1
|
Tsuchiya T, Miyawaki S, Teranishi Y, Ohara K, Hirano Y, Ogawa S, Torazawa S, Sakai Y, Hongo H, Ono H, Saito N. Current molecular understanding of central nervous system schwannomas. Acta Neuropathol Commun 2025; 13:24. [PMID: 39910685 PMCID: PMC11796276 DOI: 10.1186/s40478-025-01937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/25/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Schwannomas are tumors that originate from myelinating Schwann cells and can occur in cranial, spinal, and peripheral nerves. Although our understanding of the molecular biology underlying schwannomas remains incomplete, numerous studies have identified various molecular findings and biomarkers associated with schwannomas of the central nervous system (CNS). The development of these tumors is primarily linked to mutations in the NF2 gene. Merlin, the protein encoded by NF2, is integral to several signaling pathways, including Ras/Raf/MEK/ERK, PI3K/Akt/mTORC1, Wnt/β-catenin, and the Hippo pathway. MAIN BODY Recent research has also uncovered novel genetic alterations, such as the SH3PXD2A::HTRA1 fusion gene, VGLL-fusions in intraparenchymal CNS schwannomas, and the SOX10 mutation particularly in non-vestibular cranial nerve schwannomas. In addition to genetic alterations, research is also being conducted on gene expression and epigenetic regulation, with a focus on NF2 methylation and post-transcriptional silencing by micro RNA. Furthermore, the advent of advanced techniques like single-cell sequencing and multi-omics analysis has facilitated rapid discoveries related to the tumor microenvironment and tumor heterogeneity in schwannomas. CONCLUSION A deeper exploration of these molecular findings could clarify the mechanisms of schwannoma tumorigenesis and progression, ultimately guiding the development of new therapeutic targets. This review offers a comprehensive overview of the current molecular understanding of CNS schwannomas, emphasizing the insights gained from previous research, while addressing existing controversies and outlining future research and treatment perspectives.
Collapse
Affiliation(s)
- Takahiro Tsuchiya
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yu Teranishi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kenta Ohara
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yudai Hirano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shotaro Ogawa
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Seiei Torazawa
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yu Sakai
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroki Hongo
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hideaki Ono
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
2
|
Barrett TF, Patel B, Khan SM, Mullins RDZ, Yim AKY, Pugazenthi S, Mahlokozera T, Zipfel GJ, Herzog JA, Chicoine MR, Wick CC, Durakovic N, Osbun JW, Shew M, Sweeney AD, Patel AJ, Buchman CA, Petti AA, Puram SV, Kim AH. Single-cell multi-omic analysis of the vestibular schwannoma ecosystem uncovers a nerve injury-like state. Nat Commun 2024; 15:478. [PMID: 38216553 PMCID: PMC10786875 DOI: 10.1038/s41467-023-42762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 10/10/2023] [Indexed: 01/14/2024] Open
Abstract
Vestibular schwannomas (VS) are benign tumors that lead to significant neurologic and otologic morbidity. How VS heterogeneity and the tumor microenvironment (TME) contribute to VS pathogenesis remains poorly understood. In this study, we perform scRNA-seq on 15 VS, with paired scATAC-seq (n = 6) and exome sequencing (n = 12). We identify diverse Schwann cell (SC), stromal, and immune populations in the VS TME and find that repair-like and MHC-II antigen-presenting SCs are associated with myeloid cell infiltrate, implicating a nerve injury-like process. Deconvolution analysis of RNA-expression data from 175 tumors reveals Injury-like tumors are associated with larger tumor size, and scATAC-seq identifies transcription factors associated with nerve repair SCs from Injury-like tumors. Ligand-receptor analysis and in vitro experiments suggest that Injury-like VS-SCs recruit myeloid cells via CSF1 signaling. Our study indicates that Injury-like SCs may cause tumor growth via myeloid cell recruitment and identifies molecular pathways that may be therapeutically targeted.
