1
|
Szewczyk A, Baczyńska D, Choromańska A, Łapińska Z, Chwiłkowska A, Saczko J, Kulbacka J. Advancing cancer therapy: Mechanisms, efficacy, and limitations of calcium electroporation. Biochim Biophys Acta Rev Cancer 2025; 1880:189319. [PMID: 40222421 DOI: 10.1016/j.bbcan.2025.189319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Calcium electroporation, an innovative technique, uses high-voltage pulses to introduce calcium ions into cells, leading to cell death and tumor growth inhibition. This review explores the potential of calcium electroporation as a promising therapeutic approach in cancer treatment. We provide an in-depth analysis of the underlying mechanisms by which calcium ions function within cells and how their introduction through electroporation can effectively induce cell death in cancer cells. Furthermore, we present a comprehensive overview of the current literature, covering both preclinical and clinical studies, to highlight the safety and efficacy of calcium electroporation in various cancer types, including melanoma, head and neck cancer, and breast cancer. We also discuss the distinct advantages of calcium electroporation over traditional cancer therapies, such as its specific targeting of cancer cells while sparing healthy cells. However, we also address the challenges and limitations associated with this technique, underscoring the need for further research. By providing a comprehensive examination of calcium electroporation, this review aims to contribute to understanding this emerging field and encourage further investigation into its potential as a novel cancer treatment strategy.
Collapse
Affiliation(s)
- Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland; Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania.
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Zofia Łapińska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Agnieszka Chwiłkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland; Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| |
Collapse
|
2
|
Maciulevičius M, Rulinskaitė R, Giedrimas L, Palepšienė R, Ruzgys P, Jurkonis R, Tamošiūnas M, Raišutis R, Saleniece K, Šatkauskas S. Ca 2+ sonotransfer into breast cancer cells in a suspension, 3-D spheroid and subcutaneous tumor models. ULTRASONICS SONOCHEMISTRY 2025; 118:107381. [PMID: 40345105 DOI: 10.1016/j.ultsonch.2025.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/20/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Calcium-based treatments have gained considerable attention in the field of electroporation, primarily, due to their comparable efficacy to conventional electro-chemotherapy. However, their applications in sonoporation remain under-investigated, despite its high potential for site-specific and temporally-controlled drug delivery. Current study examines the curative potential of calcium sonoporation across multiple experimental models, including: i) cell suspension, ii) 3-D spheroid culture and iii) subcutaneous murine breast cancer tumors. Murine breast cancer is an established analogue of stage IV human breast cancer. For comparison, parallel experiments, using classical anticancer drug bleomycin were performed. Ca2+ sonoporation efficiently enhanced 4 T1 cell death in a suspension in the absence of microbubbles, under relatively low acoustic pressure (100-200 kPa). In contrast, efficient spheroid growth reduction required microbubble-mediated inertial cavitation at higher (700 kPa) acoustic pressure. In vivo, Ca2+ sonoporation demonstrated similar tumor growth reduction as bleomycin sonoporation. Both treatments reduced tumor growth from the third day after the onset of treatment. Successful cancer treatment was achieved even at lower values of cavitation dose metrics. Our study presents a multi-level validation of Ca2+ sonoporation as an effective treatment strategy for murine breast cancer. Importantly, complete tumor eradication and prolonged animal survival up to one month were observed even at significantly reduced cavitation activity, indicating clinical safety of the treatment.
Collapse
Affiliation(s)
- Martynas Maciulevičius
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, Universiteto 10, Akademija, Kaunas District LT-53361, Lithuania; Department of System Analysis, Faculty of Informatics, Vytautas Magnus University, Universiteto str. 10-213, 53361 Akademija, Kaunas District, Lithuania; Ultrasound Research Institute, Kaunas University of Technology, K. Baršausko st. 59, LT-51423 Kaunas, Lithuania.
| | - Reda Rulinskaitė
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, Universiteto 10, Akademija, Kaunas District LT-53361, Lithuania; Ultrasound Research Institute, Kaunas University of Technology, K. Baršausko st. 59, LT-51423 Kaunas, Lithuania
| | - Lukas Giedrimas
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, Universiteto 10, Akademija, Kaunas District LT-53361, Lithuania.
| | - Rūta Palepšienė
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, Universiteto 10, Akademija, Kaunas District LT-53361, Lithuania; Ultrasound Research Institute, Kaunas University of Technology, K. Baršausko st. 59, LT-51423 Kaunas, Lithuania.
| | - Paulius Ruzgys
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, Universiteto 10, Akademija, Kaunas District LT-53361, Lithuania.
| | - Rytis Jurkonis
- Biomedical Engineering Institute, Kaunas University of Technology, K. Baršausko st. 59, LT-51423 Kaunas, Lithuania.
| | - Mindaugas Tamošiūnas
- University of Latvia, Institute of Atomic Physics and Spectroscopy, Jelgavas st. 3, Rīga LV-1004, Latvia.
| | - Renaldas Raišutis
- Ultrasound Research Institute, Kaunas University of Technology, K. Baršausko st. 59, LT-51423 Kaunas, Lithuania; Department of Electrical Power Systems, Faculty of Electrical and Electronics Engineering, Kaunas University of Technology, Studentų st. 48, LT-51367 Kaunas, Lithuania.
| | - Kristine Saleniece
- Faculty of Medicine, University of Latvia, Jelgavas str. 3, LV-1004 Riga, Latvia.
| | - Saulius Šatkauskas
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, Universiteto 10, Akademija, Kaunas District LT-53361, Lithuania.
| |
Collapse
|
3
|
Shiwani T, Singh Dhesi S, Wah TM. Reversible electroporation for cancer therapy. Br J Radiol 2025; 98:313-320. [PMID: 39579146 PMCID: PMC11840168 DOI: 10.1093/bjr/tqae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 11/25/2024] Open
Abstract
Reversible electroporation (EP) refers to the use of high-voltage electrical pulses on tissues to increase cell membrane permeability. It allows targeted delivery of high concentrations of chemotherapeutic agents including cisplatin and bleomycin, a process known as electrochemotherapy (ECT). It can also be used to deliver toxic concentrations of calcium and gene therapies that stimulate an anti-tumour immune response. ECT was validated for palliative treatment of cutaneous tumours. Evidence to date shows a mean objective response rate of ∼80% in these patients. Regression of non-treated lesions has also been demonstrated, theorized to be from an in situ vaccination effect. Advances in electrode development have also allowed treatment of deep-seated metastatic lesions and primary tumours, with safety demonstrated in vivo. Calcium EP and combination immunotherapy or immunogene electrotransfer is also feasible, but research is limited. Adverse events of ECT are minimal; however, general anaesthesia is often necessary, and improvements in modelling capabilities and electrode design are required to enable sufficient electrical coverage. International collaboration between preclinical researchers, oncologists, and interventionalists is required to identify the most effective combination therapies, to optimize procedural factors, and to expand use, indications and assessment of reversible EP. Registries with standardized data collection methods may facilitate this.
Collapse
Affiliation(s)
- Taha Shiwani
- Department of Diagnostic and Interventional Radiology, St. James’s University Hospital, Leeds Teaching Hospitals NHS Trust, Beckett St, Leeds, LS9 7TF, United Kingdom
| | - Simran Singh Dhesi
- Department of Diagnostic and Interventional Radiology, St. James’s University Hospital, Leeds Teaching Hospitals NHS Trust, Beckett St, Leeds, LS9 7TF, United Kingdom
| | - Tze Min Wah
- Department of Diagnostic and Interventional Radiology, St. James’s University Hospital, Leeds Teaching Hospitals NHS Trust, Beckett St, Leeds, LS9 7TF, United Kingdom
| |
Collapse
|
4
|
Jacobs EJ, Rubinsky B, Davalos RV. Pulsed field ablation in medicine: irreversible electroporation and electropermeabilization theory and applications. Radiol Oncol 2025; 59:1-22. [PMID: 40014783 PMCID: PMC11867574 DOI: 10.2478/raon-2025-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/07/2024] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Focal ablation techniques are integral in the surgical intervention of diseased tissue, where it is necessary to minimize damage to the surrounding parenchyma and critical structures. Irreversible electroporation (IRE) and high-frequency IRE (H-FIRE), colloquially called pulsed-field ablation (PFA), utilize high-amplitude, low-energy pulsed electric fields (PEFs) to nonthermally ablate soft tissue. PEFs induce cell death through permeabilization of the cellular membrane, leading to loss of homeostasis. The unique nonthermal nature of PFA allows for selective cell death while minimally affecting surrounding proteinaceous structures, permitting treatment near sensitive anatomy where thermal ablation or surgical resection is contraindicated. Further, PFA is being used to treat tissue when tumor margins are not expected after surgical resection, termed margin accentuation. This review explores both the theoretical foundations of PFA, detailing how PEFs induce cell membrane destabilization and selective tissue ablation, the outcomes following treatment, and its clinical implications across oncology and cardiology. CONCLUSIONS Clinical experience is still progressing, but reports have demonstrated that PFA reduces complications often seen with thermal ablation techniques. Mounting oncology data also support that PFA produces a robust immune response that may prevent local recurrences and attenuate metastatic disease. Despite promising outcomes, challenges such as optimizing field delivery and addressing variations in tissue response require further investigation. Future directions include refining PFA protocols and expanding its application to other therapeutic areas like benign tissue hyperplasia and chronic bronchitis.
Collapse
Affiliation(s)
- Edward J Jacobs
- Wallace H Coulter School of Biomedical Engineering, Georgia Institute of Technology & Emory Medical School, Atlanta, Georgia, USA
| | - Boris Rubinsky
- Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, California, USA
| | - Rafael V Davalos
- Wallace H Coulter School of Biomedical Engineering, Georgia Institute of Technology & Emory Medical School, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Łapińska Z, Rembiałkowska N, Szewczyk A, Przystupski D, Drąg-Zalesińska M, Novickij V, Saczko J, Kulbacka J, Baczyńska D. The additive effect of 17β-estradiol on the modulation of electrochemotherapy with calcium ions or cisplatin in human clear carcinoma cells. Biomed Pharmacother 2024; 181:117708. [PMID: 39608316 DOI: 10.1016/j.biopha.2024.117708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024] Open
Abstract
Calcium electroporation (CaEP) is an efficient approach for ovarian cancer treatment. It causes cell death by introducing elevated levels of calcium into cells. In this work, the research focused on two types of cell lines: CHO-K1, representing normal ovary cells, and OvBH-1, representing ovarian clear carcinoma cells. Those cell lines exhibited distinct reactions to calcium electroporation (CaEP). Also, we have evaluated the effects of 17β-estradiol following CaEP and electrochemotherapy (ECT) with cisplatin (CPP). The combination of ECT with CPP and CaEP with prior E2 preincubation resulted in approximately 23.55 % and 39 % decreases in cell survival compared to the control cells (exposed to CPP and CaCl2 alone) for ovarian cancer cells. The obtained results showed that ovarian cancer cells preincubated with 17β-estradiol after exposure to pulsed electric fields undergo primary necrosis. Additionally, preincubation of ovarian cancer cells with 17β-estradiol can significantly improve the effectiveness of both chemotherapy and electrochemotherapy involving cisplatin and calcium chloride.
Collapse
Affiliation(s)
- Zofia Łapińska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland.
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland; Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius LT-08406, Lithuania
| | - Dawid Przystupski
- Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Małgorzata Drąg-Zalesińska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Vitalij Novickij
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius LT-08406, Lithuania; Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius LT-10105, Lithuania
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland; Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius LT-08406, Lithuania.
