1
|
Kim EY, Abides J, Keller CR, Martinez SR, Li W. Tumor Microenvironment Lactate: Is It a Cancer Progression Marker, Immunosuppressant, and Therapeutic Target? Molecules 2025; 30:1763. [PMID: 40333742 PMCID: PMC12029365 DOI: 10.3390/molecules30081763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/12/2025] [Accepted: 04/12/2025] [Indexed: 05/09/2025] Open
Abstract
The "Warburg effect" is a term coined a century ago for the preferential use of glycolysis over aerobic respiration in tumor cells for energy production, even under aerobic conditions. Although this is a less efficient mechanism of generating energy from glucose, aerobic glycolysis, in addition to the canonical anaerobic glycolysis, is an effective means of lactate production. The abundant waste product, lactate, yielded by the dual glycolysis in a tumor, has been discovered to be a major biomolecule that drives cancer progression. Lactate is a metabolic energy source that, via cell membrane lactate transporters, shuttles in and out of cancer cells as well as cancer cell-associated stromal cells and immune cells within the tumor microenvironment (TME). Additionally, lactate serves as a pH tuner, signaling ligand and transducer, epigenetic and gene transcription regulator, TME modifier, immune suppressor, chemoresistance modulator, and prognostic marker. With such broad functionalities, the production-consumption-reproduction of TME lactate fuels tumor growth and dissemination. Here, we elaborate on the lactate sources that contribute to the pool of lactate in the TME, the functions of TME lactate, the influence of the TME lactate on immune cell function and local tissue immunity, and anticancer therapeutic approaches adopting lactate manipulations and their efficacies. By scrutinizing these properties of the TME lactate and others that have been well addressed in the field, it is expected that a better weighing of the influence of the TME lactate on cancer development, progression, prognosis, and therapeutic efficacy can be achieved.
Collapse
Affiliation(s)
- Eugene Y. Kim
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (E.Y.K.); (J.A.); (C.R.K.)
| | - Joyce Abides
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (E.Y.K.); (J.A.); (C.R.K.)
- Doctor of Medicine Program, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Chandler R. Keller
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (E.Y.K.); (J.A.); (C.R.K.)
| | - Steve R. Martinez
- Department of Medical Education and Clinical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
- Providence Regional Cancer Partnership, Providence Regional Medical Center, Everett, WA 98201, USA
| | - Weimin Li
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (E.Y.K.); (J.A.); (C.R.K.)
| |
Collapse
|
2
|
Li W, Liu N, Chen M, Liu D, Liu S. Metformin as an immunomodulatory agent in enhancing head and neck squamous cell carcinoma therapies. Biochim Biophys Acta Rev Cancer 2025; 1880:189262. [PMID: 39827973 DOI: 10.1016/j.bbcan.2025.189262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a significant clinical challenge due to its aggressive behavior and poor prognosis, making the development of novel therapeutics with enhanced efficacy and minimal side effects critical. Metformin, a widely used antidiabetic agent, has recently emerged as a potential adjunctive therapy for HNSCC, exhibiting both direct anti-tumor and immunomodulatory effects. This review comprehensively explores the multifaceted role of metformin in shaping the tumor immune microenvironment within HNSCC. We emphasize its pivotal role in modulating immune cell populations and its potential for synergistic action with immunotherapeutic strategies. Furthermore, we address the current challenges associated with optimizing dosing regimens, identifying predictive biomarkers, and integrating metformin with immunotherapy. By dissecting these aspects, this review aims to pave the way for the development of personalized HNSCC treatment strategies that fully exploit the therapeutic potential of metformin.
Collapse
Affiliation(s)
- Wenting Li
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Nanshu Liu
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Mingwei Chen
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Dongjuan Liu
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China.
| | - Sai Liu
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China.
| |
Collapse
|
3
|
Xie Z, Qu X, Zhang J, Huang Y, Runhan Z, Tang D, Li N, Wang Z, Luo X. Integrative single-cell and bulk RNA-seq analysis identifies lactylation-related signature in osteosarcoma. Funct Integr Genomics 2025; 25:60. [PMID: 40072643 DOI: 10.1007/s10142-025-01559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/08/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025]
Abstract
Osteosarcoma is the most common bone tumor and a highly aggressive malignant neoplasm. This study aims to elucidate the role of lactylation-related genes (LRGs) in osteosarcoma, with the goal of improving prognostic accuracy and enhancing the efficacy of immunotherapy. Using public datasets, we integrated differential and correlated genes based on single-cell sequencing AUCell scores and performed enrichment analysis and risk model construction on these genes. A total of 277 genes were found to be intricately linked with lactate metabolism. Using the uni-Cox and LASSO algorithm, nine key genes were identified, demonstrating strong predictive power for the prognosis of Osteosarcoma patients. Notably, changes were observed at the levels of immune checkpoints, the tumor microenvironment (TME), drug sensitivity, and immune cell infiltration. This study paves the way for targeted drug interventions, thereby opening avenues for improving clinical outcomes in osteosarcoma.
Collapse
Affiliation(s)
- Zhou Xie
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiao Qu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhao Runhan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dagang Tang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ningdao Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhule Wang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, 400060, China.
| |
Collapse
|
4
|
Mohd Faizal NF, Shai S, Savaliya BP, Karen-Ng LP, Kumari R, Kumar R, Vincent-Chong VK. A Narrative Review of Prognostic Gene Signatures in Oral Squamous Cell Carcinoma Using LASSO Cox Regression. Biomedicines 2025; 13:134. [PMID: 39857718 PMCID: PMC11759772 DOI: 10.3390/biomedicines13010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/28/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies of the head and neck squamous cell carcinoma (HNSCC). HNSCC is recognized as the eighth most commonly occurring cancer globally in men. It is essential to distinguish between cancers arising in the head and neck regions due to significant differences in their etiologies, treatment approaches, and prognoses. As the Cancer Genome Atlas (TCGA) dataset is available in HNSCC, the survival analysis prognosis of OSCC patients based on the TCGA dataset for discovering gene expression-based prognostic biomarkers is limited. To address this paucity, we aimed to provide comprehensive evidence by recruiting studies that have reported new biomarkers/signatures to establish a prognostic model to predict the survival of OSCC patients. Using PubMed search, we have identified 34 studies that have been using the least absolute shrinkage and selection operator (LASSO)-based Cox regression analyses to establish signature prognosis that related to different pathways in OSCC from the past 4 years. Our review was focused on summarizing these signatures and implications for targeted therapy using FDA-approved drugs. Furthermore, we conducted an analysis of the LASSO Cox regression gene signatures. Our findings revealed 13 studies that correlated a greater number of regulatory T cells (Tregs) cells in protective gene signatures with increased recurrence-free and overall survival rates. Conversely, two studies displayed an opposing trend in cases of OSCC. We will also explore how the dysregulation of these signatures impacts immune status, promoting tumor immune evasion or, conversely, enhancing immune surveillance. Overall, this review will provide new insight for future anti-cancer therapies based on the potential gene that is associated with poor prognosis in OSCC.
Collapse
Affiliation(s)
- Nur Fatinazwa Mohd Faizal
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.F.M.F.); (L.P.K.-N.)
| | - Saptarsi Shai
- Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA;
| | - Bansi P. Savaliya
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55901, USA;
| | - Lee Peng Karen-Ng
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.F.M.F.); (L.P.K.-N.)
| | - Rupa Kumari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Vui King Vincent-Chong
- Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
5
|
Hajimohammadebrahim-Ketabforoush M, Zali A, Shahmohammadi M, Hamidieh AA. Metformin and its potential influence on cell fate decision between apoptosis and senescence in cancer, with a special emphasis on glioblastoma. Front Oncol 2024; 14:1455492. [PMID: 39267853 PMCID: PMC11390356 DOI: 10.3389/fonc.2024.1455492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Despite reaching enormous achievements in therapeutic approaches worldwide, GBM still remains the most incurable malignancy among various cancers. It emphasizes the necessity of adjuvant therapies from the perspectives of both patients and healthcare providers. Therefore, most emerging studies have focused on various complementary and adjuvant therapies. Among them, metabolic therapy has received special attention, and metformin has been considered as a treatment in various types of cancer, including GBM. It is clearly evident that reaching efficient approaches without a comprehensive evaluation of the key mechanisms is not possible. Among the studied mechanisms, one of the more challenging ones is the effect of metformin on apoptosis and senescence. Moreover, metformin is well known as an insulin sensitizer. However, if insulin signaling is facilitated in the tumor microenvironment, it may result in tumor growth. Therefore, to partially resolve some paradoxical issues, we conducted a narrative review of related studies to address the following questions as comprehensively as possible: 1) Does the improvement of cellular insulin function resulting from metformin have detrimental or beneficial effects on GBM cells? 2) If these effects are detrimental to GBM cells, which is more important: apoptosis or senescence? 3) What determines the cellular decision between apoptosis and senescence?
Collapse
Affiliation(s)
- Melika Hajimohammadebrahim-Ketabforoush
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Kekatpure V, Subramaniam N, Sunny S, Nambiar S, Sarah T, Vasudevan V, Rao A, Murali A, Kolur T, Krishnamurthy A, Kantharia R, Nair SV, Thankappan K, M N B, Kumar R, Balasubramanian S, Toprani R, Agrawala S, Battoo AJ, Bakshi J, Babu S, Shah S, Trivedi N, Selvam S, Kannan R, Kumar A, Suresh A, Pillai V, Chaturvedi P, Iyer S, Kuriakose MA. Two by Two Factorial Design using Metformin and Curcumin for Second Primary Head and Neck Cancer Prevention Trial. Asian Pac J Cancer Prev 2024; 25:1935-1943. [PMID: 38918654 PMCID: PMC11382851 DOI: 10.31557/apjcp.2024.25.6.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVE The 2x2 factorial design is an effective method that allows for multiple comparisons, especially in the context of interactions between different interventions, without substantially increasing the required sample size. In view of the considerable preclinical evidence for Curcumin and Metformin in preventing the development and progression of head and neck squamous cell carcinoma (HNSCC), this study describes the protocol of the clinical trial towards applying the drug combination in prevention of second primary tumors. METHODS We have applied the trial design to a large phase IIB/III double-blind, multi-centric, placebo-controlled, randomized clinical trial to determine the safety and efficacy of Metformin and Curcumin in the prevention of second primary tumours (SPT) of the aerodigestive tract following treatment of HNSCC (n=1,500) [Clinical Registry of India, CTRI/2018/03/012274]. Patients recruited in this trial will receive Metformin (with placebo), Curcumin (with placebo), Metformin, and Curcumin or placebo alone for a period of 36 months. The primary endpoint of this trial is the development of SPT, while the secondary endpoints are toxicities associated with the agents, incidence of recurrence, and identifying potential biomarkers. In this article, we discuss the 2x2 factorial design and how it applies to the head and neck cancer chemoprevention trial. CONCLUSION 2x2 factorial design is an effective trial design for chemoprevention clinical trials where the effectiveness of multiple interventions needs to be tested parallelly.