Collapse
Affiliation(s)
- Thomas F Barrett
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Bhuvic Patel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Saad M Khan
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Riley D Z Mullins
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Aldrin K Y Yim
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sangami Pugazenthi
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Tatenda Mahlokozera
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, MO, USA
| | - Jacques A Herzog
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, MO, USA
| | - Michael R Chicoine
- Department of Neurological Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Cameron C Wick
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, MO, USA
| | - Nedim Durakovic
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, MO, USA
| | - Joshua W Osbun
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew Shew
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, MO, USA
| | - Alex D Sweeney
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Akash J Patel
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Craig A Buchman
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, MO, USA
| | - Allegra A Petti
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sidharth V Puram
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, MO, USA.
| |
Collapse
|
3
|
Jovanović A, Tošić N, Marjanović I, Komazec J, Zukić B, Nikitović M, Ilić R, Grujičić D, Janić D, Pavlović S. Germline Variants in Cancer Predisposition Genes in Pediatric Patients with Central Nervous System Tumors. Int J Mol Sci 2023; 24:17387. [PMID: 38139220 PMCID: PMC10744041 DOI: 10.3390/ijms242417387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Central nervous system (CNS) tumors comprise around 20% of childhood malignancies. Germline variants in cancer predisposition genes (CPGs) are found in approximately 10% of pediatric patients with CNS tumors. This study aimed to characterize variants in CPGs in pediatric patients with CNS tumors and correlate these findings with clinically relevant data. Genomic DNA was isolated from the peripheral blood of 51 pediatric patients and further analyzed by the next-generation sequencing approach. Bioinformatic analysis was done using an "in-house" gene list panel, which included 144 genes related to pediatric brain tumors, and the gene list panel Neoplasm (HP:0002664). Our study found that 27% of pediatric patients with CNS tumors have a germline variant in some of the known CPGs, like ALK, APC, CHEK2, ELP1, MLH1, MSH2, NF1, NF2 and TP53. This study represents the first comprehensive evaluation of germline variants in pediatric patients with CNS tumors in the Western Balkans region. Our results indicate the necessity of genomic research to reveal the genetic basis of pediatric CNS tumors, as well as to define targets for the application and development of innovative therapeutics that form the basis of the upcoming era of personalized medicine.
Collapse
Affiliation(s)
- Aleksa Jovanović
- Pediatric Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia; (A.J.); (D.J.)
| | - Nataša Tošić
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Irena Marjanović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Jovana Komazec
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Branka Zukić
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Marina Nikitović
- Pediatric Radiation Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
| | - Rosanda Ilić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
- Neurooncology Department, Neurosurgery Clinic, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Danica Grujičić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
- Neurooncology Department, Neurosurgery Clinic, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Dragana Janić
- Pediatric Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia; (A.J.); (D.J.)
| | - Sonja Pavlović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| |
Collapse
|
4
|
Hiruta R, Saito K, Bakhit M, Fujii M. Current progress in genomics and targeted therapies for neurofibromatosis type 2. Fukushima J Med Sci 2023; 69:95-103. [PMID: 37468280 PMCID: PMC10480513 DOI: 10.5387/fms.2023-05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/06/2023] [Indexed: 07/21/2023] Open
Abstract
Neurofibromatosis type 2 (NF2), a multiple neoplasia syndrome, is a manifestation of an impaired expression of the merlin protein, exerting inhibitory effects on cell proliferation signals due to abnormalities of the NF2 gene located on chromosome 22. About half of patients inherit a germline mutation from a parent, and nearly 60% of de novo NF2 patients are estimated to have somatic mosaicism. The development of technical methods to detect NF2 gene mutation, including targeted deep sequencing from multiple tissues, improved the diagnostic rate of mosaic NF2. With improved understanding of genetics and pathogenesis, the diagnostic criteria for NF2 were updated to assist in identifying and diagnosing NF2 at an earlier stage. The understanding of cell signaling pathways interacting with merlin has led to the development of molecular-targeted therapies. Currently, several translational studies are searching for possible therapeutic agents targeting VEGF or VEGF receptors. Bevacizumab, an anti-VEGF monoclonal antibody, is widely used in many clinical trials aiming for hearing improvement or tumor volume control. Currently, a randomized, double-masked trial to assess bevacizumab is underway. In this randomized control trial, 12 other Japanese institutions joined the principal investigators in the clinical trial originating at Fukushima Medical University. In this review, we will be discussing the latest research developments regarding NF2 pathophysiology, including molecular biology, diagnosis, and novel therapeutics.