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland
| |
Collapse
|
6
|
Lindelauf KHK, Baragona M, Lemainque T, Maessen RTH, Ritter A. Electrochemotherapy and Calcium Electroporation on Hepatocellular Carcinoma Cells: An In-Vitro Investigation. Cardiovasc Intervent Radiol 2024; 47:1384-1391. [PMID: 39227427 PMCID: PMC11486824 DOI: 10.1007/s00270-024-03847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE Electrochemotherapy, clinically established for treating (sub)cutaneous tumors, has been standardized in the framework of the European Standard Operating Procedure on Electrochemotherapy (ESOPE). Due to common side effects of chemotherapeutic drugs, recent advances focus on non-cytotoxic agents, like calcium, to induce cell death (calcium electroporation). Therefore, this study aims to determine the efficacy of electrochemotherapy with bleomycin or cisplatin, or calcium electroporation on human hepatocellular carcinoma cells (HepG2) in vitro using the ESOPE protocol. METHODS HepG2 cell viability was measured with a MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay after electrochemotherapy with the chemotherapeutic drugs bleomycin or cisplatin (0-20 µM), or after calcium electroporation (0-20 mM), to determine its efficacy on HepG2 cells in vitro using the ESOPE protocol (8 rectangular pulses, 1000 V/cm, 100 µs) compared to non-electroporated drug treatment. RESULTS Cell viability was significantly lower in electroporated samples, compared to their non-electroporated controls (27-75% difference). Electrochemotherapy with bleomycin and calcium electroporation, reached (almost) complete cell death (- 1 ± 3% and 2.5 ± 2%), in the lowest concentration of 2.5 µM and 2.5 mM, respectively. Electrochemotherapy with 2.5 µM cisplatin, significantly decreased cell viability to only 68% (± 7%). CONCLUSION Electrochemotherapy with bleomycin or cisplatin, or calcium electroporation were more effective in reducing the HepG2 cell viability in vitro using the ESOPE protocol compared to the non-electroporated drug treatments alone. When comparing electrochemotherapy, HepG2 cells are more sensitive to bleomycin than cisplatin, in similar concentrations. Calcium electroporation has the same effectiveness as electrochemotherapy with bleomycin, but calcium potentially has a better safety profile and several treatment advantages.
Collapse
Affiliation(s)
- K H K Lindelauf
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany.
- Philips Research, Eindhoven, The Netherlands.
| | - M Baragona
- Philips Research, Eindhoven, The Netherlands
| | - T Lemainque
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | | | - A Ritter
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
7
|
Maciulevičius M, Palepšienė R, Vykertas S, Raišutis R, Rafanavičius A, Krilavičius T, Šatkauskas S. The comparison of the dynamics of Ca 2+ and bleomycin intracellular delivery after cell sonoporation and electroporation in vitro. Bioelectrochemistry 2024; 158:108708. [PMID: 38636366 DOI: 10.1016/j.bioelechem.2024.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Ca2+, in combination with SP or EP, induces cell cytotoxicity much faster compared to BLM. The application of BLM in combination with, SP or EP, reaches the level of cell death, induced by similar combination with Ca2+, only after 72 h. The methods of SP and EP were calibrated according to the level of differential cytotoxicity, determined after 6 days (using cell clonogenic assay). The combination of Ca2+ SP induces cell death faster than Ca2+ EP - after Ca2+ SP it increases to a maximum level after 15 min and remains constant for up to 6 days, while the cytotoxic efficiency after Ca2+ EP increases to the level of Ca2+ SP only after 72 h. The combination of BLM SP shows a very similar dynamics to BLM EP - both reach maximal level of cytotoxicity after 48-72 h. Ca2+ and BLM in combination with SP have shown similar levels of cytotoxicity at higher acoustic pressures (≥250 kPa); therefore, Ca2+ SP can be used to induce immediate and maximal level of cytotoxic effect. The faster cytotoxic efficiency of Ca2+ in combination with SP than EP was determined to be due to the involvement of microbubble inertial cavitation.
Collapse
Affiliation(s)
- Martynas Maciulevičius
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos st. 8, LT-44404, Kaunas, Lithuania; Ultrasound Research Institute, Kaunas University of Technology, K. Baršausko st. 59, LT-51423 Kaunas, Lithuania.
| | - Rūta Palepšienė
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos st. 8, LT-44404, Kaunas, Lithuania.
| | - Salvijus Vykertas
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos st. 8, LT-44404, Kaunas, Lithuania.
| | - Renaldas Raišutis
- Ultrasound Research Institute, Kaunas University of Technology, K. Baršausko st. 59, LT-51423 Kaunas, Lithuania; Department of Electrical Power Systems, Faculty of Electrical and Electronics Engineering, Kaunas University of Technology, Studentų st. 48, LT-51367 Kaunas, Lithuania.
| | - Aras Rafanavičius
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos st. 8, LT-44404, Kaunas, Lithuania.
| | - Tomas Krilavičius
- Faculty of Informatics, Vytautas Magnus University, Vileikos st. 8, LT-44404, Kaunas, Lithuania.
| | - Saulius Šatkauskas
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos st. 8, LT-44404, Kaunas, Lithuania.
| |
Collapse
|
8
|
Anastasova R, Fiorentzis M, Liu H, Dalbah S, Bechrakis NE, Seitz B, Berchner-Pfannschmidt U, Tsimpaki T. Electroporation with Calcium or Bleomycin: First Application in an In Vivo Uveal Melanoma Patient-Derived Xenograft Model. Pharmaceuticals (Basel) 2024; 17:905. [PMID: 39065755 PMCID: PMC11279991 DOI: 10.3390/ph17070905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Uveal melanoma (UM) represents a rare tumor of the uveal tract and is associated with a poor prognosis due to the high risk of metastasis. Despite advances in the treatment of UM, the mortality rate remains high, dictating an urgent need for novel therapeutic strategies. The current study introduces the first in vivo analysis of the therapeutic potential of calcium electroporation (CaEP) compared with electrochemotherapy (ECT) with bleomycin in a patient-derived xenograft (PDX) model based on the chorioallantoic membrane (CAM) assay. The experiments were conducted as monotherapy with either 5 or 10 mM calcium chloride or 1 or 2.5 µg/mL bleomycin in combination with EP or EP alone. CaEP and ECT induced a similar reduction in proliferative activity, neovascularization, and melanocytic expansion. A dose-dependent effect of CaEP triggered a significant induction of necrosis, whereas ECT application of 1 µg/mL bleomycin resulted in a significantly increased apoptotic response compared with untreated tumor grafts. Our results outline the prospective use of CaEP and ECT with bleomycin as an adjuvant treatment of UM, facilitating adequate local tumor control and potentially an improvement in metastatic and overall survival rates.
Collapse
Affiliation(s)
- Ralitsa Anastasova
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany; (R.A.); (H.L.); (S.D.); (N.E.B.); (U.B.-P.); (T.T.)
| | - Miltiadis Fiorentzis
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany; (R.A.); (H.L.); (S.D.); (N.E.B.); (U.B.-P.); (T.T.)
| | - Hongtao Liu
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany; (R.A.); (H.L.); (S.D.); (N.E.B.); (U.B.-P.); (T.T.)
| | - Sami Dalbah
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany; (R.A.); (H.L.); (S.D.); (N.E.B.); (U.B.-P.); (T.T.)
| | - Nikolaos E. Bechrakis
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany; (R.A.); (H.L.); (S.D.); (N.E.B.); (U.B.-P.); (T.T.)
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Kirrberger Str. 100, 66421 Homburg, Germany;
| | - Utta Berchner-Pfannschmidt
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany; (R.A.); (H.L.); (S.D.); (N.E.B.); (U.B.-P.); (T.T.)
| | - Theodora Tsimpaki
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany; (R.A.); (H.L.); (S.D.); (N.E.B.); (U.B.-P.); (T.T.)
| |
Collapse
|
9
|
Jiménez-Labaig P, Rullan A, Braña I, Hernando-Calvo A, Moreno V, Doger B, Bitar G, Ap Dafydd D, Melcher A, Harrington KJ. Intratumoral therapies in head and neck squamous cell carcinoma: A systematic review and future perspectives. Cancer Treat Rev 2024; 127:102746. [PMID: 38696902 DOI: 10.1016/j.ctrv.2024.102746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) presents an ideal scenario for intratumoral therapies (IT), due to its local recurrence pattern and frequent superficial extension. IT therapies aim to effect tumor regression by directly injecting antineoplastic agents into lesions. However, there is a lack of updated evidence regarding IT therapies in HNSCC. PATIENTS AND METHODS A systematic literature search (CRD42023462291) was conducted using WebOfScience, ClinicalTrials.gov, and conference abstracts from ESMO and ASCO, identifying for IT clinical trials in patients with HNSCC, from database creation to September 12th, 2023. Efficacy as well as safety (grade ≥ 3 treatment-related adverse events[trAEs]) were reported. RESULTS After evaluation of 1180 articles identified by the systematic search, 31 studies treating 948 patients were included. IT injectables were categorized as chemotherapies with or without electroporation (k = 4, N = 268), oncolytic viruses, plasmids, and bacteria-based (k = 16, N = 446), immunotherapies and EGFR-based therapies (k = 5, N = 160), radioenhancer particles (k = 2, N = 68), and calcium electroporation (k = 1, n = 6). EGFR-antisense plasmids, NBTXR3 radioenhancer and immune innate agonists show best overall response rates, at 83 %, 81 % and 44 % respectively. Eleven (35 %) studies added systemic therapy or radiotherapy to the IT injections. No study used predictive biomarkers to guide patient selection. 97 % studies were phase I-II. Safety-wise, electroporation and epinephrine-based injectable trials had significant local symptoms such as necrosis, fistula formation and post-injection dysphagia. Treatment-related tumor haemorrhages of various grades were described in several trials. Grade ≥ 3 trAEs attributable to the other therapies mainly comprised general symptoms such as fatigue. There were 3 injectable-related deaths across the systematic review. CONCLUSION This is the first review to summarize all available evidence of IT in HNSCC. As of today, IT therapies lack sufficient evidence to recommend their use in clinical practice. Continuing research on potential molecules, patient selection, safe administration of injections and controlled randomized trials are needed to assess their added benefit.
Collapse
Affiliation(s)
- Pablo Jiménez-Labaig
- Head and Neck Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom; The Institute of Cancer Research, National Institute of Health Research Biomedical Research Centre, London, United Kingdom
| | - Antonio Rullan
- Head and Neck Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom; The Institute of Cancer Research, National Institute of Health Research Biomedical Research Centre, London, United Kingdom
| | - Irene Braña
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Lung and Head & Neck Tumors Unit, Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Alberto Hernando-Calvo
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Early Phase Clinical Trials Unit (UITM), Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Victor Moreno
- START Madrid-FDJ, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Bernard Doger
- START Madrid-FDJ, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - George Bitar
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Derfel Ap Dafydd
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Alan Melcher
- The Institute of Cancer Research, National Institute of Health Research Biomedical Research Centre, London, United Kingdom
| | - Kevin J Harrington
- Head and Neck Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom; The Institute of Cancer Research, National Institute of Health Research Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
10
|
Iancu D, Fulga A, Vesa D, Zenovia A, Fulga I, Sarbu MI, Tatu AL. Metastatic patterns and treatment options for head and neck cutaneous squamous cell carcinoma (Review). Mol Clin Oncol 2024; 20:40. [PMID: 38756868 PMCID: PMC11097132 DOI: 10.3892/mco.2024.2739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/14/2024] [Indexed: 05/18/2024] Open
Abstract
According to current predictions, one-fifth of all Americans will develop skin cancer during their lifetime. Cutaneous squamous cell carcinoma (cSCC) most commonly occurs in the head and neck region, which is the area of the body with the highest level of sun exposure. High-risk head and neck cSCC (HNcSCC) is a broad category with numerous high-risk factors that are associated with unfavorable results. In cSCC staging systems, clinical and tumor traits that are likely to result in poor outcomes are identified. Metastasis occurs in ~2.5% of patients with cSCC, most often in the local lymph nodes, and there is some indication that lymph node metastasis has a distinct pattern based on the tumor site. Current findings on tumor molecular targets have suggested the use of systemic treatments, particularly immunotherapy (such as cemiplimab, pembrolizumab and nivolumab), over radiotherapy or chemotherapy for this type of metastasis. However, when used simultaneously with immunotherapy, radiotherapy may be beneficial in the treatment of metastatic HNcSCC by improving the efficacy of immunotherapy. The present review aims to assess the existing literature on metastatic HNcSCC pathways and treatment options, in order to define current and future directions. Notably, there is an urgent need to identify patients who may benefit from local or systemic cancer treatments. The treatment of lymph node metastasis presents a therapeutic challenge and requires comprehensive management.
