found downregulated in cervical carcinoma, and miR-301b expression in cervical tissues was found negatively correlated with RNF38 expression. In addition, overexpression of RNF38 significantly inhibited cervical carcinoma cell growth, but overexpression of miR-301b suppressed RNF38-induced cell growth inhibition in cervical carcinoma. Collectively, this study suggested miR-301b could be a novel target for cervical carcinoma treatment.
Collapse
Affiliation(s)
- Wen-Ling Guo
- Department of Obstetrics, Binzhou Central Hospital, Binzhou, Shandong, China
| | - Ning Li
- Department of Obstetrics, Binzhou Central Hospital, Binzhou, Shandong, China
| | - Jian-Lin Ma
- Department of Emergency, Binzhou Central Hospital, Binzhou, Shandong, China
| | - Xue-Mei Chen
- Department of Obstetrics, Binzhou Central Hospital, Binzhou, Shandong, China
| | - Fan-Ying Shi
- Department of Obstetrics, Binzhou Central Hospital, Binzhou, Shandong, China
| |
Collapse
|
10
|
Wang Y, Lin Q, Song C, Ma R, Li X. Depletion of circ_0007841 inhibits multiple myeloma development and BTZ resistance via miR-129-5p/JAG1 axis. Cell Cycle 2020; 19:3289-3302. [PMID: 33131409 DOI: 10.1080/15384101.2020.1839701] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Circular RNAs (circRNAs) possess important regulatory effects on multiple myeloma (MM) progression. Here, we aimed at exploring the function of circ_0007841 in MM and the underlying molecular mechanism. Expression of circ_0007841, microRNA (miR)-129-5p and Jagged1 (JAG1) was determined via qRT-PCR or western blot assay. Methyl thiazolyl tetrazolium (MTT) assay was applied to examine cell viability and IC50 value of MM cells to bortezomib (BTZ). Colony formation assay was performed to analyze cell proliferation. Moreover, cell apoptosis was assessed by flow cytometry and western blot analysis. Cell metastasis was evaluated by wound healing assay and Transwell assay. Function of circ_0007841 in vivo was determined by xenograft tumor assay. Target relationship between miR-129-5p and circ_0007841 or JAG1 was confirmed via dual-luciferase reporter, RNA immunoprecipitation (RIP) and pull-down assays. The up-regulation of circ_0007841 and JAG1, and the down-regulation of miR-129-5p were detected in MM bone marrow aspirates and cells. Circ_0007841 knockdown significantly repressed cell proliferation, chemoresistance, and metastasis, while contributed to apoptosis of MM cells in vitro, and reduced tumor growth in vivo. Circ_0007841 targeted miR-129-5p, and miR-129-5p inhibition reversed impact of silencing of circ_0007841 on MM cells. JAG1 was a mRNA target of miR-129-5p, whose overexpression could undermine the miR-129-5p-mediated effects on MM cells. Circ_0007841 positively regulated JAG1 expression via absorbing miR-129-5p. Circ_0007841 knockdown inhibited MM cell proliferation, metastasis and chemoresistance through modulating miR-129-5p/JAG1 axis, suggesting that circ_0007841 might serve as a potential therapeutic target of MM.
Collapse
Affiliation(s)
- Yan Wang
- Department of Hematology, The Fifth Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Quande Lin
- Department of Hematology, Henan Cancer Hospital , Zhengzhou, Henan, China
| | - Chunge Song
- Department of Hematology, The Fifth Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Ruojin Ma
- Department of Hematology, The Fifth Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Xiaojie Li
- Department of Hematology, The Fifth Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| |
Collapse
|
11
|
Zhang T, Zhou Y, You B, You Y, Yan Y, Zhang J, Pei Y, Zhang W, Chen J. miR-30a-5p Inhibits Epithelial-to-Mesenchymal Transition by Targeting CDK6 in Nasal Polyps. Am J Rhinol Allergy 2020; 35:152-163. [PMID: 32623901 DOI: 10.1177/1945892420939814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Epithelial-to-Mesenchymal Transition (EMT) is considered as a crucial event in disease development and dysregulation of microRNAs (miRNAs) is involved in the regulation of EMT in various human diseases. Emerging evidences congregated over the years have demonstrated that miR-30a-5p was decreased in diseases and its overexpression inhibited the process of diseases via attenuating EMT. Although aberrant expression of miRNAs and occurrence of EMT were previously reported in Nasal Polyps (NPs), the role of miR-30a-5p in EMT of NPs is still remains unclear. OBJECTIVE The purpose of our present study was to explore the expression and potential function of miR-30a-5p in EMT of NPs. METHODS The expression of miR-30a-5p and mRNA expression level were detected by quantitative real-time PCR (qRT-PCR) in transforming growth factor β1 (TGF-β1) - induced EMT model and NPs patients. Western Blot (WB) and immunohistochemistry (IHC) were performed to evaluate the protein expression level