Collapse
Affiliation(s)
- Ryo Hiruta
- Department of Neurosurgery, Fukushima Medical University
| | - Kiyoshi Saito
- Department of Neurosurgery, Fukushima Rosai Hospital
| | | | - Masazumi Fujii
- Department of Neurosurgery, Fukushima Medical University
| |
Collapse
|
5
|
Ramkumar S. Reviewing Schwannoma-Hemangioma Composite Tumors With Their Tumorigenetic Molecular Pathways and Associated Syndromic Manifestations. Cureus 2021; 13:e19839. [PMID: 34824953 PMCID: PMC8610103 DOI: 10.7759/cureus.19839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Schwannomas are common peripheral nerve sheath tumors. Cavernous hemangiomas are vascular tumors that can affect any organ system. The coexistence of cavernous hemangioma with peripheral nervous system neoplasms is a rare occurrence. So far, 37 cases have been documented, and they have been divided into two categories: conjoined association (neoplasms discovered within the tumor tissue) and discrete association (neoplasms discovered outside the tumor tissue, thus placing neoplasms and tumors in close proximity but in different locations). Schwannomas and neurofibromas are the most prevalent tumors linked to cavernous hemangiomas that have been documented. The author provides a comprehensive review of all such cases published in the past with an emphasis on the implications of their tumorigenetic molecular pathways and syndromic manifestations.
Collapse
|
6
|
Helbing DL, Schulz A, Morrison H. Pathomechanisms in schwannoma development and progression. Oncogene 2020; 39:5421-5429. [PMID: 32616891 PMCID: PMC7410823 DOI: 10.1038/s41388-020-1374-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
Schwannomas are tumors of the peripheral nervous system, consisting of different cell types. These include tumorigenic Schwann cells, axons, macrophages, T cells, fibroblasts, blood vessels, and an extracellular matrix. All cell types involved constitute an intricate “tumor microenvironment” and play relevant roles in the development and progression of schwannomas. Although Nf2 tumor suppressor gene-deficient Schwann cells are the primary tumorigenic element and principle focus of current research efforts, evidence is accumulating regarding the contributory roles of other cell types in schwannoma pathology. In this review, we aim to provide an overview of intra- and intercellular mechanisms contributing to schwannoma formation. “Genes load the gun, environment pulls the trigger.” -George A. Bray
Collapse
Affiliation(s)
- Dario-Lucas Helbing
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany.,Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Alexander Schulz
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany.,MVZ Human Genetics, 99084, Erfurt, Germany
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany.
| |
Collapse
|
7
|
Tumor miRNA expression profile is related to vestibular schwannoma growth rate. Acta Neurochir (Wien) 2020; 162:1187-1195. [PMID: 32016588 DOI: 10.1007/s00701-020-04238-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/18/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Our objective was to investigate if the tumor microRNA (miRNA) expression profile was related to tumor growth rate. Growth-related miRNAs might be potential targets for future therapeutic intervention. MATERIAL AND METHODS Tumor tissue was sampled during surgery of patients with a sporadic vestibular schwannoma. Tumor growth rate was determined by tumor measurement on the two latest pre-operative MRI scans. Tumor miRNA expression was analyzed using the Affymetrix Gene Chip® protocol, and CEL files were generated using GeneChip® Command Console® Software and normalized using Partek Genomics Suite 6.5. The CEL files were analyzed using the statistical software program R. Principal component analysis, affected gene ontology analysis, and analysis of miRNA expression fold changes were used for analysis of potential relations between miRNA expression profile and tumor growth rate. RESULTS AND CONCLUSION Tumor miRNA expression is related to the growth rate of sporadic vestibular schwannomas. Rapid tumor growth is associated with deregulation of several miRNAs, including upregulation of miR-29abc, miR-19, miR-340-5p, miR-21, and miR-221 and downregulation of miR-744 and let-7b. Gene ontologies affected by the deregulated miRNAs included neuron development and differentiation, gene silencing, and negative regulation of various biological processes, including cellular and intracellular signaling and metabolism.