Collapse
Affiliation(s)
- Doriana Iancu
- Department of Otorhinolaryngology, ‘Sfantul Andrei’ Emergency Clinical Hospital of Galati, 800578 Galati, Romania
- Clinical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University of Galati, 800010 Galati, Romania
| | - Ana Fulga
- Department of Otorhinolaryngology, ‘Sfantul Andrei’ Emergency Clinical Hospital of Galati, 800578 Galati, Romania
- Clinical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University of Galati, 800010 Galati, Romania
| | - Doina Vesa
- Department of Otorhinolaryngology, ‘Sfantul Andrei’ Emergency Clinical Hospital of Galati, 800578 Galati, Romania
- Clinical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University of Galati, 800010 Galati, Romania
| | - Andrei Zenovia
- Department of Otorhinolaryngology, ‘Cai Ferate’ General Hospital, 800223 Galati, Romania
| | - Iuliu Fulga
- Clinical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University of Galati, 800010 Galati, Romania
- Department of Forensic Medicine, ‘Sfantul Andrei’ Emergency Clinical Hospital of Galati, 800578 Galati, Romania
| | - Mihaela Ionela Sarbu
- Clinical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University of Galati, 800010 Galati, Romania
| | - Alin Laurentiu Tatu
- Clinical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University of Galati, 800010 Galati, Romania
- Department of Dermatology, ‘Sfanta Cuvioasa Parascheva’ Clinical Hospital of Infectious Diseases, 800179 Galati, Romania
- Multidisciplinary Integrative Center for Dermatologic Interface Research, 800179 Galati, Romania
| |
Collapse
|
11
|
Vissing M, Sinius Pouplier S, Munch Larsen L, Krog Frandsen S, Lodin A, Lænkholm AV, Gehl J. Immune cell populations in the tumour environment following calcium electropora-tion for cutaneous metastasis: a histopathological study. Acta Oncol 2024; 63:398-410. [PMID: 38804839 PMCID: PMC11332521 DOI: 10.2340/1651-226x.2024.19462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/11/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND AND PURPOSE Calcium electroporation (CaEP) involves injecting calcium into tumour tissues and using electrical pulses to create membrane pores that induce cell death. This study assesses resultant immune responses and histopathological changes in patients with cutaneous metastases. PATIENTS/MATERIALS AND METHODS The aimed cohort comprised 24 patients with metastases exceeding 5 mm. Tumours were treated once with CaEP (day 0) or twice (day 28). Biopsies were performed on days 0 and 2, with additional samples on days 7, 28, 30, 35, 60, and 90 if multiple tumours were treated. The primary endpoint was the change in tumour-infiltrating lymphocytes (TILs) two days post-treatment, with secondary endpoints evaluating local and systemic immune responses via histopathological analysis of immune markers, necrosis, and inflammation. RESULTS Seventeen patients, with metastases primarily from breast cancer (14 patients), but also lung cancer (1), melanoma (1), and urothelial cancer (1), completed the study. Of the 49 lesions treated, no significant changes in TIL count or PD-L1 expression were observed. However, there was substantial necrosis and a decrease in FOXP3-expression (p = 0.0025) noted, with a slight increase in CD4+ cells but no changes in CD3, CD8, or CD20 expressions. Notably, four patients showed reduced tumour invasiveness, including one case of an abscopal response. INTERPRETATION This exploratory study indicates that CaEP can be an effective anti-tumour therapy potentially enhancing immunity. Significant necrosis and decreased regulatory lymphocytes were observed, although TIL count remained unchanged. Several patients exhibited clinical signs of immune response following treatment.
Collapse
Affiliation(s)
- Mille Vissing
- Centre for Experimental Drug and Gene Electrotransfer (C*EDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde and Næstved, Næstved, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sandra Sinius Pouplier
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Lars Munch Larsen
- Centre for Experimental Drug and Gene Electrotransfer (C*EDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Næstved, Denmark
| | - Stine Krog Frandsen
- Centre for Experimental Drug and Gene Electrotransfer (C*EDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Næstved, Denmark
| | - Alexey Lodin
- Centre for Experimental Drug and Gene Electrotransfer (C*EDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Næstved, Denmark
| | - Anne-Vibeke Lænkholm
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Julie Gehl
- Centre for Experimental Drug and Gene Electrotransfer (C*EDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde and Næstved, Næstved, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; bDepartment of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Wiegell SR, Hendel K, Fuchs CSK, Gehl J, Vissing M, Bro SW, Troelsen JT, Jemec GBE, Haedersdal M. An Explorative Study on Calcium Electroporation for Low-risk Basal Cell Carcinoma. Acta Derm Venereol 2024; 104:adv19678. [PMID: 38712969 DOI: 10.2340/actadv.v104.19678] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/08/2024] [Indexed: 05/08/2024] Open
Abstract
In electrochemotherapy, permeabilization of the cell membrane by electric pulses increases the anti-tumour effect of chemotherapeutics. In calcium electroporation, chemotherapy is replaced by calcium chloride with obvious benefits. This study explores the effect and underlying mechanisms of calcium electroporation on basal cell carcinomas using either high- or low-frequency electroporation. Low-risk primary basal cell carcinomas were treated in local anaesthesia with intratumoral calcium chloride followed by electroporation with high (167 kHz) or low (5 kHz) frequencies. Non-complete responders were retreated after 3 months. The primary endpoint was tumour response 3 months after last calcium electroporation. Plasma membrane calcium ATPase was examined in various cell lines as plasma membrane calcium ATPase levels have been associated with calcium electroporation efficacy. Twenty-two out of 25 included patients complete the study and 7 of these (32%) achieved complete response at 3 months with no difference in efficacy between high- and low-frequency pulses. High-frequency calcium electroporation was significantly less painful (p=0.03). Plasma membrane calcium ATPase was increased 16-32-fold in basal cell carcinoma cell lines compared with 4 other cancer cell lines. Calcium electroporation for low-risk basal cell carcinomas does not fulfil the requirements of a new dermatological basal cell carcinoma treatment but may be useful as adjuvant treatment to surgery in more advanced basal cell carcinomas. The elevated PMCA levels in basal cell carcinomas may contribute to low efficacy.
Collapse
Affiliation(s)
- Stine R Wiegell
- Department of Dermatology, Copenhagen University Hospital Bispebjerg, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.
| | - Kristoffer Hendel
- Department of Dermatology, Copenhagen University Hospital Bispebjerg, Denmark
| | - Christine S K Fuchs
- Department of Dermatology, Copenhagen University Hospital Bispebjerg, Denmark
| | - Julie Gehl
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde and Naestved, Denmark
| | - Mille Vissing
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde and Naestved, Denmark
| | - Sara W Bro
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jesper T Troelsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Gregor B E Jemec
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark; Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Merete Haedersdal
- Department of Dermatology, Copenhagen University Hospital Bispebjerg, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Spugnini EP, Condello M, Crispi S, Baldi A. Electroporation in Translational Medicine: From Veterinary Experience to Human Oncology. Cancers (Basel) 2024; 16:1067. [PMID: 38473422 DOI: 10.3390/cancers16051067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Electroporation (EP) is a broadly accepted procedure that, through the application of electric pulses with appropriate amplitudes and waveforms, promotes the delivery of anticancer molecules in various oncology therapies. EP considerably boosts the absorptivity of targeted cells to anticancer molecules of different natures, thus upgrading their effectiveness. Its use in veterinary oncology has been widely explored, and some applications, such as electrochemotherapy (ECT), are currently approved as first-line treatments for several neoplastic conditions. Other applications include irreversible electroporation and EP-based cancer vaccines. In human oncology, EP is still mostly restricted to therapies for cutaneous tumors and the palliation of cutaneous and visceral metastases of malignant tumors. Fields where veterinary experience could help smooth the clinical transition to humans include intraoperative EP, interventional medicine and cancer vaccines. This article recapitulates the state of the art of EP in veterinary and human oncology, recounting the most relevant results to date.
Collapse
Affiliation(s)
| | | | - Stefania Crispi
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Alfonso Baldi
- Biopulse Srl, 00144 Rome, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Campania University "Luigi Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
14
|
Morozas A, Malyško-Ptašinskė V, Kulbacka J, Ivaška J, Ivaškienė T, Novickij V. Electrochemotherapy for head and neck cancers: possibilities and limitations. Front Oncol 2024; 14:1353800. [PMID: 38434679 PMCID: PMC10905418 DOI: 10.3389/fonc.2024.1353800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Head and neck cancer continues to be among the most prevalent types of cancer globally, yet it can be managed with appropriate treatment approaches. Presently, chemotherapy and radiotherapy stand as the primary treatment modalities for various groups and regions affected by head and neck cancer. Nonetheless, these treatments are linked to adverse side effects in patients. Moreover, due to tumor resistance to multiple drugs (both intrinsic and extrinsic) and radiotherapy, along with numerous other factors, recurrences or metastases often occur. Electrochemotherapy (ECT) emerges as a clinically proven alternative that offers high efficacy, localized effect, and diminished negative factors. Electrochemotherapy involves the treatment of solid tumors by combining a non-permeable cytotoxic drug, such as bleomycin, with a locally administered pulsed electric field (PEF). It is crucial to employ this method effectively by utilizing optimal PEF protocols and drugs at concentrations that do not possess inherent cytotoxic properties. This review emphasizes an examination of diverse clinical practices of ECT concerning head and neck cancer. It specifically delves into the treatment procedure, the choice of anti-cancer drugs, pre-treatment planning, PEF protocols, and electroporation electrodes as well as the efficacy of tumor response to the treatment and encountered obstacles. We have also highlighted the significance of assessing the spatial electric field distribution in both tumor and adjacent tissues prior to treatment as it plays a pivotal role in determining treatment success. Finally, we compare the ECT methodology to conventional treatments to highlight the potential for improvement and to facilitate popularization of the technique in the area of head and neck cancers where it is not widespread yet while it is not the case with other cancer types.
Collapse
Affiliation(s)
- Arnoldas Morozas
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, Vilnius, Lithuania
| | | | - Julita Kulbacka
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, Vilnius, Lithuania
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Justinas Ivaška
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, Vilnius, Lithuania
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Tatjana Ivaškienė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, Vilnius, Lithuania
| | - Vitalij Novickij
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
15
|
Jacobs Iv EJ, Campelo SN, Charlton A, Altreuter S, Davalos RV. Characterizing reversible, irreversible, and calcium electroporation to generate a burst-dependent dynamic conductivity curve. Bioelectrochemistry 2024; 155:108580. [PMID: 37788520 DOI: 10.1016/j.bioelechem.2023.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023]
Abstract
The relationships between burst number, reversible, irreversible, and calcium electroporation have not been comprehensively evaluated in tumor tissue-mimics. Our findings indicate that electroporation effects saturate with a rate constant (τ) of 20 bursts for both conventional and high frequency waveforms (R2 > 0.88), with the separation between reversible and irreversible electroporation thresholds converging at 50 bursts. We find the lethal thresholds for calcium electroporation are statistically similar to reversible electroporation (R2 > 0.99). We then develop a burst-dependent dynamic conductivity curve that now incorporates electroporation effects due to both the electric field magnitude and burst number. Simulated ablation and thermal damage volumes vary significantly between finite element models using either the conventional or new burst-dependent dynamic conductivity curve (p < 0.05). Lastly, for clinically relevant protocols, thermal damage is indicated to not begin until 50 bursts, with maximum nonthermal ablation volumes at 100 bursts (1.5-13% thermal damage by volume). We find that >100 bursts generated negligible increases in ablation volumes with 40-70% thermal damage by volume at 300 bursts. Our results illustrate the need for considering burst number in minimizing thermal damage, choosing adjuvant therapies, and in modeling electroporation effects at low burst numbers.