Collapse
Affiliation(s)
- Vikram Kekatpure
- Department of Head Neck Oncology, Cytecare Cancer Hospital, Bangalore, India
| | - Narayana Subramaniam
- Department of Head and Neck Oncology, Sri Shnakara Caner Foundation, Bangalore, India
| | - Sumsum Sunny
- Department of Head and Neck Oncology, Mazumdar Medical Center, Narayana Health City, Bangalore, India
| | - Sruthi Nambiar
- Department of Head and Neck Oncology, Mazumdar Medical Center, Narayana Health City, Bangalore, India
| | - Tinku Sarah
- St. Johns' Research Institute, Banglore, India
| | - Vaishnav Vasudevan
- Department of Head and Neck Oncology, Mazumdar Medical Center, Narayana Health City, Bangalore, India
| | - Anusha Rao
- Department of Head and Neck Oncology, Mazumdar Medical Center, Narayana Health City, Bangalore, India
| | - Anupama Murali
- Department of Head and Neck Oncology, Mazumdar Medical Center, Narayana Health City, Bangalore, India
| | - Trupti Kolur
- Department of Head and Neck Oncology, Mazumdar Medical Center, Narayana Health City, Bangalore, India
| | - Arvind Krishnamurthy
- Department of Head and Neck and Thoracic Oncology, Cancer Institute, Adyar, Chennai, India
| | - Rajesh Kantharia
- Department of Head and Neck Oncosurgery, Kailash Cancer Hospital and Research center, Goraj, Vadodara, India
| | - Sudhir V Nair
- Department of Head and Neck Surgical Oncology, Tata Memorial Center, Navi Mumbai, Maharashtra, India
| | - Krishnakumar Thankappan
- Department of Head Neck Surgery and Oncology, Amrita Institute of Medical Science and Research Centre, Kochi, Kerala, India
| | - Baruah M N
- Head and Neck Oncology, Managing Director & Research Head, North East Cancer Hospital and Research Institute, Assam
| | - Rajeev Kumar
- Otorhinolaryngology and Head-Neck Surgery, Professor, All India Institute of Medical Sciences, Delhi, India
| | | | - Rajendra Toprani
- Department of Head and Neck Cancer, HCG Cancer Centre, Ahmedabad, India
| | - Sunil Agrawala
- Department of Surgical Oncology, Professor, IMS & SUM Hospital, Bhubaneswar, India
| | - Azar Jan Battoo
- Surgical Oncology, Associate Professor, Sher-i-Kashmir Institute of Medical Science, Srinagar, India
| | - Jaimanti Bakshi
- Department of Otolaryngology, Professor and Head, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sajith Babu
- Surgical Oncology, Associate Professor, Aster MIMS, Calicut, India
| | - Siddharth Shah
- Head and Neck Cancer Dept, Sr. Consultant Head & Neck Cancer Surgeon, Zydus Cancer Centre, Ahmedabad, India
| | - Niravkumar Trivedi
- Head & Neck, Medical Director, Shankus Hospital Pvt. Ltd., Gujarat, India
| | | | - Ravi Kannan
- Department of Oncology, Cachar Cancer Hospital and Research Center, Silchar, Assam, India
| | - Arun Kumar
- Department of Head and Neck Oncology, Mazumdar Medical Center, Narayana Health City, Bangalore, India
| | - Amritha Suresh
- Integrated Head and Neck Oncology Program, Mazumdar Shaw Medical Foundation, Narayana Health City, Bangalore, India
| | - Vijay Pillai
- Department of Head and Neck Oncology, Mazumdar Medical Center, Narayana Health City, Bangalore, India
| | - Pankaj Chaturvedi
- Department of Head and Neck Surgical Oncology, Tata Memorial Center, Navi Mumbai, Maharashtra, India
| | - Subramania Iyer
- Department of Head Neck Surgery and Oncology, Amrita Institute of Medical Science and Research Centre, Kochi, Kerala, India
- President, Head and Neck Cooperative Group, Department of Head and Neck Surgery Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Moni Abraham Kuriakose
- Department of Head and Neck Oncology, Mazumdar Medical Center, Narayana Health City, Bangalore, India
| |
Collapse
|
7
|
Gupta J, Jalil AT, Abd Alzahraa ZH, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Najafi M. The Metformin Immunoregulatory Actions in Tumor Suppression and Normal Tissues Protection. Curr Med Chem 2024; 31:5370-5396. [PMID: 37403391 DOI: 10.2174/0929867331666230703143907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
The immune system is the key player in a wide range of responses in normal tissues and tumors to anticancer therapy. Inflammatory and fibrotic responses in normal tissues are the main limitations of chemotherapy, radiotherapy, and also some newer anticancer drugs such as immune checkpoint inhibitors (ICIs). Immune system responses within solid tumors including anti-tumor and tumor-promoting responses can suppress or help tumor growth. Thus, modulation of immune cells and their secretions such as cytokines, growth factors and epigenetic modulators, pro-apoptosis molecules, and some other molecules can be suggested to alleviate side effects in normal tissues and drug-resistance mechanisms in the tumor. Metformin as an anti-diabetes drug has shown intriguing properties such as anti-inflammation, anti-fibrosis, and anticancer effects. Some investigations have uncovered that metformin can ameliorate radiation/chemotherapy toxicity in normal cells and tissues through the modulation of several targets in cells and tissues. These effects of metformin may ameliorate severe inflammatory responses and fibrosis after exposure to ionizing radiation or following treatment with highly toxic chemotherapy drugs. Metformin can suppress the activity of immunosuppressive cells in the tumor through the phosphorylation of AMP-activated protein kinase (AMPK). In addition, metformin may stimulate antigen presentation and maturation of anticancer immune cells, which lead to the induction of anticancer immunity in the tumor. This review aims to explain the detailed mechanisms of normal tissue sparing and tumor suppression during cancer therapy using adjuvant metformin with an emphasis on immune system responses.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellin, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | | | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Akce M, Farran B, Switchenko JM, Rupji M, Kang S, Khalil L, Ruggieri-Joyce A, Olson B, Shaib WL, Wu C, Alese OB, Diab M, Lesinski GB, El-Rayes BF. Phase II trial of nivolumab and metformin in patients with treatment-refractory microsatellite stable metastatic colorectal cancer. J Immunother Cancer 2023; 11:e007235. [PMID: 37852737 PMCID: PMC10603338 DOI: 10.1136/jitc-2023-007235] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Preclinical studies showed metformin reduces exhaustion of tumor-infiltrating lymphocytes and potentiates programmed cell death protein-1 (PD-1) blockade. We hypothesized that metformin with nivolumab would elicit potent antitumor and immune modulatory activity in metastatic microsatellite stable (MSS) colorectal cancer (CRC). We evaluated this hypothesis in a phase II study. METHODS Nivolumab (480 mg) was administered intravenously every 4 weeks while metformin (1000 mg) was given orally, two times per day following a 14-day metformin only lead-in phase. Patients ≥18 years of age, with previously treated, stage IV MSS CRC, and Eastern Cooperative Oncology Group 0-1, having received no prior anti-PD-1 agent were eligible. The primary endpoint was overall response rate with secondary endpoints of overall survival (OS) and progression-free survival (PFS). Correlative studies using paired pretreatment/on-treatment biopsies and peripheral blood evaluated a series of immune biomarkers in the tumor microenvironment and systemic circulation using ChipCytometry and flow cytometry. RESULTS A total of 24 patients were enrolled, 6 patients were replaced per protocol, 18 patients had evaluable disease. Of the 18 evaluable patients, 11/18 (61%) were women and the median age was 58 (IQR 50-67). Two patients had stable disease, but no patients had objective response, hence the study was stopped for futility. Median OS and PFS was 5.2 months (95% CI (3.2 to 11.7)) and 2.3 months (95% CI (1.7 to 2.3)). Most common grade 3/4 toxicities: Anemia (n=2), diarrhea (n=2), and fever (n=2). Metformin alone failed to increase the infiltration of T-cell subsets in the tumor, but combined metformin and nivolumab increased percentages of tumor-infiltrating leukocytes (p=0.031). Dual treatment also increased Tim3+ levels in patient tissues and decreased naïve CD8+T cells (p=0.0475). CONCLUSIONS Nivolumab and metformin were well tolerated in patients with MSS CRC but had no evidence of efficacy. Correlative studies did not reveal an appreciable degree of immune modulation from metformin alone, but showed trends in tumorous T-cell infiltration as a result of dual metformin and PD-1 blockade despite progression in a majority of patients.
Collapse
Affiliation(s)
- Mehmet Akce
- Division of Hematology and Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jeffrey M Switchenko
- Biostatistics Shared Resource, Emory University Winship Cancer institute, Atlanta, Georgia, USA
- Department of Biostsatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Manali Rupji
- Biostatistics Shared Resource, Emory University Winship Cancer institute, Atlanta, Georgia, USA
| | - Sandra Kang
- Department of Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Lana Khalil
- Department of Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Amanda Ruggieri-Joyce
- Department of Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Brian Olson
- Department of Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Walid L Shaib
- Northwest Georgia Oncology Centers Wellstar, Marietta, Georgia, USA
| | - Christina Wu
- Division of Hematology and Oncology, Department of Internal Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Olatunji B Alese
- Department of Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Maria Diab
- Department of Internal Medicine, Michigan State University, East Lansing, Michigan, USA
- Department of Internal Medicine, Henry Ford Health, Detroit, Michigan, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Bassel F El-Rayes
- Division of Hematology and Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
9
|
Liu J, Zhao J, Qiao X. Research Progress of Metformin in the Treatment of Oral Squamous Cell Carcinoma. Endocrinology 2023; 164:bqad139. [PMID: 37738154 DOI: 10.1210/endocr/bqad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies and has a high mortality, posing a great threat to both human physical and mental health. With the advancement of scientific research, a variety of cancer therapies have been used for OSCC treatment. However, the prognosis of OSCC shows no significant improvement. Metformin has been recognized as the first-line drug for the treatment of diabetes, and recent studies have shown that metformin has a remarkable suppressive effect on tumor progression. Metformin can not only affect the energy metabolism of tumor cells but also play an antitumor role by modulating the tumor microenvironment and cancer stem cells. In this review, the molecular mechanism of metformin and its anticancer mechanism in OSCC are summarized. In addition, this article summarizes the side effects of metformin and the future prospects of its application in the treatment of OSCC.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Stomatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, China
| | - Jing Zhao
- Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, China
| | - Xue Qiao
- Department of Central Laboratory, School and Hospital of Stomatology, Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, Liaoning 110002, China
- Department of Oral Biology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, Liaoning 110002, China
| |
Collapse
|
10
|
Pillai U J, Ray A, Maan M, Dutta M. Repurposing drugs targeting metabolic diseases for cancer therapeutics. Drug Discov Today 2023; 28:103684. [PMID: 37379903 DOI: 10.1016/j.drudis.2023.103684] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/01/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
Hurdles in the identification of new drugs for cancer treatment have made drug repurposing an increasingly appealing alternative. The approach involves the use of old drugs for new therapeutic purposes. It is cost-effective and facilitates rapid clinical translation. Given that cancer is also considered a metabolic disease, drugs for metabolic disorders are being actively repurposed for cancer therapeutics. In this review, we discuss the repurposing of such drugs approved for two major metabolic diseases, diabetes and cardiovascular disease (CVD), which have shown potential as anti-cancer treatment. We also highlight the current understanding of the cancer signaling pathways that these drugs target.
Collapse
Affiliation(s)
- Jisha Pillai U
- Department of Biotechnology, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE
| | - Anindita Ray
- Department of Biotechnology, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE
| | - Meenu Maan
- Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, UAE; New York University-Abu Dhabi, Abu Dhabi, UAE.
| | - Mainak Dutta
- Department of Biotechnology, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE.
| |
Collapse
|
11
|
Abdelmoneim M, Aboalela MA, Naoe Y, Matsumura S, Eissa IR, Bustos-Villalobos I, Sibal PA, Takido Y, Kodera Y, Kasuya H. The Impact of Metformin on Tumor-Infiltrated Immune Cells: Preclinical and Clinical Studies. Int J Mol Sci 2023; 24:13353. [PMID: 37686159 PMCID: PMC10487782 DOI: 10.3390/ijms241713353] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The tumor microenvironment (TME) plays a pivotal role in the fate of cancer cells, and tumor-infiltrating immune cells have emerged as key players in shaping this complex milieu. Cancer is one of the leading causes of death in the world. The most common standard treatments for cancer are surgery, radiation therapy, and chemotherapeutic drugs. In the last decade, immunotherapy has had a potential effect on the treatment of cancer patients with poor prognoses. One of the immune therapeutic targeted approaches that shows anticancer efficacy is a type 2 diabetes medication, metformin. Beyond its glycemic control properties, studies have revealed intriguing immunomodulatory properties of metformin. Meanwhile, several studies focus on the impact of metformin on tumor-infiltrating immune cells in various tumor models. In several tumor models, metformin can modulate tumor-infiltrated effector immune cells, CD8+, CD4+ T cells, and natural killer (NK) cells, as well as suppressor immune cells, T regulatory cells, tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs). In this review, we discuss the role of metformin in modulating tumor-infiltrating immune cells in different preclinical models and clinical trials. Both preclinical and clinical studies suggest that metformin holds promise as adjunctive therapy in cancer treatment by modulating the immune response within the tumor microenvironment. Nonetheless, both the tumor type and the combined therapy have an impact on the specific targets of metformin in the TME. Further investigations are warranted to elucidate the precise mechanisms underlying the immunomodulatory effects of metformin and to optimize its clinical application in cancer patients.