of EMT markers. The cells mobility was assessed by Wound-Healing assay. Luciferase reporter assay was utilized to verify the relationship between Cyclin-dependent kinase 6 (CDK6) and miR-30a-5p. RESULTS Firstly, we observed that miR-30a-5p was down-regulated notably, accompanying with the alteration of EMT markers expression in NPs tissues and EMT model induced by TGF-β1 in primary Human Nasal Epithelial Cells (pHNECs) and A549 cells in vitro. Moreover, the functional assays demonstrated that overexpression of miR-30a-5p significantly inhibited EMT and cells mobility. Subsequently, CDK6 was validated as a direct target of miR-30a-5p. Finally, we performed the rescue experiments indicating that overexpression of CDK6 eliminated the suppressive effects of miR-30a-5p in TGF-β1-induced EMT in pHNECs and A549 cells. CONCLUSION Taken together, our results suggested that EMT was involved in NPs, and overexpression of miR-30a-5p could attenuate EMT via repressing the expression of the CDK6 in pHNECs and A549 cells.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yong Zhou
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Bo You
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yiwen You
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yongbing Yan
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jie Zhang
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yinyin Pei
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wei Zhang
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jing Chen
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
12
|
Weidle UH, Nopora A. Identification of MicroRNAs With In Vivo Efficacy in Multiple Myeloma-related Xenograft Models. Cancer Genomics Proteomics 2020; 17:321-334. [PMID: 32576578 PMCID: PMC7367608 DOI: 10.21873/cgp.20192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM Multiple myeloma is a B-cell neoplasm, which can spread within the marrow of the bones forming many small tumors. In advanced disease, multiple myeloma can spread to the blood as plasma cell leukemia. In some cases, a localized tumor known as plasmacytoma is found within a single bone. Despite the approval of several agents such as melphalan, corticosteroids, proteasome inhibitors, thalidomide-based immuno-modulatory agents, histone deacetylase inhibitors, a nuclear export inhibitor and monoclonal antibodies daratuzumab and elatuzumab, the disease presently remains uncurable. MATERIALS AND METHODS In order to define new targets and treatment modalities we searched the literature for microRNAs, which increase or inhibit in vivo efficacy in multiple-myeloma-related xenograft models. RESULTS AND CONCLUSION We identified six up-regulated and twelve down-regulated miRs, which deserve further preclinical validation.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
13
|
Wei Z, Chang K, Fan C, Zhang Y. MiR-26a/miR-26b represses tongue squamous cell carcinoma progression by targeting PAK1. Cancer Cell Int 2020; 20:82. [PMID: 32190006 PMCID: PMC7071636 DOI: 10.1186/s12935-020-1166-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Tongue squamous cell carcinoma (TSCC) is the most common oral malignancy. Previous studies found that microRNA (miR)-26a and miR-26b were downregulated in TSCC tissues. The current study was designed to explore the effects of miR-26a/miR-26b on TSCC progression and the potential mechanism. Methods Expression of miR-26a, miR-26b and p21 Activated Kinase 1 (PAK1) in TSCC tissues and cell lines was detected by reverse transcription- quantitative polymerase chain reaction (RT-qPCR). Flow cytometry analysis was performed to examine cell cycle and apoptosis. Transwell assay was conducted to evaluate the migrated and invasive abilities of SCC4 and Cal27 cells. In addition, western blot assay was employed to analyze the protein level. Glucose assay kit and lactate assay kit were utilized to analyze glycolysis. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were applied to explore the relationship between miR-26a/miR-26b and PAK1. Xenograft tumor model was constructed to explore the role of miR-26a/miR-26b in vivo. Results Both miR-26a and miR-26b were underexpressed, while PAK1 was highly enriched in TSCC. Overexpression of miR-26a and miR-26b inhibited TSCC cell cycle, migration invasion and glycolysis, while promoted cell apoptosis. Both miR-26a and miR-26b directly targeted and negatively regulated PAK1 expression. Introduction of PAK1 partially reversed miR-26a/miR-26b upregulation-mediated cellular behaviors in TSCC cells. Gain of miR-26a/miR-26b blocked TSCC tumor growth in vivo. Conclusion MiR-26a/miR-26b repressed TSCC progression via targeting PAK1 in vitro and in vivo, which enriched our understanding about TSCC development and provided new insights into the its treatment.