Collapse
Affiliation(s)
- Edward J Jacobs Iv
- Bioelectromechanical Systems Laboratory, Virginia Tech - Wake Forest School of Biomedical Engineering, Blacksburg, VA, USA; Bioelectromechanical Systems Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech - Emory University, Atlanta, GA, USA
| | - Sabrina N Campelo
- Bioelectromechanical Systems Laboratory, Virginia Tech - Wake Forest School of Biomedical Engineering, Blacksburg, VA, USA
| | - Alyssa Charlton
- Bioelectromechanical Systems Laboratory, Virginia Tech - Wake Forest School of Biomedical Engineering, Blacksburg, VA, USA
| | - Sara Altreuter
- Bioelectromechanical Systems Laboratory, Virginia Tech - Wake Forest School of Biomedical Engineering, Blacksburg, VA, USA
| | - Rafael V Davalos
- Bioelectromechanical Systems Laboratory, Virginia Tech - Wake Forest School of Biomedical Engineering, Blacksburg, VA, USA; Bioelectromechanical Systems Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech - Emory University, Atlanta, GA, USA.
| |
Collapse
|
16
|
Egeland C, Balsevicius L, Gögenur I, Gehl J, Baeksgaard L, Garbyal RS, Achiam MP. Calcium electroporation of esophageal cancer induces gene expression changes: a sub-study of a phase I clinical trial. J Cancer Res Clin Oncol 2023; 149:16031-16042. [PMID: 37688629 PMCID: PMC10620256 DOI: 10.1007/s00432-023-05357-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/26/2023] [Indexed: 09/11/2023]
Abstract
PURPOSE In this study, we aim to investigate gene expression changes in tumor samples obtained from patients with esophageal cancer treated with calcium electroporation. Previously, local treatment with calcium electroporation has been shown to induce gene expression alterations, potentially contributing to a more tumor-hostile microenvironment. METHODS In this sub-study of a phase I clinical trial, we included five patients with esophageal cancer treated with calcium electroporation. We compared cancer-associated gene expression patterns in tumor samples before and after treatment. Furthermore, we used linear support vector regression to predict the cellular composition of tumor samples. RESULTS Using differential expression analysis, we identified the downregulation of CXCL14 and upregulation of CCL21, ANGPTL4, and CRABP2 genes. We also found a decreased predicted proportion of dendritic cells while the proportion of neutrophils was increased. CONCLUSION This study provides evidence that calcium electroporation for esophageal cancer induces local transcriptional changes and possibly alters the cellular composition of the tumor microenvironment. The results are explorative, larger studies are needed to confirm and further correlate our findings with clinical outcomes.
Collapse
Affiliation(s)
- Charlotte Egeland
- Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lukas Balsevicius
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Koege, Denmark
- Graduate School of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ismail Gögenur
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Koege, Denmark
| | - Julie Gehl
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Oncology and Palliative Care, Center for Experimental Drug and Gene Electrotransfer (C*EDGE), Zealand University Hospital, Roskilde, Denmark
| | - Lene Baeksgaard
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Rajendra Singh Garbyal
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Michael Patrick Achiam
- Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Vissing M, Pervan M, Pløen J, Schnefeldt M, Rafaelsen SR, Jensen LH, Rody A, Gehl J. Calcium electroporation in cutaneous metastases - A non-randomised phase II multicentre clinical trial. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:106925. [PMID: 37268521 DOI: 10.1016/j.ejso.2023.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Cutaneous metastases can cause distressing symptoms and be challenging to treat. Local therapies are essential in management. Calcium electroporation uses calcium and electrical pulses to selectively kill cancer cells. This multicentre study aimed to define response in cutaneous metastases across different cancer types. METHODS Patients with tumours ≤3 cm of any histology were included (stable or progressing on current therapy ≥2 months), at three centres. Tumours were treated with 220 mM calcium chloride injection and manual application of eight 0.1 ms pulses with 1 kV/cm and 1Hz with a handheld electrode, in local or general anaesthesia. Clinical response was evaluated after 1, 2, 3, 4, 5, 6, and 12 months. Primary endpoint was response at two months. The overall response rate (ORR) was partial- and complete responses of treated tumours. MR-imaging and qualitative interviews were performed in respective subsets. RESULTS Nineteen patients with disseminated cancer (breast n = 4, lung n = 5, pancreatic n = 1, colorectal n = 2, gastric n = 1, and endometrial cancer n = 1) were enrolled, and 58 metastases were treated (50 once, 8 retreated). The ORR was 36% (95% CI 22-53) after two months. Best ORR was 51% (CR 42%; PR 9%). Previous irradiation improved outcomes (p = 0.0004). Adverse events were minimal. Median pain score was reduced after two months (p = 0.017). Treatment may relieve symptoms according to qualitative interviews. MRI showed restriction in treated tissue. CONCLUSION The majority of tumours were treated only once with calcium electroporation, achieving an ORR of 36% after two months and best ORR of 51%. Efficacy, symptom-relief and safety support calcium electroporation as a palliative treatment option for cutaneous metastases.
Collapse
Affiliation(s)
- Mille Vissing
- Center for Experimental Drug and Gene Electrotransfer (C∗EDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde and Næstved, Ringstedgade 61, 4700, Næstved, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Mascha Pervan
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Lübeck, Germany Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - John Pløen
- Department of Oncology, University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
| | - Mazen Schnefeldt
- Department of Radiology, University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
| | - Søren Rafael Rafaelsen
- Department of Radiology, University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
| | - Lars Henrik Jensen
- Department of Oncology, University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
| | - Achim Rody
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Lübeck, Germany Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Julie Gehl
- Center for Experimental Drug and Gene Electrotransfer (C∗EDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde and Næstved, Ringstedgade 61, 4700, Næstved, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
18
|
Hariharan A, Tran SD. Localized Drug Delivery Systems: An Update on Treatment Options for Head and Neck Squamous Cell Carcinomas. Pharmaceutics 2023; 15:1844. [PMID: 37514031 PMCID: PMC10385385 DOI: 10.3390/pharmaceutics15071844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers in the world, with surgery, radiotherapy, chemotherapy, and immunotherapy being the primary treatment modalities. The treatment for HNSCC has evolved over time, due to which the prognosis has improved drastically. Despite the varied treatment options, major challenges persist. HNSCC chemotherapeutic and immunotherapeutic drugs are usually administered systemically, which could affect the patient's quality of life due to the associated side effects. Moreover, the systemic administration of salivary stimulating agents for the treatment of radiation-induced xerostomia is associated with toxicities. Localized drug delivery systems (LDDS) are gaining importance, as they have the potential to provide non-invasive, patient-friendly alternatives to cancer therapy with reduced dose-limiting toxicities. LDDSs involve directly delivering a drug to the tissue or organ affected by the disease. Some of the common localized routes of administration include the transdermal and transmucosal drug delivery system (DDSs). This review will attempt to explore the different treatment options using LDDSs for the treatment of HNSCC and radiotherapy-induced damage and their potential to provide a better experience for patients, as well as the obstacles that need to be addressed to render them successful.
Collapse
Affiliation(s)
- Arvind Hariharan
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
19
|
Campana LG, Daud A, Lancellotti F, Arroyo JP, Davalos RV, Di Prata C, Gehl J. Pulsed Electric Fields in Oncology: A Snapshot of Current Clinical Practices and Research Directions from the 4th World Congress of Electroporation. Cancers (Basel) 2023; 15:3340. [PMID: 37444450 PMCID: PMC10340685 DOI: 10.3390/cancers15133340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The 4th World Congress of Electroporation (Copenhagen, 9-13 October 2022) provided a unique opportunity to convene leading experts in pulsed electric fields (PEF). PEF-based therapies harness electric fields to produce therapeutically useful effects on cancers and represent a valuable option for a variety of patients. As such, irreversible electroporation (IRE), gene electrotransfer (GET), electrochemotherapy (ECT), calcium electroporation (Ca-EP), and tumour-treating fields (TTF) are on the rise. Still, their full therapeutic potential remains underappreciated, and the field faces fragmentation, as shown by parallel maturation and differences in the stages of development and regulatory approval worldwide. This narrative review provides a glimpse of PEF-based techniques, including key mechanisms, clinical indications, and advances in therapy; finally, it offers insights into current research directions. By highlighting a common ground, the authors aim to break silos, strengthen cross-functional collaboration, and pave the way to novel possibilities for intervention. Intriguingly, beyond their peculiar mechanism of action, PEF-based therapies share technical interconnections and multifaceted biological effects (e.g., vascular, immunological) worth exploiting in combinatorial strategies.
Collapse
Affiliation(s)
- Luca G. Campana
- Department of Surgery, Manchester University NHS Foundation Trust, Oxford Rd., Manchester M13 9WL, UK;
| | - Adil Daud
- Department of Medicine, University of California, 550 16 Street, San Francisco, CA 94158, USA;
| | - Francesco Lancellotti
- Department of Surgery, Manchester University NHS Foundation Trust, Oxford Rd., Manchester M13 9WL, UK;
| | - Julio P. Arroyo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (J.P.A.); (R.V.D.)
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (J.P.A.); (R.V.D.)
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Claudia Di Prata
- Department of Surgery, San Martino Hospital, 32100 Belluno, Italy;
| | - Julie Gehl
- Department of Clinical Oncology and Palliative Care, Zealand University Hospital, 4000 Roskilde, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| |
Collapse
|
20
|
Lisec B, Markelc B, Ursic Valentinuzzi K, Sersa G, Cemazar M. The effectiveness of calcium electroporation combined with gene electrotransfer of a plasmid encoding IL-12 is tumor type-dependent. Front Immunol 2023; 14:1189960. [PMID: 37304301 PMCID: PMC10247961 DOI: 10.3389/fimmu.2023.1189960] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction In calcium electroporation (CaEP), electroporation enables the cellular uptake of supraphysiological concentrations of Ca2+, causing the induction of cell death. The effectiveness of CaEP has already been evaluated in clinical trials; however, confirmatory preclinical studies are still needed to further elucidate its effectiveness and underlying mechanisms. Here, we tested and compared its efficiency on two different tumor models to electrochemotherapy (ECT) and in combination with gene electrotransfer (GET) of a plasmid encoding interleukin-12 (IL-12). We hypothesized that IL-12 potentiates the antitumor effect of local ablative therapies as CaEP and ECT. Methods The effect of CaEP was tested in vitro as well as in vivo in murine melanoma B16-F10 and murine mammary carcinoma 4T1 in comparison to ECT with bleomycin. Specifically, the treatment efficacy of CaEP with increasing calcium concentrations alone or in combination with IL-12 GET in different treatment protocols was investigated. We closely examined the tumor microenvironment by immunofluorescence staining of immune cells, as well as blood vessels and proliferating cells. Results In vitro, CaEP and ECT with bleomycin reduced cell viability in a dose-dependent manner. We observed no differences in sensitivity between the two cell lines. A dose-dependent response was also observed in vivo; however, the efficacy was better in 4T1 tumors than in B16-F10 tumors. In 4T1 tumors, CaEP with 250 mM Ca resulted in more than 30 days of growth delay, which was comparable to ECT with bleomycin. In contrast, adjuvant peritumoral application of IL-12 GET after CaEP prolonged the survival of B16-F10, but not 4T1-bearing mice. Moreover, CaEP with peritumoral IL-12 GET modified tumor immune cell populations and tumor vasculature. Conclusions Mice bearing 4T1 tumors responded better to CaEP in vivo than mice bearing B16-F10 tumors, even though a similar response was observed in vitro. Namely, one of the most important factors might be involvement of the immune system. This was confirmed by the combination of CaEP or ECT with IL-12 GET, which further enhanced antitumor effectiveness. However, the potentiation of CaEP effectiveness was also highly dependent on tumor type; it was more pronounced in poorly immunogenic B16-F10 tumors compared to moderately immunogenic 4T1 tumors.