Collapse
Affiliation(s)
- Mohamed Abdelmoneim
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Mona Alhussein Aboalela
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Yoshinori Naoe
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Shigeru Matsumura
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Ibrahim Ragab Eissa
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Itzel Bustos-Villalobos
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Patricia Angela Sibal
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Yuhei Takido
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
| | - Hideki Kasuya
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| |
Collapse
|
12
|
Hua Y, Zheng Y, Yao Y, Jia R, Ge S, Zhuang A. Metformin and cancer hallmarks: shedding new lights on therapeutic repurposing. J Transl Med 2023; 21:403. [PMID: 37344841 DOI: 10.1186/s12967-023-04263-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
Metformin is a well-known anti-diabetic drug that has been repurposed for several emerging applications, including as an anti-cancer agent. It boasts the distinct advantages of an excellent safety and tolerability profile and high cost-effectiveness at less than one US dollar per daily dose. Epidemiological evidence reveals that metformin reduces the risk of cancer and decreases cancer-related mortality in patients with diabetes; however, the exact mechanisms are not well understood. Energy metabolism may be central to the mechanism of action. Based on altering whole-body energy metabolism or cellular state, metformin's modes of action can be divided into two broad, non-mutually exclusive categories: "direct effects", which induce a direct effect on cancer cells, independent of blood glucose and insulin levels, and "indirect effects" that arise from systemic metabolic changes depending on blood glucose and insulin levels. In this review, we summarize an updated account of the current knowledge on metformin antitumor action, elaborate on the underlying mechanisms in terms of the hallmarks of cancer, and propose potential applications for repurposing metformin for cancer therapeutics.
Collapse
Affiliation(s)
- Yu Hua
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
13
|
Marret G, Borcoman E, Le Tourneau C. Window-of-opportunity clinical trials for biomarker discovery in head and neck squamous cell carcinoma. Curr Opin Oncol 2023; 35:158-165. [PMID: 36966501 DOI: 10.1097/cco.0000000000000940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
PURPOSE OF REVIEW We review the window-of-opportunity clinical trials that have been reported in head and neck squamous cell carcinoma (HNSCC), and discuss their challenges. RECENT FINDINGS Limited treatment options exist in HNSCC. Cetuximab, an mAb targeting epidermal growth factor receptor, and the PD-1 inhibitors nivolumab and pembrolizumab, are the only drugs that improved overall survival in the recurrent and/or metastatic setting. Both cetuximab and nivolumab improve overall survival by less than 3 months, potentially because of the lack of predictive biomarkers. The only validated predictive biomarker to date is protein ligand PD-L1 expression that predicts the efficacy of pembrolizumab in first-line, nonplatinum refractory recurrent and/or metastatic HNSCC. The identification of biomarkers of efficacy of new drugs is key to avoid administering toxic drugs to patients who will not benefit from them, and to expect increased drug efficacy in the biomarker-positive group of patients. One way of identifying such biomarkers are the window-of-opportunity trials in which drugs are given for a short period of time before the definitive treatment, with the aim to collect samples for translational research. These trials differ from neoadjuvant strategies where efficacy is the primary endpoint. SUMMARY We show that these trials were safe and successful in identifying biomarkers.
Collapse
Affiliation(s)
- Grégoire Marret
- Department of Drug Development and Innovation (D3i), Institut Curie
| | - Edith Borcoman
- Department of Drug Development and Innovation (D3i), Institut Curie
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie
- INSERM U900, Institut Curie, Paris-Saclay University, Paris, France
| |
Collapse
|
14
|
Lord SR, Harris AL. Is it still worth pursuing the repurposing of metformin as a cancer therapeutic? Br J Cancer 2023; 128:958-966. [PMID: 36823364 PMCID: PMC10006178 DOI: 10.1038/s41416-023-02204-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Over the past 15 years, there has been great interest in the potential to repurpose the diabetes drug, metformin, as a cancer treatment. However, despite considerable efforts being made to investigate its efficacy in a number of large randomised clinical trials in different tumour types, results have been disappointing to date. This perspective article summarises how interest initially developed in the oncological potential of metformin and the diverse clinical programme of work to date including our contribution to establishing the intra-tumoral pharmacodynamic effects of metformin in the clinic. We also discuss the lessons that can be learnt from this experience and whether a further clinical investigation of metformin in cancer is warranted.
Collapse
Affiliation(s)
- Simon R Lord
- Department of Oncology, University of Oxford, Oxford, UK.
| | | |
Collapse
|
15
|
Olson C, Alexander R, Stinnett S. Dysplastic Lesions of the Larynx. Otolaryngol Clin North Am 2023; 56:233-246. [PMID: 37030937 DOI: 10.1016/j.otc.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
There have been many advancements in the clinical and histologic diagnosis of laryngeal dysplasia (LD), but diagnosis still necessitates invasive histologic evaluation. Furthermore, despite improved histologic identification of dysplastic lesions, the exact details of pathophysiologic progression and the risk of malignant transformation is still uncertain. These unknowns create a barrier to establishing an ideal grading and classification system, which prevents the establishment of a precise and consistent treatment paradigm. Identifying these gaps in knowledge serves to highlight where further studies are warranted, ideally focusing on a better understanding of the biological behavior of LD. This would ultimately allow for the creation of a reliable grading and classification system and for the formalization of management and treatment guidelines for LD.
Collapse
|
16
|
Mostafavi S, Zalpoor H, Hassan ZM. The promising therapeutic effects of metformin on metabolic reprogramming of cancer-associated fibroblasts in solid tumors. Cell Mol Biol Lett 2022; 27:58. [PMID: 35869449 PMCID: PMC9308248 DOI: 10.1186/s11658-022-00356-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor-infiltrated lymphocytes are exposed to many toxic metabolites and molecules in the tumor microenvironment (TME) that suppress their anti-tumor activity. Toxic metabolites, such as lactate and ketone bodies, are produced mainly by catabolic cancer-associated fibroblasts (CAFs) to feed anabolic cancer cells. These catabolic and anabolic cells make a metabolic compartment through which high-energy metabolites like lactate can be transferred via the monocarboxylate transporter channel 4. Moreover, a decrease in molecules, including caveolin-1, has been reported to cause deep metabolic changes in normal fibroblasts toward myofibroblast differentiation. In this context, metformin is a promising drug in cancer therapy due to its effect on oncogenic signal transduction pathways, leading to the inhibition of tumor proliferation and downregulation of key oncometabolites like lactate and succinate. The cross-feeding and metabolic coupling of CAFs and tumor cells are also affected by metformin. Therefore, the importance of metabolic reprogramming of stromal cells and also the pivotal effects of metformin on TME and oncometabolites signaling pathways have been reviewed in this study.
Collapse
|
17
|
Crist M, Yaniv B, Palackdharry S, Lehn MA, Medvedovic M, Stone T, Gulati S, Karivedu V, Borchers M, Fuhrman B, Crago A, Curry J, Martinez-Outschoorn U, Takiar V, Wise-Draper TM. Metformin increases natural killer cell functions in head and neck squamous cell carcinoma through CXCL1 inhibition. J Immunother Cancer 2022; 10:jitc-2022-005632. [PMID: 36328378 PMCID: PMC9639146 DOI: 10.1136/jitc-2022-005632] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Metformin slows tumor growth and progression in vitro, and in combination with chemoradiotherapy, resulted in high overall survival in patients with head and neck cancer squamous cell carcinoma (HNSCC) in our phase 1 clinical trial (NCT02325401). Metformin is also postulated to activate an antitumor immune response. Here, we investigate immunologic effects of metformin on natural killer (NK) and natural killer T cells, including results from two phase I open-label studies in patients with HNSCC treated with metformin (NCT02325401, NCT02083692). METHODS Peripheral blood was collected before and after metformin treatment or from newly diagnosed patients with HNSCC. Peripheral immune cell phenotypes were evaluated using flow cytometry, cytokine expression by ELISA and/or IsoLight, and NK cell-mediated cytotoxicity was determined with a flow-based NK cell cytotoxicity assay (NKCA). Patient tumor immune infiltration before and after metformin treatment was analyzed with immunofluorescence. NK cells were treated with either vehicle or metformin and analyzed by RNA sequencing (RNA-seq). NK cells were then treated with inhibitors of significant pathways determined by RNA-seq and analyzed by NKCA, ELISA, and western blot analyses. RESULTS Increased peripheral NK cell activated populations were observed in patients treated with metformin. NK cell tumor infiltration was enhanced in patients with HNSCC treated with metformin preoperatively. Metformin increased antitumorigenic cytokines ex vivo, including significant increases in perforin. Metformin increased HNSCC NK cell cytotoxicity and inhibited the CXCL1 pathway while stimulating the STAT1 pathway within HNSCC NK cells. Exogenous CXCL1 prevented metformin-enhanced NK cell-mediated cytotoxicity. Metformin-mediated NK cell cytotoxicity was found to be AMP-activated protein kinase independent, but dependent on both mechanistic target of rapamycin and pSTAT1. CONCLUSIONS Our data identifies a new role for metformin-mediated immune antitumorigenic function through NK cell-mediated cytotoxicity and downregulation of CXCL1 in HNSCC. These findings will inform future immunomodulating therapies in HNSCC.
Collapse
Affiliation(s)
- McKenzie Crist
- Department of Internal Medicine; Division of Hematology/Oncology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Benyamin Yaniv
- Department of Medicine, UMass Memorial Medical Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sarah Palackdharry
- University of Cincinnati Cancer Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Maria A Lehn
- Department of Internal Medicine; Division of Hematology/Oncology, University of Cincinnati, Cincinnati, Ohio, USA,Division of Radiation Oncology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mario Medvedovic
- Department of Environmental Health; Division of Biostatistics and Bioinformatics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Timothy Stone
- Department of Environmental Health; Division of Biostatistics and Bioinformatics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shuchi Gulati
- Department of Internal Medicine; Division of Hematology/Oncology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Vidhya Karivedu
- Department of Medical Oncology Head and Neck Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Michael Borchers
- Division of Biostatistics and Bioinformatics, University of Cincinnati, Cincinnati, Ohio, USA,Cincinnati VA Medical Center, Cincinnati, Ohio, USA
| | - Bethany Fuhrman
- University of Cincinnati Cancer Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Audrey Crago
- University of Cincinnati Cancer Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Joseph Curry
- Department of Otolaryngology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Vinita Takiar
- Division of Radiation Oncology, University of Cincinnati, Cincinnati, Ohio, USA,Cincinnati VA Medical Center, Cincinnati, Ohio, USA
| | - Trisha M Wise-Draper
- Department of Internal Medicine; Division of Hematology/Oncology, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
18
|
Curry J, Alnemri A, Philips R, Fiorella M, Sussman S, Stapp R, Solomides C, Harshyne L, South A, Luginbuhl A, Tuluc M, Martinez-Outschoorn U, Argiris A, Linnenbach A, Johnson J. CD8+ and FoxP3+ T-Cell Cellular Density and Spatial Distribution After Programmed Death-Ligand 1 Check Point Inhibition. Laryngoscope 2022. [PMID: 36125263 DOI: 10.1002/lary.30389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVES To analyze CD8+ and FoxP3+ T-cell cellular density (CD) and intercellular distances (ID) in head and neck squamous cell carcinoma (HNSCC) samples from a neoadjuvant trial of durvalumab +/- metformin. METHODS Paired pre- and post-treatment primary HNSCC tumor samples were stained for CD8+ and FoxP3+. Digital image analysis was used to determine estimated mean CD8+ and FoxP3+ CDs and CD8+-FoxP3+ IDs in the leading tumor edge (LTE) and tumor adjacent stroma (TAS) stratified by treatment arm, human papillomavirus (HPV) status, and pathologic treatment response. A subset of samples was characterized for T-cell related signatures using digital spatial genomic profiling. RESULTS Post-treatment analysis revealed a significant decrease in FoxP3+ CD and an increase in CD8+ CDs in the TAS between patients receiving durvalumab and metformin versus durvlaumab alone. Both treatment arms demonstrated significant post-treatment increases in ID. Although HPV+ and HPV- had similar immune cell CDs in the tumor microenvironment, HPV+ pre-treatment samples had 1.60 times greater ID compared with HPV- samples, trending toward significance (p = 0.05). At baseline, pathologic responders demonstrated a 1.16-fold greater CD8+ CDs in the LTE (p = 0.045) and 2.28-fold greater ID (p = 0.001) than non-responders. Digital spatial profiling revealed upregulation of FoxP3+ and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) in the TAS (p = 0.006, p = 0.026) in samples from pathologic responders. CONCLUSIONS Analysis of CD8+ and FoxP3+ detected population differences according to HPV status, pathologic response, and treatment. Greater CD8+-FoxP3+ ID was associated with pathologic response. CD8+ and FoxP3+ T-cell distributions may be predictive of response to immune checkpoint inhibition. CLINICALTRIALS gov (Identifier NCT03618654). LEVEL OF EVIDENCE Level 3 Laryngoscope, 2022.