Collapse
Affiliation(s)
- Zhenxing Wei
- Department of Otorhinolaryngology-Head and Neck Surgery, The Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288 Middle Zhongzhou Road, Xigong District, Luoyang, 471000 Henan China
| | - Kunpeng Chang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288 Middle Zhongzhou Road, Xigong District, Luoyang, 471000 Henan China
| | - Chongsheng Fan
- Department of Otorhinolaryngology-Head and Neck Surgery, The Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288 Middle Zhongzhou Road, Xigong District, Luoyang, 471000 Henan China
| | - Yang Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288 Middle Zhongzhou Road, Xigong District, Luoyang, 471000 Henan China
| |
Collapse
|
14
|
Linck-Paulus L, Hellerbrand C, Bosserhoff AK, Dietrich P. Dissimilar Appearances Are Deceptive-Common microRNAs and Therapeutic Strategies in Liver Cancer and Melanoma. Cells 2020; 9:E114. [PMID: 31906510 PMCID: PMC7017070 DOI: 10.3390/cells9010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
: In this review, we summarize the current knowledge on miRNAs as therapeutic targets in two cancer types that were frequently described to be driven by miRNAs-melanoma and hepatocellular carcinoma (HCC). By focusing on common microRNAs and associated pathways in these-at first sight-dissimilar cancer types, we aim at revealing similar molecular mechanisms that are evolved in microRNA-biology to drive cancer progression. Thereby, we also want to outlay potential novel therapeutic strategies. After providing a brief introduction to general miRNA biology and basic information about HCC and melanoma, this review depicts prominent examples of potent oncomiRs and tumor-suppressor miRNAs, which have been proven to drive diverse cancer types including melanoma and HCC. To develop and apply miRNA-based therapeutics for cancer treatment in the future, it is essential to understand how miRNA dysregulation evolves during malignant transformation. Therefore, we highlight important aspects such as genetic alterations, miRNA editing and transcriptional regulation based on concrete examples. Furthermore, we expand our illustration by focusing on miRNA-associated proteins as well as other regulators of miRNAs which could also provide therapeutic targets. Finally, design and delivery strategies of miRNA-associated therapeutic agents as well as potential drawbacks are discussed to address the question of how miRNAs might contribute to cancer therapy in the future.
Collapse
Affiliation(s)
- Lisa Linck-Paulus
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
15
|
Pourhanifeh MH, Mahjoubin-Tehran M, Shafiee A, Hajighadimi S, Moradizarmehri S, Mirzaei H, Asemi Z. MicroRNAs and exosomes: Small molecules with big actions in multiple myeloma pathogenesis. IUBMB Life 2019; 72:314-333. [PMID: 31828868 DOI: 10.1002/iub.2211] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
Multiple myeloma (MM), an incurable hematologic malignancy of plasma cells increasing in the bone marrow (BM), has a complex microenvironment made to support proliferation, survival, and drug resistance of tumor cells. MicroRNAs (miRNAs), short non-coding RNAs regulating genes expression at posttranscriptional level, have been indicated to be functionally deregulated or abnormally expressed in MM cells. Moreover, by means of miRNAs, tumor microenvironment also modulates the function of MM cells. Consistently, it has been demonstrated that miRNA levels regulation impairs their interaction with the microenvironment of BM as well as create considerable antitumor feature even capable of overcoming the protective BM milieu. Communication between cancer stromal cells and cancer cells is a key factor in tumor progression. Finding out this interaction is important to develop effective approaches that reverse bone diseases. Exosomes, nano-vehicles having crucial roles in cell-to-cell communication, through targeting their cargos (i.e., miRNAs, mRNAs, DNAs, and proteins), are implicated in MM pathogenesis.
Collapse
Affiliation(s)
- Mohammad H Pourhanifeh
- Halal Research Center of IRI, FDA, Tehran, Iran.,Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
16
|
Huang Z, Ge H, Yang C, Cai Y, Chen Z, Tian W, Tao J. MicroRNA‐26a‐5p inhibits breast cancer cell growth by suppressing RNF6 expression. Kaohsiung J Med Sci 2019; 35:467-473. [PMID: 31063232 DOI: 10.1002/kjm2.12085] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
- Zi‐Ming Huang
- Department of Emergency SurgeryThe Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| | - Heng‐Fa Ge
- Department of Emergency SurgeryThe Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| | - Chen‐Chen Yang
- Department of Emergency SurgeryThe Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| | - Yong Cai
- Department of Emergency SurgeryThe Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| | - Zhen Chen
- Department of Emergency SurgeryThe Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| | - Wen‐Ze Tian
- Department of Cardio‐Thoracic SurgeryThe Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| | - Jia‐Li Tao
- Department of EmergencyThe Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| |
Collapse
|