Collapse
Affiliation(s)
- Barbara Lisec
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Ursic Valentinuzzi
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| |
Collapse
|
21
|
Broholm M, Vogelsang R, Bulut M, Stigaard T, Falk H, Frandsen S, Pedersen DL, Perner T, Fiehn AMK, Mølholm I, Bzorek M, Rosen AW, Andersen CSA, Pallisgaard N, Gögenur I, Gehl J. Endoscopic calcium electroporation for colorectal cancer: a phase I study. Endosc Int Open 2023; 11:E451-E459. [PMID: 37180313 PMCID: PMC10169226 DOI: 10.1055/a-2033-9831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/09/2023] [Indexed: 05/16/2023] Open
Abstract
Background and study aims Colorectal cancer is one of the most common malignancies, with approximately 20 % of patients having metastatic disease. Local symptoms from the tumor remain a common issue and affect quality of life. Electroporation is a method to permeabilize cell membranes with high-voltage pulses, allowing increased passage of otherwise poorly permeating substances such as calcium. The aim of this study was to determine the safety of calcium electroporation for advanced colorectal cancer. Patients and methods Six patients with inoperable rectal and sigmoid colon cancer were included, all presenting with local symptoms. Patients were offered endoscopic calcium electroporation and were followed up with endoscopy and computed tomography/magnetic resonance scans. Biopsies and blood samples were collected at baseline and at follow-up, 4, 8, and 12 weeks after treatment. Biopsies were examined for histological changes and immunohistochemically with CD3/CD8 and PD-L1. In addition, blood samples were examined for circulating cell-free DNA (cfDNA). Results A total of 10 procedures were performed and no serious adverse events occurred. Prior to inclusion, patients reported local symptoms, such as bleeding (N = 3), pain (N = 2), and stenosis (N = 5). Five of six patients reported symptom relief. In one patient, also receiving systemic chemotherapy, clinical complete response of primary tumor was seen. Immunohistochemistry found no significant changes in CD3 /CD8 levels or cfDNA levels after treatment. Conclusions This first study of calcium electroporation for colorectal tumors shows that calcium electroporation is a safe and feasible treatment modality for colorectal cancer. It can be performed as an outpatient treatment and may potentially be of great value for fragile patients with limited treatment options.
Collapse
Affiliation(s)
- Malene Broholm
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Denmark
| | - Rasmus Vogelsang
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Denmark
| | - Mustafa Bulut
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Stigaard
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Denmark
| | - Hanne Falk
- Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Stine Frandsen
- Center for Experimental Drug and Gene Electrotransfer (C*EDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde, Denmark
| | | | - Trine Perner
- Department of Radiology, Zealand University Hospital, Denmark
| | - Anne-Marie Kanstrup Fiehn
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Zealand University Hospital, Denmark
| | | | - Michael Bzorek
- Department of Pathology, Zealand University Hospital, Denmark
| | | | | | | | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie Gehl
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Center for Experimental Drug and Gene Electrotransfer (C*EDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
22
|
Bibi K, Shah MH. Investigation of imbalances in essential/toxic metal levels in the blood of laryngeal cancer patients in comparison with controls. Biometals 2023; 36:111-127. [PMID: 36370262 DOI: 10.1007/s10534-022-00464-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Laryngeal carcinoma is one of the common types of head and neck cancer, with men being more likely than women to develop it. Diet, age, gender, smoking habits, and environmental factors play important roles in its development. The goal of this study was to ascertain if there were imbalances in essential and toxic trace metals owing to the initiation and progression of laryngeal cancer. Atomic absorption spectrometry was employed to quantify selected macroelements, and essential/toxic trace metals in blood of the cancerous patients and matching controls. Significantly higher concentrations of Pb, Cu, Fe, and Sr while substantially lower levels of Na, K, Ca, and Mg were observed in the cancer patients compared with the controls. Considerably disparate mutual relationships among the macroelements, and essential/toxic trace metals in the patients and controls were manifested by their correlation coefficients. Similarly, multivariate apportionment of the metal levels showed appreciably diverse associations and grouping in the patients and controls. The laryngeal cancer patients exhibited significant disparities in the metal levels among various sub-types (supraglottic, subglottic, transglottic, and glottic cancer) and stages (I, II, III, and IV) of the disease. Most of the metals revealed distinct differences based on the gender, habitat, age, eating preferences, and smoking habits in both donor groups. Overall, the study demonstrated significant imbalances among the macroelements, and essential/toxic trace metal levels in the blood of laryngeal cancer patients compared to the controls.
Collapse
Affiliation(s)
- Kalsoom Bibi
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Munir H Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
23
|
Kiełbik A, Sowa PW, Pakhomov AG, Gudvangen E, Mangalanathan U, Kulbacka J, Pakhomova ON. Urine protects urothelial cells against killing with nanosecond pulsed electric fields. Bioelectrochemistry 2023; 149:108289. [DOI: 10.1016/j.bioelechem.2022.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
|
24
|
Equine Melanocytic Tumors: A Narrative Review. Animals (Basel) 2023; 13:ani13020247. [PMID: 36670786 PMCID: PMC9855132 DOI: 10.3390/ani13020247] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
Adult grey horses have a high incidence of melanocytic tumors. This article narratively reviews the role of some genetic features related to melanoma formation in horses, such as STX17 mutation, ASIP or MITF alterations, and the link between the graying process and the development of these tumors. A clear system of clinical and pathological classification of melanocytic tumors in naevus, dermal melanoma, dermal melanomatosis and anaplastic malignant melanoma is provided. Clinical and laboratorial methods of diagnosing are listed, with fine needle aspiration and histopathology being the most relevant. Relevance is given to immunohistochemistry, describing potentially important diagnostic biomarkers such as RACK1 and PNL2. Different therapeutical options available for equine practitioners are mentioned, with surgery, chemotherapy and electroporation being the most common. This article also elucidatesnew fields of research, perspectives, and new therapeutic targets, such as CD47, PD-1 and COX-2 biomarkers.
Collapse
|
25
|
Safaei Z, Thompson GL. Histone deacetylase 4 and 5 translocation elicited by microsecond pulsed electric field exposure is mediated by kinase activity. Front Bioeng Biotechnol 2022; 10:1047851. [PMID: 36466344 PMCID: PMC9713944 DOI: 10.3389/fbioe.2022.1047851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/04/2022] [Indexed: 10/17/2023] Open
Abstract
Electroporation-based technologies using microsecond pulsed electric field (µsPEF) exposures are established as laboratory and clinical tools that permeabilize cell membranes. We demonstrate a µsPEF bioeffect on nucleocytoplasmic import and export of enzymes that regulate genetic expression, histone deacetylases (HDAC) -4 and -5. Their μsPEF-induced nucleocytoplasmic transport depends on presence and absence of extracellular calcium ions (Ca2+) for both MCF7 and CHO-K1 cells. Exposure to 1, 10, 30 and 50 consecutive square wave pulses at 1 Hz and of 100 µs duration with 1.45 kV/cm magnitude leads to translocation of endogenous HDAC4 and HDAC5. We posit that by eliciting a rise in intracellular Ca2+ concentration, a signaling pathway involving kinases, such as Ca2+/CaM-dependent protein kinase II (CaMKII), is activated. This cascade causes nuclear export and import of HDAC4 and HDAC5. The potential of µsPEF exposures to control nucleocytoplasmic transport unlocks future opportunities in epigenetic modification.
Collapse
Affiliation(s)
| | - Gary L. Thompson
- Department of Chemical Engineering, Rowan University, Glassboro, NJ, United States
| |
Collapse
|
26
|
Advances of Electroporation-Related Therapies and the Synergy with Immunotherapy in Cancer Treatment. Vaccines (Basel) 2022; 10:vaccines10111942. [PMID: 36423037 PMCID: PMC9692484 DOI: 10.3390/vaccines10111942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Electroporation is the process of instantaneously increasing the permeability of a cell membrane under a pulsed electric field. Depending on the parameters of the electric pulses and the target cell electrophysiological characteristics, electroporation can be either reversible or irreversible. Reversible electroporation facilitates the delivery of functional genetic materials or drugs to target cells, inducing cell death by apoptosis, mitotic catastrophe, or pseudoapoptosis; irreversible electroporation is an ablative technology which directly ablates a large amount of tissue without causing harmful thermal effects; electrotherapy using an electric field can induce cell apoptosis without any aggressive invasion. Reversible and irreversible electroporation can also activate systemic antitumor immune response and enhance the efficacy of immunotherapy. In this review, we discuss recent progress related to electroporation, and summarize its latest applications. Further, we discuss the synergistic effects of electroporation-related therapies and immunotherapy. We also propose perspectives for further investigating electroporation and immunotherapy in cancer treatment.
Collapse
|
27
|
Pisani S, Bertino G, Prina-Mello A, Locati LD, Mauramati S, Genta I, Dorati R, Conti B, Benazzo M. Electroporation in Head-and-Neck Cancer: An Innovative Approach with Immunotherapy and Nanotechnology Combination. Cancers (Basel) 2022; 14:5363. [PMID: 36358782 PMCID: PMC9658293 DOI: 10.3390/cancers14215363] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Squamous cell carcinoma is the most common malignancy that arises in the head-and-neck district. Traditional treatment could be insufficient in case of recurrent and/or metastatic cancers; for this reason, more selective and enhanced treatments are in evaluation in preclinical and clinical trials to increase in situ concentration of chemotherapy drugs promoting a selectively antineoplastic activity. Among all cancer treatment types (i.e., surgery, chemotherapy, radiotherapy), electroporation (EP) has emerged as a safe, less invasive, and effective approach for cancer treatment. Reversible EP, using an intensive electric stimulus (i.e., 1000 V/cm) applied for a short time (i.e., 100 μs), determines a localized electric field that temporarily permealizes the tumor cell membranes while maintaining high cell viability, promoting cytoplasm cell uptake of antineoplastic agents such as bleomycin and cisplatin (electrochemotherapy), calcium (Ca2+ electroporation), siRNA and plasmid DNA (gene electroporation). The higher intracellular concentration of antineoplastic agents enhances the antineoplastic activity and promotes controlled tumor cell death (apoptosis). As secondary effects, localized EP (i) reduces the capillary blood flow in tumor tissue ("vascular lock"), lowering drug washout, and (ii) stimulates the immune system acting against cancer cells. After years of preclinical development, electrochemotherapy (ECT), in combination with bleomycin or cisplatin, is currently one of the most effective treatments used for cutaneous metastases and primary skin and mucosal cancers that are not amenable to surgery. To reach this clinical evidence, in vitro and in vivo models were preclinically developed for evaluating the efficacy and safety of ECT on different tumor cell lines and animal models to optimize dose and administration routes of drugs, duration, and intensity of the electric field. Improvements in reversible EP efficacy are under evaluation for HNSCC treatment, where the focus is on the development of a combination treatment between EP-enhanced nanotechnology and immunotherapy strategies.
Collapse
Affiliation(s)
- Silvia Pisani
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy
| | - Giulia Bertino
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy
| | - Adriele Prina-Mello
- LBCAM, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, DO2 W085 Dublin, Ireland
| | - Laura Deborah Locati
- Translational Oncology, IRCCS ICS Maugeri, 27100 Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Simone Mauramati
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Marco Benazzo
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
28
|
Egeland C, Baeksgaard L, Gehl J, Gögenur I, Achiam MP. Palliative Treatment of Esophageal Cancer Using Calcium Electroporation. Cancers (Basel) 2022; 14:cancers14215283. [PMID: 36358702 PMCID: PMC9655404 DOI: 10.3390/cancers14215283] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Calcium electroporation is a new cancer therapy wherein a high, rapid influx of calcium, facilitated by electrical pulses, is used to kill cancer cells. This pilot study aimed to evaluate the safety and feasibility of this new treatment for patients with non-curable esophageal cancer. The treatment was administrated during an endoscopic examination, under general anesthesia, and in an outpatient setting. Eight patients were treated. One severe adverse event occurred (requiring a single blood transfusion) and another three mild side effects were seen. Two patients reported dysphagia relief after treatment and one patient had a partial response evaluated by CT. Six months after treatment, the same patient was still in good condition, without the need for further treatment. Calcium electroporation was conducted in eight patients with only a few side effects. More studies are warranted to evaluate clinical efficacy. Abstract Calcium electroporation (CaEP) is a novel cancer therapy wherein high intracellular calcium levels, facilitated by reversible electroporation, trigger tumor necrosis. This study aimed to establish safety with CaEP within esophageal cancer. Patients with non-curable esophageal cancer were included at Copenhagen University Hospital Rigshospitalet in 2021 and 2022. In an outpatient setting, calcium gluconate was injected intratumorally followed by reversible electroporation applied with an endoscopic electrode. The primary endpoint was the prevalence of adverse events, followed by palliation of dysphagia. All patients were evaluated with CT and upper endoscopies up to two months after treatment. The trial was registered at ClinicalTrials.gov (NCT04958044). Eight patients were treated. One serious adverse event (anemia, requiring a single blood transfusion) and three adverse events (mild retrosternal pain (two) and oral thrush (one)) were registered. Initially, six patients suffered from dysphagia: two reported dysphagia relief and four reported no change. From the imaging evaluation, one patient had a partial response, three patients had no response, and four patients had progression. Six months after treatment, the patient who responded well was still in good condition and without the need for further oncological treatment. CaEP was conducted in eight patients with only a few side effects. This study opens the way for larger studies evaluating tumor regression and symptom palliation.