Collapse
Affiliation(s)
- Joseph Curry
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Angela Alnemri
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Ramez Philips
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Michele Fiorella
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Sarah Sussman
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Robert Stapp
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Charalambos Solomides
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Larry Harshyne
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A.,Department of Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Andrew South
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Adam Luginbuhl
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Madalina Tuluc
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | | | - Athanassios Argiris
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Alban Linnenbach
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Jennifer Johnson
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
19
|
Sahni V, Kumar A, Gupta S, Sharma S. Metformin and oral cancer. Oral Oncol 2022; 134:106125. [PMID: 36108523 DOI: 10.1016/j.oraloncology.2022.106125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 10/31/2022]
Affiliation(s)
- Vaibhav Sahni
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education & Research, Chandigarh, India.
| | - Akhil Kumar
- Department of Experimental Medicine & Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India.
| | - Shipra Gupta
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education & Research, Chandigarh, India.
| | - Sheetal Sharma
- Department of Experimental Medicine & Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India.
| |
Collapse
|
20
|
Wang H, Man Q, Huo F, Gao X, Lin H, Li S, Wang J, Su F, Cai, L, Shi Y, Liu, B, Bu L. STAT3 pathway in cancers: Past, present, and future. MedComm (Beijing) 2022; 3:e124. [PMID: 35356799 PMCID: PMC8942302 DOI: 10.1002/mco2.124] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, discovered in the cytoplasm of almost all types of mammalian cells, plays a significant role in biological functions. The duration of STAT3 activation in normal tissues is a transient event and is strictly regulated. However, in cancer tissues, STAT3 is activated in an aberrant manner and is induced by certain cytokines. The continuous activation of STAT3 regulates the expression of downstream proteins associated with the formation, progression, and metastasis of cancers. Thus, elucidating the mechanisms of STAT3 regulation and designing inhibitors targeting the STAT3 pathway are considered promising strategies for cancer treatment. This review aims to introduce the history, research advances, and prospects concerning the STAT3 pathway in cancer. We review the mechanisms of STAT3 pathway regulation and the consequent cancer hallmarks associated with tumor biology that are induced by the STAT3 pathway. Moreover, we summarize the emerging development of inhibitors that target the STAT3 pathway and novel drug delivery systems for delivering these inhibitors. The barriers against targeting the STAT3 pathway, the focus of future research on promising targets in the STAT3 pathway, and our perspective on the overall utility of STAT3 pathway inhibitors in cancer treatment are also discussed.
Collapse
Affiliation(s)
- Han‐Qi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Qi‐Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Fang‐Yi Huo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xin Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Hao Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Su‐Ran Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Fu‐Chuan Su
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lulu Cai,
- Personalized Drug Therapy Key Laboratory of Sichuan ProvinceDepartment of PharmacySchool of MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bing Liu,
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lin‐Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| |
Collapse
|
21
|
Metformin and Cancer, an Ambiguanidous Relationship. Pharmaceuticals (Basel) 2022; 15:ph15050626. [PMID: 35631452 PMCID: PMC9144507 DOI: 10.3390/ph15050626] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
The deregulation of energetic and cellular metabolism is a signature of cancer cells. Thus, drugs targeting cancer cell metabolism may have promising therapeutic potential. Previous reports demonstrate that the widely used normoglycemic agent, metformin, can decrease the risk of cancer in type 2 diabetics and inhibit cell growth in various cancers, including pancreatic, colon, prostate, ovarian, and breast cancer. While metformin is a known adenosine monophosphate-activated protein kinase (AMPK) agonist and an inhibitor of the electron transport chain complex I, its mechanism of action in cancer cells as well as its effect on cancer metabolism is not clearly established. In this review, we will give an update on the role of metformin as an antitumoral agent and detail relevant evidence on the potential use and mechanisms of action of metformin in cancer. Analyzing antitumoral, signaling, and metabolic impacts of metformin on cancer cells may provide promising new therapeutic strategies in oncology.
Collapse
|
22
|
Liu S, Washio J, Sato S, Abiko Y, Shinohara Y, Kobayashi Y, Otani H, Sasaki S, Wang X, Takahashi N. Rewired Cellular Metabolic Profiles in Response to Metformin under Different Oxygen and Nutrient Conditions. Int J Mol Sci 2022; 23:ijms23020989. [PMID: 35055173 PMCID: PMC8781974 DOI: 10.3390/ijms23020989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Metformin is a metabolic disruptor, and its efficacy and effects on metabolic profiles under different oxygen and nutrient conditions remain unclear. Therefore, the present study examined the effects of metformin on cell growth, the metabolic activities and consumption of glucose, glutamine, and pyruvate, and the intracellular ratio of nicotinamide adenine dinucleotide (NAD+) and reduced nicotinamide adenine dinucleotide (NADH) under normoxic (21% O2) and hypoxic (1% O2) conditions. The efficacy of metformin with nutrient removal from culture media was also investigated. The results obtained show that the efficacy of metformin was closely associated with cell types and environmental factors. Acute exposure to metformin had no effect on lactate production from glucose, glutamine, or pyruvate, whereas long-term exposure to metformin increased the consumption of glucose and pyruvate and the production of lactate in the culture media of HeLa and HaCaT cells as well as the metabolic activity of glucose. The NAD+/NADH ratio decreased during growth with metformin regardless of its efficacy. Furthermore, the inhibitory effects of metformin were enhanced in all cell lines following the removal of glucose or pyruvate from culture media. Collectively, the present results reveal that metformin efficacy may be regulated by oxygen conditions and nutrient availability, and indicate the potential of the metabolic switch induced by metformin as combinational therapy.
Collapse
Affiliation(s)
- Shan Liu
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
- Department of Head and Neck Oncology, Sichuan University West China School of Stomatology, Chengdu 610041, China;
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
- Correspondence: ; Tel.: +81-22-717-8295
| | - Satoko Sato
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Yuki Abiko
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Yuta Shinohara
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Yuri Kobayashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Haruki Otani
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Shiori Sasaki
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Xiaoyi Wang
- Department of Head and Neck Oncology, Sichuan University West China School of Stomatology, Chengdu 610041, China;
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| |
Collapse
|
23
|
Targeting cellular senescence in cancer by plant secondary metabolites: A systematic review. Pharmacol Res 2021; 177:105961. [PMID: 34718135 DOI: 10.1016/j.phrs.2021.105961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022]
Abstract
Senescence suppresses tumor growth, while also developing a tumorigenic state in the nearby cells that is mediated by senescence-associated secretory phenotypes (SASPs). The dual function of cellular senescence stresses the need for identifying multi-targeted agents directed towards the promotion of cell senescence in cancer cells and suppression of the secretion of pro-tumorigenic signaling mediators in neighboring cells. Natural secondary metabolites have shown favorable anticancer responses in recent decades, as some have been found to target the senescence-associated mediators and pathways. Furthermore, phenolic compounds and polyphenols, terpenes and terpenoids, alkaloids, and sulfur-containing compounds have shown to be promising anticancer agents through the regulation of paracrine and autocrine pathways. Plant secondary metabolites are potential regulators of SASPs factors that suppress tumor growth through paracrine mediators, including growth factors, cytokines, extracellular matrix components/enzymes, and proteases. On the other hand, ataxia-telangiectasia mutated, ataxia-telangiectasia and Rad3-related, extracellular signal-regulated kinase/mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin, nuclear factor-κB, Janus kinase/signal transducer and activator of transcription, and receptor tyrosine kinase-associated mediators are main targets of candidate phytochemicals in the autocrine senescence pathway. Such a regulatory role of phytochemicals on senescence-associated pathways are associated with cell cycle arrest and the attenuation of apoptotic/inflammatory/oxidative stress pathways. The current systematic review highlights the critical roles of natural secondary metabolites in the attenuation of autocrine and paracrine cellular senescence pathways, while also elucidating the chemopreventive and chemotherapeutic capabilities of these compounds. Additionally, we discuss current challenges, limitations, and future research indications.
Collapse
|
24
|
Wu Z, Zhang C, Najafi M. Targeting of the tumor immune microenvironment by metformin. J Cell Commun Signal 2021; 16:333-348. [PMID: 34611852 DOI: 10.1007/s12079-021-00648-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Stimulating antitumor immunity is an attractive idea for suppressing tumors. CD4 + and CD8 + T cells as well as natural killer cells (NK) are the primary antitumor immune cells in the tumor microenvironment (TME). In contrast to these cells, regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and tumor-associated macrophages (TAMs) release several molecules to suppress antitumor immunity and stimulate cancer cell invasion and proliferation. Adjuvant treatment with certain nontoxic agents is interesting to boost antitumor immunity. Metformin, which is known as an antidiabetes drug, can modulate both antitumor and protumor immune cells within TME. It has the ability to induce the proliferation of CD8 + T lymphocytes and NK cells. On the other hand, metformin attenuates polarization toward TAMs, CAFs, and Tregs. Metformin also may stimulate the antitumor activity of immune system cells, while it interrupts the positive cross-talk and interactions between immunosuppressive cells and cancer cells. The purpose of this review is to explain the basic mechanisms for the interactions and communications between immunosuppressive, anti-tumoral, and cancer cells within TME. Next, we discuss the modulating effects of metformin on various cells and secretions in TME.
Collapse
Affiliation(s)
- Zihong Wu
- Department of Oncology, The NO.3 People's Hospital of Hubei Province, Jianghan University, Wuhan, 430033, Hubei, China
| | - Caidie Zhang
- Emergency Department, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, Hubei, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
25
|
Magesh P, Thankachan S, Venkatesh T, Suresh PS. Breast cancer fibroblasts and cross-talk. Clin Chim Acta 2021; 521:158-169. [PMID: 34270953 DOI: 10.1016/j.cca.2021.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
The breast tumor microenvironment is one of the crucial elements supporting breast cancer tumor progression and metastasis. The fibroblasts are the chief cellular component of the stromal microenvironment and are pathologically activated and differentiated into breast cancer-associated fibroblasts (CAFs). The catabolic phenotype of breast CAFs arises due to metabolic reprogramming of these fibroblasts under pseudo-hypoxic conditions. The metabolic intermediates and ATP produced by the breast CAFs are exploited by the neighboring cancer cells for energy generation. The growth factors, cytokines, and chemokines secreted by the CAFs help fuel tumor growth, invasion, and dissemination. Moreover, the interplay between breast CAFs and cancer cells, mediated by the growth factors, ROS, metabolic intermediates, exosomes, and catabolite transporters, aids in building a favorable microenvironment that promotes cancer cell proliferation, tumor progression, and metastasis. Therefore, identifying effective means to target the reprogrammed metabolism of the breast CAFs and the cross-communication between CAFs and cancer cells serve as promising strategies to develop anti-cancer therapeutics. Henceforth, the scope of the present review ranges from discussing the underlying characteristics of breast CAFs, mechanisms of metabolic reprogramming in breast CAFs, and the nature of interactions between breast CAFs and cancer cells to studying the intricacies of reprogrammed metabolism targeted cancer therapy.