Collapse
|
8
|
Xu J, Zhang Y, Shi Y, Yin D, Dai P, Zhao W, Zhang T. Identification of Predictive Proteins and Biological Pathways for the Tumorigenicity of Vestibular Schwannoma by Proteomic Profiling. Proteomics Clin Appl 2019; 13:e1800175. [PMID: 31120176 DOI: 10.1002/prca.201800175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/17/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Vestibular schwannomas (VSs) are benign tumors that account for 8-10% of all intracranial tumors. So far, the tumorigenesis of VS has not been fully elucidated. This study is designed to identify differently expressed proteins involved in VS tumorigenesis. EXPERIMENTAL DESIGN An isobaric tag is used for relative and absolute quantification (iTRAQ) approach to characterize the protein expression profiles from pooled VS tissues (n = 12) and pooled matched normal vestibular tissues (n = 12). RESULTS A total of 933 differentially expressed proteins are identified between VS and the matched normal vestibular tissues, with 489 being upregulated and 444 being downregulated. Bioinformatics analyses are performed according to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Several of the differentially expressed proteins are validated by western blotting analyses, and upregulation of LGALS1, ANXA1, GRB2, and STAT1 is validated in VS tissue by immunohistochemistry. CONCLUSIONS AND CLINICAL RELEVANCE The study represents the successful application of iTRAQ technology to an investigation of VS. Many of the differentially expressed proteins identified here have not been linked to VS before, and these dysregulated proteins may provide potential biomarkers for human VS diagnosis.
Collapse
Affiliation(s)
- Jianhui Xu
- ENT Institute and Otorhinolaryngology Department , Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.,Key Laboratory of Hearing Medicine of NHFPC, Shanghai, 200031, China
| | - Yang Zhang
- ENT Institute and Otorhinolaryngology Department , Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.,Key Laboratory of Hearing Medicine of NHFPC, Shanghai, 200031, China
| | - Yuxuan Shi
- ENT Institute and Otorhinolaryngology Department , Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.,Key Laboratory of Hearing Medicine of NHFPC, Shanghai, 200031, China
| | - Dongming Yin
- ENT Institute and Otorhinolaryngology Department , Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.,Key Laboratory of Hearing Medicine of NHFPC, Shanghai, 200031, China
| | - Peidong Dai
- ENT Institute and Otorhinolaryngology Department , Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.,Key Laboratory of Hearing Medicine of NHFPC, Shanghai, 200031, China
| | - Weidong Zhao
- ENT Institute and Otorhinolaryngology Department , Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.,Department of Otology and Skull Base Surgery, Eye and Ear Nose Throat Hospital of Fudan University, Shanghai, 200031, China
| | - Tianyu Zhang
- ENT Institute and Otorhinolaryngology Department , Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.,Key Laboratory of Hearing Medicine of NHFPC, Shanghai, 200031, China
| |
Collapse
|
9
|
Cerebrospinal Fluid Hyaluronan and Neurofibromatosis Type 2. CANCER MICROENVIRONMENT 2018; 11:125-133. [PMID: 30145722 DOI: 10.1007/s12307-018-0216-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
Abstract
Neurofibromatosis type 2 (NF-2) is associated with mainly three types of recurrent benign tumors restricted to the central nervous system: schwannoma, meningioma and ependymoma. The absence of the protein NF2/Merlin causes an uninterrupted cell proliferation cascade originating from an abnormal interaction between an extracellular mucopolysaccharide, hyaluronan (HA), and schwann cell surface CD44 receptor, which has been identified as one of the central causative factors for schwannoma. Most tumors in NF-2 have a predilection to originate from either arachnoid cap cells or schwann cells of the cisternal portion of nerve rootlets that share a continuous exposure to cerebrospinal fluid (CSF). We hypothesize that the CSF HA may play a role in tumorigenesis in NF-2. In a prospective analysis over a period of one year, the levels of medium to low molecular weight HA (LMW HA) was estimated in the CSF of three subjects with central schwannomas and compared against that of age-sex matched controls, using Cetyltrimethylammonium bromide coupled turbidimetric assay and found to be seventeen-fold higher in the schwannoma subjects compared to the controls. HA was observed to be actively secreted by cultured schwannoma cells isolated from tumor tissues commensurate with their proliferation rate. On cell viability index analysis to compare the cell proliferation of astrocytoma cells with LMW HA vs. oligomeric HA (OHA), we found a decrease in cell proliferation of up to 30% with OHA. The study provides initial evidence that CSF HA may have a central role in the tumorigenesis of schwannoma in NF-2.