Collapse
Affiliation(s)
- Charlotte Egeland
- Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| | - Lene Baeksgaard
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Julie Gehl
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Oncology and Palliative Care, Center for Experimental Drug and Gene Electrotransfer (C*EDGE), Zealand University Hospital, 4000 Roskilde, Denmark
| | - Ismail Gögenur
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, 4600 Køge, Denmark
| | - Michael Patrick Achiam
- Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
29
|
Electroporation and Electrochemotherapy in Gynecological and Breast Cancer Treatment. Molecules 2022; 27:molecules27082476. [PMID: 35458673 PMCID: PMC9026735 DOI: 10.3390/molecules27082476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/14/2022] [Accepted: 04/10/2022] [Indexed: 12/24/2022] Open
Abstract
Gynecological carcinomas affect an increasing number of women and are associated with poor prognosis. The gold standard treatment plan is mainly based on surgical resection and subsequent chemotherapy with cisplatin, 5-fluorouracil, anthracyclines, or taxanes. Unfortunately, this treatment is becoming less effective and is associated with many side effects that negatively affect patients’ physical and mental well-being. Electroporation based on tumor exposure to electric pulses enables reduction in cytotoxic drugs dose while increasing their effectiveness. EP-based treatment methods have received more and more interest in recent years and are the subject of a large number of scientific studies. Some of them show promising therapeutic potential without using any cytotoxic drugs or molecules already present in the human body (e.g., calcium electroporation). This literature review aims to present the fundamental mechanisms responsible for the course of EP-based therapies and the current state of knowledge in the field of their application in the treatment of gynecological neoplasms.
Collapse
|
30
|
Balantič K, Weiss VU, Allmaier G, Kramar P. Calcium ion effect on phospholipid bilayers as cell membrane analogues. Bioelectrochemistry 2022; 143:107988. [PMID: 34763170 DOI: 10.1016/j.bioelechem.2021.107988] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 10/23/2021] [Indexed: 12/14/2022]
Abstract
Ion attachment can modify stability and structure of phospholipid bilayers. Of particular importance is the interaction of phospholipids with divalent cations, such as calcium ions playing an important role in numerous cellular processes. The aim of our study was to determine effects of calcium ions on phospholipid membranes employing two cell membrane analogues, liposomes and planar lipid bilayers, and for the first time the combination of two instrumental setups: gas-phase electrophoresis (nES GEMMA instrumentation) and electrical (capacitance and resistance) measurements. Liposomes and planar lipid bilayers consisted of phosphatidylcholine, cholesterol and phosphatidylethanolamine. Liposomes were prepared from dried lipid films via hydration while planar lipid bilayers were formed using a Mueller-Rudin method. Calcium ions were added to membranes from higher concentrated stock solutions. Changes in phospholipid bilayer properties due to calcium presence were observed for both studied cell membrane analogues. Changes in liposome size were observed, which might either be related to tighter packing of phospholipids in the bilayer or local distortions of the membrane. Likewise, a measurable change in planar lipid bilayer resistance and capacitance was observed in the presence of calcium ions, which can be due to an increased rigidity and tighter packing of the lipid molecules in the bilayer.
Collapse
Affiliation(s)
- Katja Balantič
- University of Ljubljana, Faculty of Electrical Engineering, Slovenia
| | - Victor U Weiss
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Günter Allmaier
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Peter Kramar
- University of Ljubljana, Faculty of Electrical Engineering, Slovenia.
| |
Collapse
|
31
|
Ca 2+ roles in electroporation-induced changes of cancer cell physiology: From membrane repair to cell death. Bioelectrochemistry 2021; 142:107927. [PMID: 34425390 DOI: 10.1016/j.bioelechem.2021.107927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
The combination of Ca2+ ions and electroporation has gained attention as potential alternative to electrochemotherapy. Ca2+ is an important component of the cell membrane repair system and its presence directly influences the dynamics of the pore cycle after electroporation which can be exploited for cancer therapies. Here, the influence of Ca2+ concentration is investigated on small molecule electrotransfer and release of Calcein from 4T1, MX-1, B16F10, U87 cancer cells after cell exposure to microsecond electric pulses. Moreover, we investigated simultaneous molecule electrotransfer and intracellular calcium ion influx when media was supplemented with different Ca2+ concentrations. Results show that increased concentrations of calcium ions reduce the electrotransfer of small molecules to different lines of cancer cells as well as the release of Calcein. These effects are related with an enhanced membrane repair mechanism. Overall, we show that the efficiency of molecular electrotransfer can be controlled by regulating Ca2+ concentration in the electroporation medium. For the first time, the cause of cancer cell death in vitro from 1 mM CaCl2 concentrations is related to the irreversible loss of Ca2+ homeostasis after cell electroporation. Our findings provide fundamental insight on the mechanisms of Ca2+ electroporation that might lead to improved therapeutic outcomes.
Collapse
|
32
|
Rudno-Rudzińska J, Kielan W, Guziński M, Płochocki M, Antończyk A, Kulbacka J. New therapeutic strategy: Personalization of pancreatic cancer treatment-irreversible electroporation (IRE), electrochemotherapy (ECT) and calcium electroporation (CaEP) - A pilot preclinical study. Surg Oncol 2021; 38:101634. [PMID: 34303953 DOI: 10.1016/j.suronc.2021.101634] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023]
Abstract
In this study, irreversible electroporation (IRE), electrochemotherapy (ECT), and calcium electroporation (CaEP) techniques were investigated as new strategies for human pancreatic cancer. Qualification of the patients, best "therapeutic moment" for each patient, safety, and complications after procedures were examined. In this pilot study were included 13 patients in this study, which were operated on in different pancreatic cancer stages. Patients underwent IRE or ECT with intravenous admission of cisplatin or electroporation with calcium intratumoral administration. The IRE procedure was safe for the patients. Medium overall survival for IRE, IRE + CTH, and IRE + CaCl2 was respectively: 16, 29.5, and 19 months comparing to 10 months in control chemotherapy (CTH) group. Thus, IRE, ECT, and CaEP can be effective strategies for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Julia Rudno-Rudzińska
- Department of General and Oncological Surgery, Medical University Hospital, Borowska 213, 50-556, Wroclaw, Poland.
| | - Wojciech Kielan
- Department of General and Oncological Surgery, Medical University Hospital, Borowska 213, 50-556, Wroclaw, Poland
| | - Maciej Guziński
- Department of Radiology Medical University Hospital, Borowska213, 50-556, Wroclaw, Poland
| | - Maciej Płochocki
- Department of Oncology Medical University Hospital, Borowska 213, 50-556, Wroclaw, Poland
| | - Agnieszka Antończyk
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 51, 50-366, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556, Wroclaw, Poland.
| |
Collapse
|
33
|
Vissing M, Ploen J, Pervan M, Vestergaard K, Schnefeldt M, Frandsen SK, Rafaelsen SR, Lindhardt CL, Jensen LH, Rody A, Gehl J. Study protocol designed to investigate tumour response to calcium electroporation in cancers affecting the skin: a non-randomised phase II clinical trial. BMJ Open 2021; 11:e046779. [PMID: 34135049 PMCID: PMC8211082 DOI: 10.1136/bmjopen-2020-046779] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Skin malignancy is a distressing problem for many patients, and clinical management is challenging. This article describes the protocol for the Calcium Electroporation Response Study (CaEP-R) designed to investigate tumour response to calcium electroporation and is a descriptive guide to calcium electroporation treatment of malignant tumours in the skin. Calcium electroporation is a local treatment that induces supraphysiological intracellular calcium levels by intratumoural calcium administration and application of electrical pulses. The pulses create transient membrane pores allowing diffusion of non-permeant calcium ions into target cells. High calcium levels can kill cancer cells, while normal cells can restore homeostasis. Prior trials with smaller cohorts have found calcium electroporation to be safe and efficient. This trial aims to include a larger multiregional cohort of patients with different cancer diagnoses and also to investigate treatment areas using MRI as well as assess impact on quality of life. METHODS AND ANALYSIS This non-randomised phase II multicentre study will investigate response to calcium electroporation in 30 patients with cutaneous or subcutaneous malignancy. Enrolment of 10 patients is planned at three centres: Zealand University Hospital, University Hospital of Southern Denmark and University Hospital Schleswig-Holstein. Response after 2 months was chosen as the primary endpoint based on short-term response rates observed in a prior clinical study. Secondary endpoints include response to treatment using MRI and change in quality of life assessed by questionnaires and qualitative interviews. ETHICS AND DISSEMINATION The trial is approved by the Danish Medicines Agency and The Danish Regional Committee on Health Research Ethics. All included patients will receive active treatment (calcium electroporation). Patients can continue systemic treatment during the study, and side effects are expected to be limited. Data will be published in a peer-reviewed journal and made available to the public. TRIAL REGISTRATION NUMBERS NCT04225767 and EudraCT no: 2019-004314-34.
Collapse
Affiliation(s)
- Mille Vissing
- Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde and Næstved, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - John Ploen
- Department of Oncology, University Hospital of Southern Denmark, Vejle, Denmark
| | - Mascha Pervan
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Lübeck, Germany
| | | | - Mazen Schnefeldt
- Department of Radiology, University Hospital of Southern Denmark, Vejle, Denmark
| | - Stine Krog Frandsen
- Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde and Næstved, Denmark
| | | | - Christina Louise Lindhardt
- University College Absalon, Sorø, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Lars Henrik Jensen
- Department of Oncology, University Hospital of Southern Denmark, Vejle, Denmark
| | - Achim Rody
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Lübeck, Germany
| | - Julie Gehl
- Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde and Næstved, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Muratori C, Silkuniene G, Mollica PA, Pakhomov AG, Pakhomova ON. The role of ESCRT-III and Annexin V in the repair of cell membrane permeabilization by the nanosecond pulsed electric field. Bioelectrochemistry 2021; 140:107837. [PMID: 34004548 DOI: 10.1016/j.bioelechem.2021.107837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/25/2023]
Abstract
Exposure of living cells to intense nanosecond pulsed electric field (nsPEF) increases membrane permeability to small solutes, presumably by the formation of nanometer-size membrane lesions. Mechanisms responsible for the restoration of membrane integrity over the course of minutes after nsPEF have not been identified. This study explored if ESCRT-III and Annexin V calcium-dependent repair mechanisms, which play critical role in resealing large membrane lesions, are also activated by electroporation and contribute to the membrane resealing. The extent of membrane damage and the time course of resealing were monitored by the time-lapse imaging of propidium (Pr) uptake in human cervical carcinoma (HeLa) cells exposed to trains of 300-ns PEF. The removal of the extracellular Ca2+ slowed down the resealing, although did not prevent it. Recruitment of CHMP4B protein, a component of ESCRT-III complex, to the electroporated plasma membrane was not observed, thus providing no evidence for possible contribution of the macro-vesicle shedding mechanism. In contrast, silencing the AnxA5 gene impaired resealing and reduced the viability of nsPEF-treated cells. We conclude that Annexin V but not ESCRT-III was involved in the repair of HeLa cells permeabilized by 300-ns stimuli, but it was not the only and perhaps not the main repair mechanism.