Collapse
Affiliation(s)
- Priyanila Magesh
- School of Biotechnology, National Institute of Technology, Calicut 673601, Kerala, India
| | - Sanu Thankachan
- School of Biotechnology, National Institute of Technology, Calicut 673601, Kerala, India
| | - Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod 671316, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut 673601, Kerala, India.
| |
Collapse
|
26
|
Veeramachaneni R, Yu W, Newton JM, Kemnade JO, Skinner HD, Sikora AG, Sandulache VC. Metformin generates profound alterations in systemic and tumor immunity with associated antitumor effects. J Immunother Cancer 2021; 9:jitc-2021-002773. [PMID: 34230113 PMCID: PMC8261884 DOI: 10.1136/jitc-2021-002773] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Metformin is a commonly used antidiabetic medication which has demonstrated promise as an anticancer agent alone and in combination with conventional treatment regimens. There is increasing evidence that metformin can also generate immunomodulatory effects in solid tumors and is currently being investigated as an adjunct to immune checkpoint inhibitors (ICIs). We hypothesized that metformin would generate a shift in immunity unfavorable to tumor growth and tested this hypothesis in a preclinical model of head and neck cancer. METHODS Using a syngeneic mouse model of human papillomavirus-associated head and neck cancer (mEER/MTEC), we tested the impact of metformin on systemic and local immunity and tumor growth velocity. We compared the effects of acute and chronic treatment regimens on immunocyte presence and activation using a combination of flow cytometry and targeted transcriptomic analysis. RESULTS Acute metformin exposure generated measurable shifts in systemic myeloid and T-cell populations in non-tumor-bearing mice and decreased myeloid derived suppressor cell (MDSC) levels in tumor draining lymph nodes of tumor-bearing mice. Although metformin decreased regulatory T-cell (T-reg) and MDSC levels and increased CD8+ levels in murine tumors when combined with ICIs, acute metformin exposure was insufficient to generate substantial antitumor activity. Conversely, long-term metformin treatment significantly reduced tumor growth velocity, increased the CD8+/T-reg ratio, increased tumor infiltrating lymphocyte levels and upregulated component genes of the previously validated T-cell inflamed expression profile. CONCLUSIONS Metformin generates complex systemic and local immune effects which vary as a function of treatment duration. Combinatorial strategies with ICIs must take into account both the complexity and variability of these effects in order to generate maximal antitumor activity in future clinical trials.
Collapse
Affiliation(s)
- Ratna Veeramachaneni
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wangjie Yu
- Bobby R. Alford Department of Otolaryngology- Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Jared M Newton
- Bobby R. Alford Department of Otolaryngology- Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jan O Kemnade
- Hematology/Oncology Section; Medical Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.,Hematology/Oncology Section, Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Heath D Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vlad C Sandulache
- Bobby R. Alford Department of Otolaryngology- Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA .,ENT Section; Operative Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, 77030, Texas, USA
| |
Collapse
|
27
|
He Q, Sun C, Liu J, Pan Y. MALDI-MSI analysis of cancer drugs: Significance, advances, and applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Taylor NJ, Gaynanova I, Eschrich SA, Welsh EA, Garrett TJ, Beecher C, Sharma R, Koomen JM, Smalley KSM, Messina JL, Kanetsky PA. Metabolomics of primary cutaneous melanoma and matched adjacent extratumoral microenvironment. PLoS One 2020; 15:e0240849. [PMID: 33108391 PMCID: PMC7591037 DOI: 10.1371/journal.pone.0240849] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Melanoma causes the vast majority of deaths attributable to skin cancer, largely due to its propensity for metastasis. To date, few studies have examined molecular changes between primary cutaneous melanoma and adjacent putatively normal skin. To broaden temporal inferences related to initiation of disease, we performed a metabolomics investigation of primary melanoma and matched extratumoral microenvironment (EM) tissues; and, to make inferences about progressive disease, we also compared unmatched metastatic melanoma tissues to EM tissues. METHODS Ultra-high performance liquid chromatography-mass spectrometry-based metabolic profiling was performed on frozen human tissues. RESULTS We observed 824 metabolites as differentially abundant among 33 matched tissue samples, and 1,118 metabolites as differentially abundant between metastatic melanoma (n = 46) and EM (n = 34) after false discovery rate (FDR) adjustment (p<0.01). No significant differences in metabolite abundances were noted comparing primary and metastatic melanoma tissues. CONCLUSIONS Overall, pathway-based results significantly distinguished melanoma tissues from EM in the metabolism of: ascorbate and aldarate, propanoate, tryptophan, histidine, and pyrimidine. Within pathways, the majority of individual metabolite abundances observed in comparisons of primary melanoma vs. EM and metastatic melanoma vs. EM were directionally consistent. This observed concordance suggests most identified compounds are implicated in the initiation or maintenance of melanoma.
Collapse
Affiliation(s)
- Nicholas J. Taylor
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, Texas, United States of America
| | - Irina Gaynanova
- Department of Statistics, Texas A&M University, College Station, Texas, United States of America
| | - Steven A. Eschrich
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Eric A. Welsh
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Timothy J. Garrett
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Chris Beecher
- IROA Technologies, Chapel Hill, North Carolina, United States of America
| | - Ritin Sharma
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - John M. Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Keiran S. M. Smalley
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Jane L. Messina
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Peter A. Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| |
Collapse
|
29
|
Eckel HE, Simo R, Quer M, Odell E, Paleri V, Klussmann JP, Remacle M, Sjögren E, Piazza C. European Laryngological Society position paper on laryngeal dysplasia Part II: diagnosis, treatment, and follow-up. Eur Arch Otorhinolaryngol 2020; 278:1723-1732. [PMID: 33058010 PMCID: PMC8131286 DOI: 10.1007/s00405-020-06406-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW To give an overview of the current knowledge regarding the diagnosis, treatment, and follow-up of laryngeal dysplasia (LD) and to highlight the contributions of recent literature. The diagnosis of LD largely relies on endoscopic procedures and on histopathology. Diagnostic efficiency of endoscopy may be improved using videolaryngostroboscopy (VLS) and bioendoscopic tools such as Narrow Band Imaging (NBI) or Storz Professional Image Enhancement System (SPIES). Current histological classifications are not powerful enough to clearly predict the risk to carcinoma evolution and technical issues such as sampling error, variation in epithelial thickness and inflammation hamper pathological examination. Almost all dysplasia grading systems are effective in different ways. The 2017 World Health Organization (WHO) system should prove to be an improvement as it is slightly more reproducible and easier for the non-specialist pathologist to apply. To optimize treatment decisions, surgeons should know how their pathologist grades samples and preferably audit their transformation rates locally. Whether carcinoma in situ should be used as part of such classification remains contentious and pathologists should agree with their clinicians whether they find this additional grade useful in treatment decisions. Recently, different studies have defined the possible utility of different biomarkers in risk classification. The main treatment modality for LD is represented by transoral laser microsurgery. Radiotherapy may be indicated in specific circumstances such as multiple recurrence or wide-field lesions. Medical treatment currently does not have a significant role in the management of LD. Follow-up for patients treated with LD is a fundamental part of their care and investigations may be supported by the same techniques used during diagnosis (VLS and NBI/SPIES).
Collapse
Affiliation(s)
- Hans Edmund Eckel
- Department of Oto-Rhino-Laryngology, Klagenfurt General Hospital, Klagenfurt am Wörthersee, Austria
| | - Ricard Simo
- Department of Otorhinolaryngology Head and Neck Surgery, Guy's and St Thomas' Hospital, London, UK
| | - Miquel Quer
- Department of Otorhinolaryngology and Head and Neck Surgery, Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Edward Odell
- Department of Head and Neck Pathology, King's College London Guy's Hospital, London, UK
| | - Vinidh Paleri
- Department of Otorhinolaryngology Head and Neck Surgery, Royal Marsden Hospital, London, UK
| | - Jens Peter Klussmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany
| | - Marc Remacle
- Department of Otorhinolaryngology, Head and Neck Surgery, CH Luxembourg, Luxembourg, Belgium
| | - Elisabeth Sjögren
- Department of Otorhinolaryngology, Head and Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| | - Cesare Piazza
- Department of Otorhinolaryngology-Head and Neck Surgery, ASST Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| |
Collapse
|
30
|
Suvarna C, Chaitanya NC, Ameer S, Inamdar P, Alugubelli S, Bhagyanagar A. Chemopreventive Agents in Oral Premalignancy: A Medical Management Review. J Int Soc Prev Community Dent 2020; 10:127-133. [PMID: 32670899 PMCID: PMC7339999 DOI: 10.4103/jispcd.jispcd_424_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 11/25/2022] Open
Abstract
Aims and Objective: The term chemoprevention denotes the use of specific natural or synthetic chemical agents to prevent carcinogenesis. Chemoprevention may help delay the process of carcinogen activation and prevent the conversion of preneoplastic cells. These agents play an active role in the secondary level of prevention and reduce malignancy-associated morbidity and mortality. A new term, “prophylactic antioxidant therapy,” was coined and proposed. This review has assessed all major chemopreventive agents used for oral premalignancy and malignant conditions, which will reduce the economic burden on the patients. Materials and Methods: A systematic literature search was performed using PubMed, Medline, Embase, Cochrane Library, and EBSCO search, with language restriction to English. The search incorporated published literature from 1990 to 2018 using the medical subject heading terms. Literature search was performed using the following keywords: Chemoprevention, Premalignancy, and Oral Malignancy. Results: Of 99 publications related to the search strategy, 45 full articles relevant to the chemopreventive agents in premalignacy and oral malignancy were acquired for further inspection. Of the 45 articles, 30 met the inclusion criteria. Data were collected, and a brief summary of the studies regarding different chemopreventive agents that were most commonly used in oral premalignancy and malignancies was written. Conclusion: This review suggests administration of major chemopreventive agents for superior prognosis in individuals with an elevated risk of premalignancy and malignancy.
Collapse
Affiliation(s)
- Chintada Suvarna
- Department of Oral Medicine and Radiology, Panineeya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana, India
| | - Nallan Csk Chaitanya
- Department of Oral Medicine and Radiology, Panineeya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana, India
| | - Shaik Ameer
- Department of Oral Medicine and Radiology, Panineeya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana, India
| | - Pavitra Inamdar
- Clinical preceptor, Rutgers School of Dental Medicine, Rutgers University, Newark, New Jersey, USA
| | - Swetha Alugubelli
- Department of Oral Medicine and Radiology, Panineeya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana, India
| | - Alakananda Bhagyanagar
- Department of Oral Medicine and Radiology, Panineeya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana, India
| |
Collapse
|
31
|
Raudenska M, Gumulec J, Balvan J, Masarik M. Caveolin-1 in oncogenic metabolic symbiosis. Int J Cancer 2020; 147:1793-1807. [PMID: 32196654 DOI: 10.1002/ijc.32987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
Abstract
Metabolic phenotypes of cancer cells are heterogeneous and flexible as a tumor mass is a hurriedly evolving system capable of constant adaptation to oxygen and nutrient availability. The exact type of cancer metabolism arises from the combined effects of factors intrinsic to the cancer cells and factors proposed by the tumor microenvironment. As a result, a condition termed oncogenic metabolic symbiosis in which components of the tumor microenvironment (TME) promote tumor growth often occurs. Understanding how oncogenic metabolic symbiosis emerges and evolves is crucial for perceiving tumorigenesis. The process by which tumor cells reprogram their TME involves many mechanisms, including changes in intercellular communication, alterations in metabolic phenotypes of TME cells, and rearrangement of the extracellular matrix. It is possible that one molecule with a pleiotropic effect such as Caveolin-1 may affect many of these pathways. Here, we discuss the significance of Caveolin-1 in establishing metabolic symbiosis in TME.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| |
Collapse
|
32
|
Chen K, Li Y, Guo Z, Zeng Y, Zhang W, Wang H. Metformin: current clinical applications in nondiabetic patients with cancer. Aging (Albany NY) 2020; 12:3993-4009. [PMID: 32074084 PMCID: PMC7066888 DOI: 10.18632/aging.102787] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/19/2020] [Indexed: 02/06/2023]
Abstract
Metformin is one of the most commonly used first-line oral medications for type 2 diabetes mellitus. Multiple observational studies, reviewed in numerous systematic reviews, have shown that metformin treatment may not only reduce the risk of cancer but may also improve the efficacy of cancer treatment in diabetic patients. Recent studies have been conducted to determine whether a similar protective effect can be demonstrated in nondiabetic cancer patients. However, the results are controversial. The potential optimal dose, schedule, and duration of metformin treatment and the heterogeneity of histological subtypes and genotypes among cancer patients might contribute to the different clinical benefits. In addition, as the immune property of metformin was investigated, further studies of the immunomodulatory effect of metformin on cancer cells should also be taken into account to optimize its clinical use. In this review, we present and discuss the latest findings regarding the anticancer potential of metformin in nondiabetic patients with cancer.