Collapse
|
10
|
Tumor Biology of Vestibular Schwannoma: A Review of Experimental Data on the Determinants of Tumor Genesis and Growth Characteristics. Otol Neurotol 2016; 36:1128-36. [PMID: 26049313 DOI: 10.1097/mao.0000000000000788] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Provide an overview of the literature on vestibular schwannoma biology with special attention to tumor behavior and targeted therapy. BACKGROUND Vestibular schwannomas are benign tumors originating from the eighth cranial nerve and arise due to inactivation of the NF2 gene and its product merlin. Unraveling the biology of these tumors helps to clarify their growth pattern and is essential in identifying therapeutic targets. METHODS PubMed search for English-language articles on vestibular schwannoma biology from 1994 to 2014. RESULTS Activation of merlin and its role in cell signaling seem as key aspects of vestibular schwannoma biology. Merlin is regulated by proteins such as CD44, Rac, and myosin phosphatase-targeting subunit 1. The tumor-suppressive functions of merlin are related to receptor tyrosine kinases, such as the platelet-derived growth factor receptor and vascular endothelial growth factor receptor. Merlin mediates the Hippo pathway and acts within the nucleus by binding E3 ubiquiting ligase CRL4. Angiogenesis is an important mechanism responsible for the progression of these tumors and is affected by processes such as hypoxia and inflammation. Inhibiting angiogenesis by targeting vascular endothelial growth factor receptor seems to be the most successful pharmacologic strategy, but additional therapeutic options are emerging. CONCLUSION Over the years, the knowledge on vestibular schwannoma biology has significantly increased. Future research should focus on identifying new therapeutic targets by investigating vestibular schwannoma (epi)genetics, merlin function, and tumor behavior. Besides identifying novel targets, testing new combinations of existing treatment strategies can further improve vestibular schwannoma therapy.
Collapse
|
11
|
Dilwali S, Patel PB, Roberts DS, Basinsky GM, Harris GJ, Emerick KS, Stankovic KM. Primary culture of human Schwann and schwannoma cells: improved and simplified protocol. Hear Res 2014; 315:25-33. [PMID: 24910344 PMCID: PMC4164296 DOI: 10.1016/j.heares.2014.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 04/30/2014] [Accepted: 05/29/2014] [Indexed: 11/27/2022]
Abstract
Primary culture of human Schwann cells (SCs) and vestibular schwannoma (VS) cells are invaluable tools to investigate SC physiology and VS pathobiology, and to devise effective pharmacotherapies against VS, which are sorely needed. However, existing culture protocols, in aiming to create robust, pure cultures, employ methods that can lead to loss of biological characteristics of the original cells, potentially resulting in misleading biological findings. We have developed a minimally manipulative method to culture primary human SC and VS cells, without the use of selective mitogens, toxins, or time-consuming and potentially transformative laboratory techniques. Schwann cell purity was quantified longitudinally using S100 staining in SC cultures derived from the great auricular nerve and VS cultures followed for 7 and 12 weeks, respectively. SC cultures retained approximately ≥85% purity for 2 weeks. VS cultures retained approximately ≥80% purity for the majority of the span of 12 weeks, with maximal purity of 87% at 2 weeks. The VS cultures showed high level of biological similarity (68% on average) to their respective parent tumors, as assessed using a protein array featuring 41 growth factors and receptors. Apoptosis rate in vitro negatively correlated with tumor volume. Our results, obtained using a faster, simplified culturing method than previously utilized, indicate that highly pure, primary human SC and VS cultures can be established with minimal manipulation, reaching maximal purity at 2 weeks of culture. The VS cultures recapitulate the parent tumors' biology to a great degree, making them relevant models to investigate VS pathobiology.
Collapse
Affiliation(s)
- Sonam Dilwali
- Speech and Hearing Bioscience and Technology Program, Harvard - Massachusetts Institute of Technology, Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA, 02114, USA
| | - Pratik B Patel
- Department of Otology and Laryngology, Harvard Medical School, 651 Huntington Avenue, Boston, MA 02115, USA; Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA, 02114, USA
| | - Daniel S Roberts
- Department of Otology and Laryngology, Harvard Medical School, 651 Huntington Avenue, Boston, MA 02115, USA; Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA, 02114, USA
| | - Gina M Basinsky
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Gordon J Harris
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin S Emerick
- Department of Otology and Laryngology, Harvard Medical School, 651 Huntington Avenue, Boston, MA 02115, USA; Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA, 02114, USA
| | - Konstantina M Stankovic
- Speech and Hearing Bioscience and Technology Program, Harvard - Massachusetts Institute of Technology, Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Otology and Laryngology, Harvard Medical School, 651 Huntington Avenue, Boston, MA 02115, USA; Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA, 02114, USA.
| |
Collapse
|