Collapse
Affiliation(s)
- Claudia Muratori
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Giedre Silkuniene
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; Institute for Digestive Research, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Peter A Mollica
- Department of Medical Diagnostics and Translational Sciences, Old Dominion University, Norfolk, VA, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.
| |
Collapse
|
35
|
Falk H, Vissing M, Wooler G, Gehl J. Calcium Electroporation for Keloids: A First-in-Man Phase I Study. Dermatology 2021; 237:961-969. [PMID: 33789301 DOI: 10.1159/000514307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/06/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Keloid scarring is a pathologic proliferation of scar tissue that often causes pruritus, pain, and disfigurement. Keloids can be difficult to treat and have a high risk of recurrence. Recent studies have shown promising results in the treatment of cutaneous metastases with intralesional calcium combined with electroporation (calcium electroporation). As calcium electroporation has shown limited side effects it has advantages when treating benign keloid lesions, and on this indication we performed a phase I study. METHODS Patients with keloids were treated with at least 1 session of calcium electroporation and followed up for 2 years. Calcium was administered intralesionally (220 mM) followed by the application of eight 100-µs pulses (400 V) using linear-array electrodes and Cliniporator (IGEA, Italy). Treatment efficacy was evaluated clinically (size, shape, erythema), by patient self-assessment (pruritus, pain, other) and assessed histologically. RESULTS Six patients were included in this small proof of concept study. Treatment was well tolerated, with all patients requesting further treatment. Two out of 6 patients experienced a decrease in keloid thickness over 30%. A mean reduction of 11% was observed in volume size, and a mean flattening of 22% was observed (not statistically significant). Five out of 6 patients reported decreased pain and pruritus. No serious adverse effects or recurrences were observed over a mean follow-up period of 338 days. CONCLUSION In this first phase I clinical study on calcium electroporation for keloids, treatment was found to be safe with minor side effects. Overall, patients experienced symptom relief, and in some patients keloid thickness was reduced.
Collapse
Affiliation(s)
- Hanne Falk
- Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mille Vissing
- Center for Experimental Drug and Gene Electrotransfer (C*EDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Wooler
- Department of Pathology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Julie Gehl
- Center for Experimental Drug and Gene Electrotransfer (C*EDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Łapińska Z, Dębiński M, Szewczyk A, Choromańska A, Kulbacka J, Saczko J. Electrochemotherapy with Calcium Chloride and 17β-Estradiol Modulated Viability and Apoptosis Pathway in Human Ovarian Cancer. Pharmaceutics 2020; 13:E19. [PMID: 33374223 PMCID: PMC7823502 DOI: 10.3390/pharmaceutics13010019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022] Open
Abstract
Estrogens (Es) play a significant role in the carcinogenesis and progression of ovarian malignancies. Depending on the concentration, Es may have a protective or toxic effect on cells. Moreover, they can directly or indirectly affect the activity of membrane ion channels. In the presented study, we investigated in vitro the effectiveness of the ovarian cancer cells (MDAH-2774) pre-incubation with 17β-estradiol (E2; 10 µM) in the conventional chemotherapy (CT) and electrochemotherapy (ECT) with cisplatin or calcium chloride. We used three different protocols of electroporation including microseconds (µsEP) and nanoseconds (nsEP) range. The cytotoxic effect of the applied treatment was examined by the MTT assay. We used fluorescent staining and holotomographic imaging to observe morphological changes. The immunocytochemical staining evaluated the expression of the caspase-12. The electroporation process's effectiveness was analyzed by a flow cytometer using the Yo-Pro™-1 dye absorption assay. We found that pre-incubation of ovarian cancer cells with 17β-estradiol may effectively enhance the chemo- and electrochemotherapy with cisplatin and calcium chloride. At the same time, estradiol reduced the effectiveness of electroporation, which may indicate that the mechanism of increasing the effectiveness of ECT by E2 is not related to the change of cell membrane permeability.
Collapse
Affiliation(s)
- Zofia Łapińska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (A.C.); (J.K.); (J.S.)
| | - Michał Dębiński
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (A.C.); (J.K.); (J.S.)
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (A.C.); (J.K.); (J.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (A.C.); (J.K.); (J.S.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (A.C.); (J.K.); (J.S.)
| |
Collapse
|
37
|
Kiełbik A, Szlasa W, Michel O, Szewczyk A, Tarek M, Saczko J, Kulbacka J. In Vitro Study of Calcium Microsecond Electroporation of Prostate Adenocarcinoma Cells. Molecules 2020; 25:E5406. [PMID: 33227916 PMCID: PMC7699241 DOI: 10.3390/molecules25225406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 02/08/2023] Open
Abstract
Electroporation, applied as a non-thermal ablation method has proven to be effective for focal prostate treatment. In this study, we performed pre-clinical research, which aims at exploring the specific impact of this so-called calcium electroporation on prostate cancer. First, in an in-vitro study of DU 145 cell lines, microsecond electroporation (μsEP) parameters were optimized. We determined hence the voltage that provides both high permeability and viability of these prostate cancer cells. Subsequently, we compared the effect of μsEP on cells' viability with and without calcium administration. For high-voltage pulses, the cell death's mechanism was evaluated using flow-cytometry and confocal laser microscopy. For lower-voltage pulses, the influence of electroporation on prostate cancer cell mobility was studied using scratch assays. Additionally, we applied calcium-binding fluorescence dye (Fluo-8) to observe the calcium uptake dynamic with the fluorescence microscopy. Moreover, the molecular dynamics simulation visualized the process of calcium ions inflow during μsEP. According to our results calcium electroporation significantly decreases the cells viability by promoting apoptosis. Furthermore, our data shows that the application of pulsed electric fields disassembles the actin cytoskeleton and influences the prostate cancer cells' mobility.
Collapse
Affiliation(s)
- Aleksander Kiełbik
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.K.); (W.S.)
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.K.); (W.S.)
| | - Olga Michel
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (O.M.); (A.S.); (J.S.)
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (O.M.); (A.S.); (J.S.)
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France;
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (O.M.); (A.S.); (J.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (O.M.); (A.S.); (J.S.)
| |
Collapse
|
38
|
Li L, Hu C, Lu C, Zhang K, Han R, Lin C, Zhao S, A C, Cheng C, Zhao M, He Y. Applied electric fields suppress osimertinib-induced cytotoxicity via inhibiting FOXO3a nuclear translocation through AKT activation. Carcinogenesis 2020; 41:600-610. [PMID: 31504249 DOI: 10.1093/carcin/bgz150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Osimertinib is a third-generation epidermal growth factor receptor tyrosine kinase inhibitor against T790M-mutant non-small cell lung cancer (NSCLC). Acquired resistance to osimertinib is a growing clinical challenge that is not fully understood. Endogenous electric fields (EFs), components of the tumor microenvironment, are associated with cancer cell migration and proliferation. However, the impact of EFs on drug efficiency has not been studied. In this study, we observed that EFs counteracted the effects of osimertinib. EFs of 100 mV/mm suppressed osimertinib-induced cell death and promoted cell proliferation. Transcriptional analysis revealed that the expression pattern induced by osimertinib was altered by EFs stimulation. KEGG analysis showed that differential expression genes were mostly enriched in PI3K-AKT pathway. Then, we found that osimertinib inhibited AKT phosphorylation, while EFs stimulation resulted in significant activation of AKT, which could override the effects generated by osimertinib. Importantly, pharmacological inhibition of PI3K/AKT by LY294002 diminished EF-induced activation of AKT and restored the cytotoxicity of osimertinib suppressed by EFs, which proved that AKT activation was essential for EFs to attenuate the efficacy of osimertinib. Furthermore, activation of AKT by EFs led to phosphorylation of forkhead box O3a (FOXO3a), and reduction in nuclear translocation of FOXO3a induced by osimertinib, resulting in decreased expression of Bim and attenuated cytotoxicity of osimertinib. Taken together, we demonstrated that EFs suppressed the antitumor activity of osimertinib through AKT/FOXO3a/Bim pathway, and combination of PI3K/AKT inhibitor with osimertinib counteracted the effects of EFs. Our findings provided preliminary data for therapeutic strategies to enhance osimertinib efficacy in NSCLC patients.
Collapse
Affiliation(s)
- Li Li
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Chen Hu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Kejun Zhang
- Department of Clinical Laboratory, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Han
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Sanjun Zhao
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Chunxian A
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | | | - Min Zhao
- Department of Dermatology, Department of Ophthalmology, Institute for Regenerative Cures, University of California, Davis, CA, USA
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
39
|
Frandsen SK, Gehl J, Tramm T, Thoefner MS. Calcium Electroporation of Equine Sarcoids. Animals (Basel) 2020; 10:E517. [PMID: 32204512 PMCID: PMC7143334 DOI: 10.3390/ani10030517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/28/2022] Open
Abstract
Sarcoids are common equine skin tumors where the risk of recurrence after treatment is high, and better treatment options are warranted. Calcium electroporation is a novel anti-cancer treatment where lethally high calcium concentrations are introduced into the cells by electroporation, a method where short high-voltage pulses induce transient permeabilization of the cell membrane. This study investigated the safety and long-term response of calcium electroporation on sarcoids. Thirty-two sarcoids in eight horses were included. The study suggested that calcium electroporation is a safe and feasible treatment for sarcoids, including inoperable sarcoids. Horses were treated once (2/8) or twice (6/8) under general anesthesia, where sarcoids were injected with 220 mM calcium chloride followed by electroporation with 8 pulses of 100 μs, 1 kV/cm, and 1 Hz. Biopsies were taken prior to treatment. The sarcoid size was monitored for 12-38 weeks after the first treatment. Complete response was observed in 22% (6/27) of treated sarcoids, and partial response in 22% (6/27), giving a 44% total response. Treatment efficacy did not appear to be related to location, type, or size. In all non-biopsied lesions, a complete response was seen (4/4). In conclusion, in this small study, 44% of sarcoids responded with 22% of sarcoids disappearing.
Collapse
Affiliation(s)
- Stine K. Frandsen
- Center for Experimental Drug and Gene Electrotransfer (C*EDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark
| | - Julie Gehl
- Center for Experimental Drug and Gene Electrotransfer (C*EDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Trine Tramm
- Department of Pathology, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 8200 Aarhus N, Denmark
| | | |
Collapse
|
40
|
Gibot L, Montigny A, Baaziz H, Fourquaux I, Audebert M, Rols MP. Calcium Delivery by Electroporation Induces In Vitro Cell Death through Mitochondrial Dysfunction without DNA Damages. Cancers (Basel) 2020; 12:E425. [PMID: 32059457 PMCID: PMC7072520 DOI: 10.3390/cancers12020425] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Adolescent cancer survivors present increased risks of developing secondary malignancies due to cancer therapy. Electrochemotherapy is a promising anti-cancer approach that potentiates the cytotoxic effect of drugs by application of external electric field pulses. Clinicians proposed to associate electroporation and calcium. The current study aims to unravel the toxic mechanisms of calcium electroporation, in particular if calcium presents a genotoxic profile and if its cytotoxicity comes from the ion itself or from osmotic stress. Human dermal fibroblasts and colorectal HCT-116 cell line were treated by electrochemotherapy using bleomycin, cisplatin, calcium, or magnesium. Genotoxicity, cytotoxicity, mitochondrial membrane potential, ATP content, and caspases activities were assessed in cells grown on monolayers and tumor growth was assayed in tumor spheroids. Results in monolayers show that unlike cisplatin and bleomycin, calcium electroporation induces cell death without genotoxicity induction. Its cytotoxicity correlates with a dramatic fall in mitochondrial membrane potential and ATP depletion. Opposite of magnesium, over seven days of calcium electroporation led to spheroid tumor growth regression. As non-genotoxic, calcium has a better safety profile than conventional anticancer drugs. Calcium is already authorized by different health authorities worldwide. Therefore, calcium electroporation should be a cancer treatment of choice due to the reduced potential of secondary malignancies.