Collapse
Affiliation(s)
- Kailin Chen
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, P.R. China
| | - Yajun Li
- Department of Lymphoma and Hematology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, P.R. China
| | - Zhen Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P.R. China
| | - Yong Zeng
- Translational Medicine Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, P.R. China.,Engineering Technology Research Center for Diagnosis-Treatment and Application of Tumor Liquid Biopsy, Changsha 410013, Hunan, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P.R. China
| | - Hui Wang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, P.R. China
| |
Collapse
|
33
|
Gulati S, Desai J, Palackdharry SM, Morris JC, Zhu Z, Jandarov R, Riaz MK, Takiar V, Mierzwa M, Gutkind JS, Molinolo A, Desai PB, Sadraei NH, Wise-Draper TM. Phase 1 dose-finding study of metformin in combination with concurrent cisplatin and radiotherapy in patients with locally advanced head and neck squamous cell cancer. Cancer 2020; 126:354-362. [PMID: 31626727 PMCID: PMC10402880 DOI: 10.1002/cncr.32539] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The 5-year overall survival (OS) rate remains at 50% for patients with locally advanced head and neck squamous cell carcinoma (LAHNSCC), thereby underscoring the need for improved treatments. An antidiabetic agent, metformin, was found in retrospective studies to improve survival in patients with HNSCC. Therefore, the authors conducted a phase 1 dose escalation study combining metformin with chemoradiotherapy in patients with LAHNSCC. METHODS Nondiabetic patients with LAHNSCC were enrolled in the current study to receive escalating doses of metformin and CRT based on the modified toxicity probability interval design. Metformin cohort doses included 2000 mg, 2550 mg, and 3000 mg daily in divided doses in addition to cisplatin (at a dose of 100 mg/m2 on days 1, 22, and 43) and standard radiotherapy (70 grays). Adverse events were categorized as per the National Cancer Institute Common Terminology Criteria for Adverse Events (version 4.03). RESULTS Twenty patients were enrolled, 2 of whom withdrew consent. The median age of the patients was 56 years and the majority were male (83%), were white (88%), had p16-positive disease (72%), and were tobacco users (61%). The median length of metformin exposure was 28.5 days. The most common grade ≥3 toxicities were nausea (11%), vomiting (11%), mucositis (6%), acute kidney injury (17%), anemia (6%), and leukopenia (11%). Dose-limiting toxicities included diarrhea and acute kidney injury. After a median follow-up of 19 months, the 2-year overall survival and progression-free survival rates were 90% and 84%, respectively. No hypoglycemia events or lactic acidosis were observed. Cisplatin administration did not appear to affect metformin pharmacokinetics. The maximum tolerated dose for metformin could not be determined given the limited number of patients who tolerated metformin during chemoradiotherapy. CONCLUSIONS To the authors' knowledge, the current study is the first phase 1 trial combining metformin with chemoradiotherapy. Rates of overall survival and progression-free survival were encouraging in this limited patient population, and warrant further investigation in a phase 2 trial.
Collapse
Affiliation(s)
- Shuchi Gulati
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Janki Desai
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Sarah M Palackdharry
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - John C Morris
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Zheng Zhu
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Roman Jandarov
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Muhammad K Riaz
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Vinita Takiar
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michelle Mierzwa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - J Silvio Gutkind
- Department of Pharmacology, University of California at San Diego Moores Cancer Center, La Jolla, California
| | - Alfredo Molinolo
- Department of Pathology, University of California at San Diego Moores Cancer Center, La Jolla, California
| | - Pankaj B Desai
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Nooshin Hashemi Sadraei
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Trisha M Wise-Draper
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
34
|
Sciannimanico S, Grimaldi F, Vescini F, De Pergola G, Iacoviello M, Licchelli B, Guastamacchia E, Giagulli VA, Triggiani V. Metformin: Up to Date. Endocr Metab Immune Disord Drug Targets 2020; 20:172-181. [PMID: 31670618 DOI: 10.2174/1871530319666190507125847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Metformin is an oral hypoglycemic agent extensively used as first-line therapy for type 2 diabetes. It improves hyperglycemia by suppressing hepatic glucose production and increasing glucose uptake in muscles. Metformin improves insulin sensitivity and shows a beneficial effect on weight control. Besides its metabolic positive effects, Metformin has direct effects on inflammation and can have immunomodulatory and antineoplastic properties. AIM The aim of this narrative review was to summarize the up-to-date evidence from the current literature about the metabolic and non-metabolic effects of Metformin. METHODS We reviewed the current literature dealing with different effects and properties of Metformin and current recommendations about the use of this drug. We identified keywords and MeSH terms in Pubmed and the terms Metformin and type 2 diabetes, type 1 diabetes, pregnancy, heart failure, PCOS, etc, were searched, selecting only significant original articles and review in English, in particular of the last five years. CONCLUSION Even if many new effective hypoglycemic agents have been launched in the market in the last few years, Metformin would always keep a place in the treatment of type 2 diabetes and its comorbidities because of its multiple positive effects and low cost.
Collapse
Affiliation(s)
| | - Franco Grimaldi
- Endocrinology and Metabolism Unit, University Hospital of Udine, Udine, Italy
| | - Fabio Vescini
- Endocrinology and Metabolism Unit, University Hospital of Udine, Udine, Italy
| | - Giovanni De Pergola
- Clinical Nutrition Unit, Medical Oncology, Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", School of Medicine, Bari, Italy
| | - Massimo Iacoviello
- University Cardiology Unit, Cardiothoracic Department, Policlinic University Hospital, Bari, Italy
| | - Brunella Licchelli
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Bari, Italy
| | - Vito A Giagulli
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Bari, Italy
| |
Collapse
|
35
|
Amin D, Richa T, Mollaee M, Zhan T, Tassone P, Johnson J, Luginbuhl A, Cognetti D, Martinez-Outschoorn U, Stapp R, Solomides C, Rodeck U, Curry J. Metformin Effects on FOXP3 + and CD8 + T Cell Infiltrates of Head and Neck Squamous Cell Carcinoma. Laryngoscope 2019; 130:E490-E498. [PMID: 31593308 DOI: 10.1002/lary.28336] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/26/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Alterations of cellular metabolism have been implicated in immune dysfunction in the tumor microenvironment (TME) of head and neck squamous cell carcinoma (HNSCC). Metformin has recently emerged as a candidate of interest for combination with immunotherapy in HNSCC. This study investigated the effect of metformin on immune cell infiltrates of HNSCC. METHODS Retrospective analysis of T cell infiltrates in primary tumor specimens from patients enrolled in a clinical window of opportunity trial of presurgical metformin. Metformin was titrated to a standard diabetic dose (2000 mg/day) for a minimum of 9 days (mean 13.6 days) prior to surgical resection. Pre and posttreatment surgical specimens from 36 patients (16 HPV+ , 20 HPV- ) were comparatively analyzed. FOXP3+ and CD8+ immune cell infiltrates in the tumor and peritumoral stroma of pre and posttreatment HNSCC specimens were quantified by digital image analysis using Visiopharm software. RESULTS Metformin treatment was associated with a 41.4% decrease in FOXP3+ T cells in intratumor regions of interest (P = .004) and a 66.5% increase in stromal CD8+ T cells at the leading edge of the tumor (P = .021) when compared to pretreatment biopsies. This was reflected in increased CD8+ /FOXP3+ cell ratios within the tumor (P < .001) and stromal compartments (P < .001). The effects of metformin occurred independently of HPV status. CONCLUSION Metformin treatment may favorably alter the immune TME in HNSCC independent of HPV status. LEVEL OF EVIDENCE 1b. This study is most accurately described as a non-randomized controlled trial and therefore may reflect a level of evidence below 1b but above 2a from the provided "levels of evidence" chart. Laryngoscope, 130:E490-E498, 2020.
Collapse
Affiliation(s)
- Dev Amin
- Department of Otolaryngology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Tony Richa
- Department of Otolaryngology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Mehri Mollaee
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Tingting Zhan
- Department of Biostatistics, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Patrick Tassone
- Department of Otolaryngology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Jennifer Johnson
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Adam Luginbuhl
- Department of Otolaryngology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - David Cognetti
- Department of Otolaryngology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | | | - Robert Stapp
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Charalambos Solomides
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Ulrich Rodeck
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Joseph Curry
- Department of Otolaryngology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
36
|
Farlow JL, Birkeland AC, Swiecicki PL, Brenner JC, Spector ME. Window of opportunity trials in head and neck cancer. ACTA ACUST UNITED AC 2019; 5. [PMID: 31321307 PMCID: PMC6638557 DOI: 10.20517/2394-4722.2018.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) has a large global burden of disease and poor survival outcomes. Recent targeted therapies and immunotherapies have been explored in HNSCC, but there has been limited translation to clinical practice outside of recurrent or metastatic cases. Window of opportunity settings, where novel agents are administered between cancer diagnosis and planned definitive therapy, have begun to be employed in HNSCC. Tumor tissue biopsies are obtained at diagnosis and after the investigation treatment, along with other biospecimens and radiographic exams. Thus, this study design can characterize the safety profiles, pharmacodynamics, and initial tumor responses to novel therapies in a treatment-naïve subject. Early window studies have also identified potential biomarkers to predict sensitivity or resistance to treatments. However, these early investigations have revealed multiple challenges associated with this trial design. In this review, we discuss recent window of opportunity trials in HNSCC and how they inform design considerations for future studies.
Collapse
Affiliation(s)
- Janice L Farlow
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew C Birkeland
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94303, USA
| | - Paul L Swiecicki
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, Division of Hematology and Oncology, Ann Arbor Veterans Medical Center, Ann Arbor, MI 48105, USA
| | - J Chad Brenner
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew E Spector
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Duvvuri U, George J, Kim S, Alvarado D, Neumeister VM, Chenna A, Gedrich R, Hawthorne T, LaVallee T, Grandis JR, Bauman JE. Molecular and Clinical Activity of CDX-3379, an Anti-ErbB3 Monoclonal Antibody, in Head and Neck Squamous Cell Carcinoma Patients. Clin Cancer Res 2019; 25:5752-5758. [PMID: 31308059 DOI: 10.1158/1078-0432.ccr-18-3453] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/12/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE ErbB3 and its ligand neuregulin-1 (NRG1) are widely expressed in head and neck squamous cell carcinoma (HNSCC) and associated with tumor progression. A "window-of-opportunity" study (NCT02473731) was conducted to evaluate the pharmacodynamic effects of CDX-3379, an anti-ErbB3 mAb, in patients with HNSCC. PATIENTS AND METHODS Twelve patients with newly diagnosed, operable HNSCC received two infusions of CDX-3379 (1,000 mg) at a 2-week interval prior to tumor resection. The primary study objective was to achieve ≥50% reduction in tumor ErbB3 signaling (phosphorylation of ErbB3; pErbB3) in ≥30% of patients. Other potential tumor biomarkers, pharmacokinetics, safety, and tumor measurements were also assessed. RESULTS pErbB3 was detectable in all tumors prior to treatment and decreased for 10 of 12 (83%) patients following CDX-3379 dosing, with ≥50% reduction in 7 of 12 (58%; P = 0.04; 95% confidence interval, 27.7%-84.8%). Target trough CDX-3379 serum levels were achieved in all patients. CDX-3379 treatment-related toxicity was grade 1-2 and included diarrhea, fatigue, and acneiform dermatitis. Five of 12 (42%) patients had shrinkage in tumor burden, including a marked clinical response in a patient with human papillomavirus-negative oral cavity HNSCC. All patients with tumor shrinkage had tumors that expressed both NRG1 and ErbB3 and demonstrated reduced pErbB3 with CDX-3379 treatment. CONCLUSIONS This study demonstrates that CDX-3379 can inhibit tumor ErbB3 phosphorylation in HNSCC. CDX-3379 was well tolerated and associated with measurable tumor regression. A phase II study (NCT03254927) has been initiated to evaluate CDX-3379 in combination with cetuximab for patients with advanced HNSCC.
Collapse
Affiliation(s)
- Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Jonathan George
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Seungwon Kim
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | | - Ahmed Chenna
- Monogram Biosciences, Laboratory Corporation of America Holdings, South San Francisco, California
| | | | | | | | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Julie E Bauman
- Department of Medicine, Division of Hematology/Oncology, University of Arizona Cancer Center, Tucson, Arizona
| |
Collapse
|
38
|
Domingo-Vidal M, Whitaker-Menezes D, Martos-Rus C, Tassone P, Snyder CM, Tuluc M, Philp N, Curry J, Martinez-Outschoorn U. Cigarette Smoke Induces Metabolic Reprogramming of the Tumor Stroma in Head and Neck Squamous Cell Carcinoma. Mol Cancer Res 2019; 17:1893-1909. [PMID: 31239287 DOI: 10.1158/1541-7786.mcr-18-1191] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/17/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is comprised of metabolically linked distinct compartments. Cancer-associated fibroblasts (CAF) and nonproliferative carcinoma cells display a glycolytic metabolism, while proliferative carcinoma cells rely on mitochondrial oxidative metabolism fueled by the catabolites provided by the adjacent CAFs. Metabolic coupling between these reprogrammed compartments contributes to HNSCC aggressiveness. In this study, we examined the effects of cigarette smoke-exposed CAFs on metabolic coupling and tumor aggressiveness of HNSCC. Cigarette smoke (CS) extract was generated by dissolving cigarette smoke in growth media. Fibroblasts were cultured in CS or control media. HNSCC cells were cocultured in vitro and coinjected in vivo with CS or control fibroblasts. We found that CS induced oxidative stress, glycolytic flux and MCT4 expression, and senescence in fibroblasts. MCT4 upregulation was critical for fibroblast viability under CS conditions. The effects of CS on fibroblasts were abrogated by antioxidant treatment. Coculture of carcinoma cells with CS fibroblasts induced metabolic coupling with upregulation of the marker of glycolysis MCT4 in fibroblasts and markers of mitochondrial metabolism MCT1 and TOMM20 in carcinoma cells. CS fibroblasts increased CCL2 expression and macrophage migration. Coculture with CS fibroblasts also increased two features of carcinoma cell aggressiveness: resistance to cell death and enhanced cell migration. Coinjection of carcinoma cells with CS fibroblasts generated larger tumors with reduced apoptosis than control coinjections, and upregulation of MCT4 by CS exposure was a driver of these effects. We demonstrate that a tumor microenvironment exposed to CS is sufficient to modulate metabolism and cancer aggressiveness in HNSCC. IMPLICATIONS: CS shifts cancer stroma toward glycolysis and induces head and neck cancer aggressiveness with a mitochondrial profile linked by catabolite transporters and oxidative stress. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/17/9/1893/F1.large.jpg.
Collapse
Affiliation(s)
- Marina Domingo-Vidal
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Diana Whitaker-Menezes
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Cristina Martos-Rus
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Patrick Tassone
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Madalina Tuluc
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nancy Philp
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Joseph Curry
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Ubaldo Martinez-Outschoorn
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
39
|
Current Prospects of Molecular Therapeutics in Head and Neck Squamous Cell Carcinoma. Pharmaceut Med 2019; 33:269-289. [DOI: 10.1007/s40290-019-00288-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Targeting cellular metabolism to reduce head and neck cancer growth. Sci Rep 2019; 9:4995. [PMID: 30899051 PMCID: PMC6428890 DOI: 10.1038/s41598-019-41523-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) presents a major public health concern because of delayed diagnosis and poor prognosis. Malignant cells often reprogram their metabolism in order to promote their survival and proliferation. Aberrant glutaminase 1 (GLS1) expression enables malignant cells to undergo increased glutaminolysis and utilization of glutamine as an alternative nutrient. In this study, we found a significantly elevated GLS1 expression in HNSCC, and patients with high expression levels of GLS1 experienced shorter disease-free periods after therapy. We hypothesized that the GLS1 selective inhibitor, bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES), which curtails cells' glutamine consumption, may inhibit HNSCC cell growth. Our results support the idea that BPTES inhibits HNSCC growth by inducing apoptosis and cell cycle arrest. Considering that metformin can reduce glucose consumption, we speculated that metformin would enhance the anti-neoplasia effect of BPTES by suppressing malignant cells' glucose utilization. The combination of both compounds exhibited an additive inhibitory effect on cancer cell survival and proliferation. All of our data suggest that GLS1 is a promising therapeutic target for HNSCC treatment. Combining BPTES with metformin might achieve improved anti-cancer effects in HNSSC, which sheds light on using novel therapeutic strategies by dually targeting cellular metabolism.
Collapse
|
41
|
Kobayashi Y, Banno K, Kunitomi H, Takahashi T, Takeda T, Nakamura K, Tsuji K, Tominaga E, Aoki D. Warburg effect in Gynecologic cancers. J Obstet Gynaecol Res 2018; 45:542-548. [PMID: 30511455 DOI: 10.1111/jog.13867] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 12/27/2022]
Abstract
Mammalian cells produce energy by oxidative phosphorylation under aerobic conditions. However, in the 1920s, Otto Warburg reported the so-called "Warburg effect" in which cancer cells produce ATP that is biased toward glycolysis rather than mitochondrial oxidative phosphorylation not only in anaerobic environment but also in aerobic environment. Glucose is converted into lactate without going into mitochondria after being metabolized in glycolysis. Compared with oxidative phosphorylation, the glycolysis has a faster ATP production rate but it is very inefficient, resulting in cancer cells consuming a large amount of glucose. Increased glucose metabolism has become a biomarker for cancer cells and has led to the development of positron emission tomography with fluorodeoxyglucose. Till date, the Warburg effect has been an inefficient system for cancer cells with regard to efficient energy production, but since the consumption of oxygen can be suppressed as the tumor grows in mass, it is thought that the Warburg effect is advantageous in this situation wherein the tumor can increase despite the lack of vessels. In addition, an increased lactate by the glycolysis causes acidosis in the microenvironment of tissues, which is thought to damage the surrounding normal tissues and favor the invasion and metastasis of cancer. Thus, Warburg effect is one of the key mechanisms for cancer development and will be the next promising target. In this review, we introduce key players that can be targeted in the Warburg effect and outline the prospects of treatment, targeting the Warburg effect in gynecological cancer.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Haruko Kunitomi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Takayuki Takahashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Takeda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kanako Nakamura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kosuke Tsuji
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Eiichiro Tominaga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Schmitz S, Caballero C, Locati LD. Perspectives on window of opportunity trials in head and neck cancer: lessons from the EORTC 90111-24111-NOCI-HNCG study. Eur J Cancer 2018; 104:219-223. [DOI: 10.1016/j.ejca.2018.07.315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/18/2018] [Accepted: 07/22/2018] [Indexed: 01/22/2023]
|
43
|
Curry JM, Johnson J, Mollaee M, Tassone P, Amin D, Knops A, Whitaker-Menezes D, Mahoney MG, South A, Rodeck U, Zhan T, Harshyne L, Philp N, Luginbuhl A, Cognetti D, Tuluc M, Martinez-Outschoorn U. Metformin Clinical Trial in HPV+ and HPV- Head and Neck Squamous Cell Carcinoma: Impact on Cancer Cell Apoptosis and Immune Infiltrate. Front Oncol 2018; 8:436. [PMID: 30364350 PMCID: PMC6193523 DOI: 10.3389/fonc.2018.00436] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/19/2018] [Indexed: 12/17/2022] Open
Abstract
Background: Metformin, an oral anti-hyperglycemic drug which inhibits mitochondrial complex I and oxidative phosphorylation has been reported to correlate with improved outcomes in head and neck squamous cell carcinoma (HNSCC) and other cancers. This effect is postulated to occur through disruption of tumor-driven metabolic and immune dysregulation in the tumor microenvironment (TME). We report new findings on the impact of metformin on the tumor and immune elements of the TME from a clinical trial of metformin in HNSCC. Methods: Human papilloma virus—(HPV–) tobacco+ mucosal HNSCC samples (n = 12) were compared to HPV+ oropharyngeal squamous cell carcinoma (OPSCC) samples (n = 17) from patients enrolled in a clinical trial. Apoptosis in tumor samples pre- and post-treatment with metformin was compared by deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Metastatic lymph nodes with extra-capsular extension (ECE) in metformin-treated patients (n = 7) were compared to archival lymph node samples with ECE (n = 11) for differences in immune markers quantified by digital image analysis using co-localization and nuclear algorithms (PD-L1, FoxP3, CD163, CD8). Results: HPV–, tobacco + HNSCC (mean Δ 13.7/high power field) specimens had a significantly higher increase in apoptosis compared to HPV+ OPSCC specimens (mean Δ 5.7/high power field) (p < 0.001). Analysis of the stroma at the invasive front in ECE nodal specimens from both HPV—HNSCC and HPV+ OPSCC metformin treated specimens showed increased CD8+ effector T cell infiltrate (mean 22.8%) compared to archival specimens (mean 10.7%) (p = 0.006). Similarly, metformin treated specimens showed an increased FoxP3+ regulatory T cell infiltrate (mean 9%) compared to non-treated archival specimens (mean 5%) (p = 0.019). Conclusions: This study presents novel data demonstrating that metformin differentially impacts HNSCC subtypes with greater apoptosis in HPV—HNSCC compared to HPV+ OPSCC. Moreover, we present the first in vivo human evidence that metformin may also trigger increased CD8+ Teff and FoxP3+ Tregs in the TME, suggesting an immunomodulatory effect in HNSCC. Further research is necessary to assess the effect of metformin on the TME of HNSCC.
Collapse
Affiliation(s)
- Joseph M Curry
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Jennifer Johnson
- Department of Medical Oncology, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Mehri Mollaee
- Department of Pathology, Anatomy and Cell biology, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Patrick Tassone
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Dev Amin
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Alexander Knops
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Diana Whitaker-Menezes
- Department of Medical Oncology, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - My G Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Andrew South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Ulrich Rodeck
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Tingting Zhan
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Larry Harshyne
- Department of Neurological Surgery, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Nancy Philp
- Department of Pathology, Anatomy and Cell biology, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Adam Luginbuhl
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - David Cognetti
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Madalina Tuluc
- Department of Pathology, Anatomy and Cell biology, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Ubaldo Martinez-Outschoorn
- Department of Medical Oncology, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
44
|
Bartrons R, Simon-Molas H, Rodríguez-García A, Castaño E, Navarro-Sabaté À, Manzano A, Martinez-Outschoorn UE. Fructose 2,6-Bisphosphate in Cancer Cell Metabolism. Front Oncol 2018; 8:331. [PMID: 30234009 PMCID: PMC6131595 DOI: 10.3389/fonc.2018.00331] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/01/2018] [Indexed: 01/28/2023] Open
Abstract
For a long time, pioneers in the field of cancer cell metabolism, such as Otto Warburg, have focused on the idea that tumor cells maintain high glycolytic rates even with adequate oxygen supply, in what is known as aerobic glycolysis or the Warburg effect. Recent studies have reported a more complex situation, where the tumor ecosystem plays a more critical role in cancer progression. Cancer cells display extraordinary plasticity in adapting to changes in their tumor microenvironment, developing strategies to survive and proliferate. The proliferation of cancer cells needs a high rate of energy and metabolic substrates for biosynthesis of biomolecules. These requirements are met by the metabolic reprogramming of cancer cells and others present in the tumor microenvironment, which is essential for tumor survival and spread. Metabolic reprogramming involves a complex interplay between oncogenes, tumor suppressors, growth factors and local factors in the tumor microenvironment. These factors can induce overexpression and increased activity of glycolytic isoenzymes and proteins in stromal and cancer cells which are different from those expressed in normal cells. The fructose-6-phosphate/fructose-1,6-bisphosphate cycle, catalyzed by 6-phosphofructo-1-kinase/fructose 1,6-bisphosphatase (PFK1/FBPase1) isoenzymes, plays a key role in controlling glycolytic rates. PFK1/FBpase1 activities are allosterically regulated by fructose-2,6-bisphosphate, the product of the enzymatic activity of the dual kinase/phosphatase family of enzymes: 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFKFB1-4) and TP53-induced glycolysis and apoptosis regulator (TIGAR), which show increased expression in a significant number of tumor types. In this review, the function of these isoenzymes in the regulation of metabolism, as well as the regulatory factors modulating their expression and activity in the tumor ecosystem are discussed. Targeting these isoenzymes, either directly or by inhibiting their activating factors, could be a promising approach for treating cancers.