Collapse
Affiliation(s)
- Laure Gibot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France; (L.G.); (A.M.); (H.B.)
| | - Audrey Montigny
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France; (L.G.); (A.M.); (H.B.)
| | - Houda Baaziz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France; (L.G.); (A.M.); (H.B.)
| | - Isabelle Fourquaux
- Centre de Microscopie Électronique Appliquée à la Biologie, CMEAB, 133 route de Narbonne, 31062 Toulouse CEDEX, France;
| | - Marc Audebert
- Toxalim, Université de Toulouse, INRAE-UMR1331, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France; (L.G.); (A.M.); (H.B.)
| |
Collapse
|
41
|
Wasson EM, Alinezhadbalalami N, Brock RM, Allen IC, Verbridge SS, Davalos RV. Understanding the role of calcium-mediated cell death in high-frequency irreversible electroporation. Bioelectrochemistry 2020; 131:107369. [PMID: 31706114 PMCID: PMC10039453 DOI: 10.1016/j.bioelechem.2019.107369] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022]
Abstract
High-frequency irreversible electroporation (H-FIRE) is an emerging electroporation-based therapy used to ablate cancerous tissue. Treatment consists of delivering short, bipolar pulses (1-10μs) in a series of 80-100 bursts (1 burst/s, 100μs on-time). Reducing pulse duration leads to reduced treatment volumes compared to traditional IRE, therefore larger voltages must be applied to generate ablations comparable in size. We show that adjuvant calcium enhances ablation area in vitro for H-FIRE treatments of several pulse durations (1, 2, 5, 10μs). Furthermore, H-FIRE treatment using 10μs pulses delivered with 1mM CaCl2 results in cell death thresholds (771±129V/cm) comparable to IRE thresholds without calcium (698±103V/cm). Quantifying the reversible electroporation threshold revealed that CaCl2 enhances the permeabilization of cells compared to a NaCl control. Gene expression analysis determined that CaCl2 upregulates expression of eIFB5 and 60S ribosomal subunit genes while downregulating NOX1/4, leading to increased signaling in pathways that may cause necroptosis. The opposite was found for control treatment without CaCl2 suggesting cells experience an increase in pro survival signaling. Our study is the first to identify key genes and signaling pathways responsible for differences in cell response to H-FIRE treatment with and without calcium.
Collapse
Affiliation(s)
- Elisa M Wasson
- Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Nastaran Alinezhadbalalami
- Department of Biomedical Engineering and Mechanics, Virginia Tech- Wake Forest University, 325 Stanger Street, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Rebecca M Brock
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, 1 Riverside Circle, Roanoke, VA 24016, United States of America; Department of Biomedical Sciences and Pathobiology, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061, USA.
| | - Irving C Allen
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, 1 Riverside Circle, Roanoke, VA 24016, United States of America; Department of Biomedical Sciences and Pathobiology, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Scott S Verbridge
- Department of Biomedical Engineering and Mechanics, Virginia Tech- Wake Forest University, 325 Stanger Street, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Rafael V Davalos
- Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road, Blacksburg, VA 24061, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech- Wake Forest University, 325 Stanger Street, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| |
Collapse
|
42
|
A Comprehensive Review of Calcium Electroporation -A Novel Cancer Treatment Modality. Cancers (Basel) 2020; 12:cancers12020290. [PMID: 31991784 PMCID: PMC7073222 DOI: 10.3390/cancers12020290] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/21/2022] Open
Abstract
Calcium electroporation is a potential novel anti-cancer treatment where high calcium concentrations are introduced into cells by electroporation, a method where short, high voltage pulses induce transient permeabilisation of the plasma membrane allowing passage of molecules into the cytosol. Calcium is a tightly regulated, ubiquitous second messenger involved in many cellular processes including cell death. Electroporation increases calcium uptake leading to acute and severe ATP depletion associated with cancer cell death. This comprehensive review describes published data about calcium electroporation applied in vitro, in vivo, and clinically from the first publication in 2012. Calcium electroporation has been shown to be a safe and efficient anti-cancer treatment in clinical studies with cutaneous metastases and recurrent head and neck cancer. Normal cells have been shown to be less affected by calcium electroporation than cancer cells and this difference might be partly induced by differences in membrane repair, expression of calcium transporters, and cellular structural changes. Interestingly, both clinical data and preclinical studies have indicated a systemic immune response induced by calcium electroporation. New cancer treatments are needed, and calcium electroporation represents an inexpensive and efficient treatment with few side effects, that could potentially be used worldwide and for different tumor types.
Collapse
|
43
|
Ágoston D, Baltás E, Ócsai H, Rátkai S, Lázár PG, Korom I, Varga E, Németh IB, Dósa-Rácz Viharosné É, Gehl J, Oláh J, Kemény L, Kis EG. Evaluation of Calcium Electroporation for the Treatment of Cutaneous Metastases: A Double Blinded Randomised Controlled Phase II Trial. Cancers (Basel) 2020; 12:E179. [PMID: 31936897 PMCID: PMC7017133 DOI: 10.3390/cancers12010179] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Calcium electroporation (Ca-EP) is a new anticancer treatment providing similar features to electrochemotherapy (ECT). The aim of our study is to compare the efficacy of Ca-EP with bleomycin-based ECT. This double-blinded randomized controlled phase II study was conducted at the Medical University of Szeged, Hungary. During this once only treatment up to ten measurable cutaneous metastases per patient were separately block randomized for intratumoral delivery of either calcium or bleomycin, which was followed by reversible electroporation. Tumour response was evaluated clinically and histologically six months after treatment. (ClinicalTrials.gov: NCT03628417, closed). Seven patients with 44 metastases (34 from malignant melanoma, 10 from breast cancer) were included in the study. Eleven metastases were taken for biopsies, and 33 metastases were randomised and treated once. The objective response rates were 33% (6/18) for Ca-EP and 53% (8/15) for bleomycin-based ECT, with 22% (4/18) and 40% (6/15) complete response rates, respectively. The CR was confirmed histologically in both arms. Serious adverse events were not registered. Ulceration and hyperpigmentation, both CTCA criteria grade I side effects, were observed more frequently after bleomycin-based ECT than for Ca-EP. Ca-EP was non-inferior to ECT, therefore, it should be considered as a feasible, effective and safe treatment option.
Collapse
Affiliation(s)
- Dóra Ágoston
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.Á.); (E.B.); (H.Ó.); (S.R.); (I.K.); (E.V.); (I.B.N.); (É.D.-R.V.); (L.K.)
| | - Eszter Baltás
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.Á.); (E.B.); (H.Ó.); (S.R.); (I.K.); (E.V.); (I.B.N.); (É.D.-R.V.); (L.K.)
| | - Henriette Ócsai
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.Á.); (E.B.); (H.Ó.); (S.R.); (I.K.); (E.V.); (I.B.N.); (É.D.-R.V.); (L.K.)
| | - Sándor Rátkai
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.Á.); (E.B.); (H.Ó.); (S.R.); (I.K.); (E.V.); (I.B.N.); (É.D.-R.V.); (L.K.)
| | - Péter Gy Lázár
- Department of Oral and Maxillofacial Surgery, University of Szeged, 6720 Szeged, Hungary;
| | - Irma Korom
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.Á.); (E.B.); (H.Ó.); (S.R.); (I.K.); (E.V.); (I.B.N.); (É.D.-R.V.); (L.K.)
| | - Erika Varga
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.Á.); (E.B.); (H.Ó.); (S.R.); (I.K.); (E.V.); (I.B.N.); (É.D.-R.V.); (L.K.)
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.Á.); (E.B.); (H.Ó.); (S.R.); (I.K.); (E.V.); (I.B.N.); (É.D.-R.V.); (L.K.)
| | - Éva Dósa-Rácz Viharosné
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.Á.); (E.B.); (H.Ó.); (S.R.); (I.K.); (E.V.); (I.B.N.); (É.D.-R.V.); (L.K.)
| | - Julie Gehl
- Center for Experimental Drug and Gene Electrotransfer (C*EDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, 4000 Roskilde, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Judit Oláh
- Department of Oncotherapy, University of Szeged, 6720 Szeged, Hungary;
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.Á.); (E.B.); (H.Ó.); (S.R.); (I.K.); (E.V.); (I.B.N.); (É.D.-R.V.); (L.K.)
| | - Erika Gabriella Kis
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.Á.); (E.B.); (H.Ó.); (S.R.); (I.K.); (E.V.); (I.B.N.); (É.D.-R.V.); (L.K.)
| |
Collapse
|
44
|
Kim HB, Lee S, Shen Y, Ryu PD, Lee Y, Chung JH, Sung CK, Baik KY. Physicochemical factors that affect electroporation of lung cancer and normal cell lines. Biochem Biophys Res Commun 2019; 517:703-708. [PMID: 31387747 DOI: 10.1016/j.bbrc.2019.07.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 01/04/2023]
Abstract
Electroporation is used for cancer therapy to efficiently destroy cancer tissues by transferring anticancer drugs into cancer cells or by irreversible tumor ablation without resealing pores. There is growing interest in the electroporation method for the treatment of lung cancer, which has the highest mortality rate among cancers. Improving the cancer cell selectivity has the potential to expand its use. However, the factors that influence the cell selectivity of electroporation are debatable. We aimed to identify the important factors that influence the efficiency of electroporation in lung cells. The electropermeabilization of lung cancer cells (H460, A549, and HCC1588) and normal lung cells (MRC5, WI26 and L132) was evaluated by the transfer of fluorescence dyes. We found that membrane permeabilization increased as cell size, membrane stiffness, resting transmembrane potential, and lipid cholesterol ratio increased. Among them, lipid composition was found to be the most relevant factor in the electroporation of lung cells. Our results provide insight into the differences between lung cancer cells and normal lung cells and provide a basis for enhancing the sensitivity of lung cancers cells to electroporation.
Collapse
Affiliation(s)
- Hong Bae Kim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Seho Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, South Korea
| | - Yiming Shen
- Department of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Pan-Dong Ryu
- Department of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Yunmi Lee
- Department of Chemistry, Kwangwoon University, Seoul, 01897, South Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Chang Kyu Sung
- Department of Radiology, Seoul National University College of Medicine, Seoul, 07061, South Korea.
| | - Ku Youn Baik
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea.
| |
Collapse
|
45
|
Galant L, Delverdier M, Lucas MN, Raymond-Letron I, Teissie J, Tamzali Y. Calcium electroporation: The bioelectrochemical treatment of spontaneous equine skin tumors results in a local necrosis. Bioelectrochemistry 2019; 129:251-258. [PMID: 31229863 DOI: 10.1016/j.bioelechem.2019.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022]
Abstract
Electrochemotherapy (ECT) is an anticancer bioelectrochemical therapy where electrical field pulses (electropermeabilization) increase intracellular concentration of antitumor drugs. The procedure is very effective against skin tumors. The restrictive regulations concerning anticancer drugs in veterinary medicine limit use of ECT. Electroporation with calcium (Electroporation Calcium Therapy)(ECaT) was proved to be effective in vivo on induced tumors in laboratory animals. This study evaluated the effects of ECaT in equine sarcoids (spontaneous skin tumors) on an animal cohort. Pulse parameters for ECaT were choosen for using skin contact electrodes. ECaT was applied under general anesthesia. The tumors were removed at different days after the treatment and analyzed by histology. The study assessed the volume fraction of necrosis that was >50% for 9 of 13 sarcoids. Sixteen sarcoids in 10 horses were treated with ECaT. Macroscopic changes (a crust) were observed in 14/16 tumors. The main microscopic changes were necrosis, ulceration,hemorrhages, calcifications and thrombosis. The adverse effect was an inflammatory local reaction. Surrounding tissues were not affected. This targeted effect can be explained by its control by the field distribution in the tissue and on the interstitial diffusion of the injected Ca2+.
Collapse
Affiliation(s)
- Laurine Galant
- Equine Clinic, National Veterinary School of Toulouse, France
| | - Maxence Delverdier
- Department of Histopathology, National Veterinary School of Toulouse, France
| | - Marie-Noëlle Lucas
- Department of Histopathology, National Veterinary School of Toulouse, France
| | - Isabelle Raymond-Letron
- Department of Histopathology, National Veterinary School of Toulouse, France; Platform of Experimental and Compared Histopathology, STROMALab, UMR UPS/CNRS 5223, EFS, Inserm U1031, Toulouse, France
| | - Justin Teissie
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France.
| | - Youssef Tamzali
- Equine Clinic, National Veterinary School of Toulouse, France
| |
Collapse
|