Collapse
Affiliation(s)
- Ramon Bartrons
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Helga Simon-Molas
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Ana Rodríguez-García
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Esther Castaño
- Centres Científics i Tecnològics, Universitat de Barcelona, Catalunya, Spain
| | - Àurea Navarro-Sabaté
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Anna Manzano
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | | |
Collapse
|
45
|
Lee TY, Martinez-Outschoorn UE, Schilder RJ, Kim CH, Richard SD, Rosenblum NG, Johnson JM. Metformin as a Therapeutic Target in Endometrial Cancers. Front Oncol 2018; 8:341. [PMID: 30211120 PMCID: PMC6121131 DOI: 10.3389/fonc.2018.00341] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy in developed countries. Its increasing incidence is thought to be related in part to the rise of metabolic syndrome, which has been shown to be a risk factor for the development of hyperestrogenic and hyperinsulinemic states. This has consequently lead to an increase in other hormone-responsive cancers as well e.g., breast and ovarian cancer. The correlation between obesity, hyperglycemia, and endometrial cancer has highlighted the important role of metabolism in cancer establishment and persistence. Tumor-mediated reprogramming of the microenvironment and macroenvironment can range from induction of cytokines and growth factors to stimulation of surrounding stromal cells to produce energy-rich catabolites, fueling the growth, and survival of cancer cells. Such mechanisms raise the prospect of the metabolic microenvironment itself as a viable target for treatment of malignancies. Metformin is a biguanide drug that is a first-line treatment for type 2 diabetes that has beneficial effects on various markers of the metabolic syndrome. Many studies suggest that metformin shows potential as an adjuvant treatment for uterine and other cancers. Here, we review the evidence for metformin as a treatment for cancers of the endometrium. We discuss the available clinical data and the molecular mechanisms by which it may exert its effects, with a focus on how it may alter the tumor microenvironment. The pleiotropic effects of metformin on cellular energy production and usage as well as intercellular and hormone-based interactions make it a promising candidate for reprogramming of the cancer ecosystem. This, along with other treatments aimed at targeting tumor metabolic pathways, may lead to novel treatment strategies for endometrial cancer.
Collapse
Affiliation(s)
- Teresa Y Lee
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Russell J Schilder
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Christine H Kim
- Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott D Richard
- Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Norman G Rosenblum
- Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jennifer M Johnson
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
46
|
Verma A, Rich LJ, Vincent-Chong VK, Seshadri M. Visualizing the effects of metformin on tumor growth, vascularity, and metabolism in head and neck cancer. J Oral Pathol Med 2018; 47:484-491. [PMID: 29573032 DOI: 10.1111/jop.12705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND The antidiabetic drug metformin (Met) is believed to inhibit tumor proliferation by altering the metabolism of cancer cells. In this study, we examined the effects of Met on tumor oxygenation, metabolism, and growth in head and neck squamous cell carcinoma (HNSCC) using non-invasive multimodal imaging. MATERIALS AND METHODS Severe combined immunodeficient (SCID) mice bearing orthotopic FaDu HNSCC xenografts were treated with Met (200 mg/kg, ip) once daily for 5 days. Tumor oxygen saturation (%sO2 ) and hemoglobin concentration (HbT) were measured using photoacoustic imaging (PAI). Fluorescence imaging was employed to measure intratumoral uptake of 2-deoxyglucosone (2-DG) following Met treatment while magnetic resonance imaging (MRI) was utilized to measure tumor volume. Correlative immunostaining of tumor sections for markers of proliferation (Ki67) and vascularity (CD31) was also performed. RESULTS At 5 days post-Met treatment, PAI revealed a significant increase (P < .05) in %sO2 and HbT levels in treated tumors compared to untreated controls. Fluorescence imaging at this time point revealed a 46% decrease in mean 2-DG uptake compared to controls. No changes in hemodynamic parameters were observed in mouse salivary gland tissue. A significant decrease in Ki-67 staining (P < .001) and MR-based tumor volume was also observed in Met-treated tumors compared to controls with no change in CD31 + vessel count following Met therapy. CONCLUSION Our results provide, for the first time, direct in vivo evidence of Met-induced changes in tumor microenvironmental parameters in HNSCC xenografts. Our findings highlight the utility of multimodal functional imaging for non-invasive mapping of the effects of Met in HNSCC.
Collapse
Affiliation(s)
- Aparajita Verma
- Department of Oral Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Laurie J Rich
- Department of Oral Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Mukund Seshadri
- Department of Oral Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Head and Neck Surgery, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
47
|
Tassone P, Domingo-Vidal M, Whitaker-Menezes D, Lin Z, Roche M, Tuluc M, Martinez-Outschoorn U, Curry J. Metformin Effects on Metabolic Coupling and Tumor Growth in Oral Cavity Squamous Cell Carcinoma Coinjection Xenografts. Otolaryngol Head Neck Surg 2017; 158:867-877. [PMID: 29232177 DOI: 10.1177/0194599817746934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Objective Many aggressive head and neck cancers contain 2 metabolically coupled tumor compartments: a glycolytic stromal compartment with low caveolin-1 (CAV1) and high monocarboxylate transporter 4 (MCT4) expression and a highly proliferative carcinoma cell compartment with high MCT1. Metabolites are shuttled by MCTs from stroma to carcinoma to fuel tumor growth. We studied the effect of carcinoma-fibroblast coinjection and metformin administration on a mouse model of head and neck squamous cell carcinoma. Study Design Xenograft head and neck squamous cell carcinoma model. Setting Basic science laboratory. Subjects and Methods Oral cavity carcinoma cells were injected alone or as coinjection with human fibroblasts into nude mice to generate xenograft tumors. Tumors were excised and stained with immunohistochemistry for markers of metabolic coupling and apoptosis, including MCT1, MCT4, CAV1, and TUNEL assay (terminal deoxynucleotidyl transferase nick end labeling). Strength of staining was assessed by a pathologist or computer-assisted pathology software. Metformin was administered orally to mice to test effects on immunohistochemical markers in xenografts. Results Coinjection tumors were 2.8-fold larger ( P = .048) and had 1.4-fold stronger MCT1 staining ( P = .016) than tumors from homotypic carcinoma cell injection. Metformin decreased the size of coinjection xenograft tumors by 45% ( P = .025). Metformin reduced MCT1 staining by 28% ( P = .05) and increased carcinoma cell apoptosis 1.8-fold as marked by TUNEL assay ( P = .005). Metformin did not have a significant effect on tumor size when CAV1 knockdown fibroblasts were used in coinjection. Conclusion Coinjection with fibroblasts increases tumor growth and metabolic coupling in oral cavity cancer xenografts. Fibroblast CAV1 expression is required for metformin to disrupt metabolic coupling and decrease xenograft size.
Collapse
Affiliation(s)
- Patrick Tassone
- 1 Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Marina Domingo-Vidal
- 2 Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Diana Whitaker-Menezes
- 2 Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Zhao Lin
- 2 Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Megan Roche
- 2 Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Madalina Tuluc
- 3 Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Joseph Curry
- 1 Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
48
|
Wilde L, Roche M, Domingo-Vidal M, Tanson K, Philp N, Curry J, Martinez-Outschoorn U. Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development. Semin Oncol 2017; 44:198-203. [PMID: 29248131 DOI: 10.1053/j.seminoncol.2017.10.004] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/17/2023]
Abstract
Glucose is a key metabolite used by cancer cells to generate ATP, maintain redox state and create biomass. Glucose can be catabolized to lactate in the cytoplasm, which is termed glycolysis, or alternatively can be catabolized to carbon dioxide and water in the mitochondria via oxidative phosphorylation. Metabolic heterogeneity exists in a subset of human tumors, with some cells maintaining a glycolytic phenotype while others predominantly utilize oxidative phosphorylation. Cells within tumors interact metabolically with transfer of catabolites from supporting stromal cells to adjacent cancer cells. The Reverse Warburg Effect describes when glycolysis in the cancer-associated stroma metabolically supports adjacent cancer cells. This catabolite transfer, which induces stromal-cancer metabolic coupling, allows cancer cells to generate ATP, increase proliferation, and reduce cell death. Catabolites implicated in metabolic coupling include the monocarboxylates lactate, pyruvate, and ketone bodies. Monocarboxylate transporters (MCT) are critically necessary for release and uptake of these catabolites. MCT4 is involved in the release of monocarboxylates from cells, is regulated by catabolic transcription factors such as hypoxia inducible factor 1 alpha (HIF1A) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and is highly expressed in cancer-associated fibroblasts. Conversely, MCT1 is predominantly involved in the uptake of these catabolites and is highly expressed in a subgroup of cancer cells. MYC and TIGAR, which are genes involved in cellular proliferation and anabolism, are inducers of MCT1. Profiling human tumors on the basis of an altered redox balance and intra-tumoral metabolic interactions may have important biomarker and therapeutic implications. Alterations in the redox state and mitochondrial function of cells can induce metabolic coupling. Hence, there is interest in redox and metabolic modulators as anticancer agents. Also, markers of metabolic coupling have been associated with poor outcomes in numerous human malignancies and may be useful prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Lindsay Wilde
- Department of Medical Oncology Thomas Jefferson University, Philadelphia, PA
| | - Megan Roche
- Department of Medical Oncology Thomas Jefferson University, Philadelphia, PA
| | | | | | - Nancy Philp
- Department of Cell Biology, Anatomy and Pathology, Thomas Jefferson University, Philadelphia, PA
| | - Joseph Curry
- Department of Otolaryngology, Thomas Jefferson University, Philadelphia, PA
| | | |
Collapse
|
49
|
Avilés-Jurado FX, Flores JC, Gumà J, Ceperuelo-Mallafré V, Casanova-Marqués R, Gómez D, Vendrell JJ, León X, Vilaseca I, Terra X. Prognostic relevance of insulin resistance on disease-free survival in head and neck squamous cell carcinomas: Preliminary results. Head Neck 2017; 39:2501-2511. [DOI: 10.1002/hed.24919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/05/2017] [Accepted: 07/14/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Francesc Xavier Avilés-Jurado
- Otorhinolaryngology Head and Neck Surgery Department; Hospital Clínic; Barcelona Catalonia
- HJ23 Otolaryngology Disease Research Group; Insitut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili; Tarragona Catalonia Spain
| | - Joan Carles Flores
- HJ23 Otolaryngology Disease Research Group; Insitut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili; Tarragona Catalonia Spain
- Otorhinolaryngology Head and Neck Surgery Department; Hospital Universitari de Tarragona Joan XXIII, Insitut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili; Tarragona Catalonia Spain
| | - Josep Gumà
- Oncology Department; IISPV, Universitat Rovira I Virgili, Hospital Universitari Sant Joan de Reus; Catalonia Spain
| | | | | | - David Gómez
- Radiation Oncology Department; Hospital Universitari Sant Joan de Reus; Catalonia Spain
| | - Joan Josep Vendrell
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM); Madrid Spain
- Endocrinology Department; Hospital Universitari de Tarragona Joan XXIII, Insitut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili; Tarragona Catalonia Spain
| | - Xavier León
- Otorhinolaryngology Head and Neck Surgery Department, Hospital de la Santa Creu i Sant Pau and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, MICINN, ISCIII); Universitat Autònoma de Barcelona; Barcelona Spain
| | - Isabel Vilaseca
- Otorhinolaryngology Head and Neck Surgery Department; Hospital Clínic; Barcelona Catalonia
- Centro de Investigación Biomédica en Red de enfermedades Respiratorias (CIBER-Res); Universitat de Barcelona; Barcelona Spain
| | - Ximena Terra
- MoBioFood Research Group; Biochemistry and Biotechnology Department, Universitat Rovira i Virgili; Campus Sescel·lades, Tarragona Spain
| |
Collapse
|
50
|
Heckman-Stoddard BM, DeCensi A, Sahasrabuddhe VV, Ford LG. Repurposing metformin for the prevention of cancer and cancer recurrence. Diabetologia 2017; 60:1639-1647. [PMID: 28776080 PMCID: PMC5709147 DOI: 10.1007/s00125-017-4372-6] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/08/2017] [Indexed: 01/16/2023]
Abstract
Multiple epidemiological studies have documented an association between metformin, used for treatment of type 2 diabetes, and reduced cancer incidence and mortality. Cell line models may not accurately reflect the effects of metformin in the clinical setting. Moreover, findings from animal model studies have been inconsistent, whilst those from more recent epidemiological studies have tempered the overall effect size. The purpose of this review is to examine metformin's chemopreventive potential by outlining relevant mechanisms of action, the most recent epidemiologic evidence, and recently completed and ongoing clinical trials. Although repurposing drugs with excellent safety profiles is an appealing strategy for cancer prevention and treatment in the adjuvant setting, there is no substitute for well-executed, large randomised clinical trials to define efficacy and determine the populations that are most likely to benefit from an intervention. Thus, enthusiasm remains for understanding the role of metformin in cancer through ongoing clinical research.
Collapse
Affiliation(s)
- Brandy M Heckman-Stoddard
- Division of Cancer Prevention, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD, 20892, USA.
| | - Andrea DeCensi
- Division of Medical Oncology, Ente Ospedaliero Ospedali Galliera, Genoa, Italy
- Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Vikrant V Sahasrabuddhe
- Division of Cancer Prevention, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Leslie G Ford
- Division of Cancer Prevention, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD, 20892, USA
| |
Collapse
|