1
|
Kurabi A, Dewan K, Kerschner JE, Leichtle A, Li JD, Santa Maria PL, Preciado D. PANEL 3: Otitis media animal models, cell culture, tissue regeneration & pathophysiology. Int J Pediatr Otorhinolaryngol 2024; 176:111814. [PMID: 38101097 DOI: 10.1016/j.ijporl.2023.111814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
OBJECTIVE To review and summarize recently published key articles on the topics of animal models, cell culture studies, tissue biomedical engineering and regeneration, and new models in relation to otitis media (OM). DATA SOURCE Electronic databases: PubMed, National Library of Medicine, Ovid Medline. REVIEW METHODS Key topics were assigned to the panel participants for identification and detailed evaluation. The PubMed reviews were focused on the period from June 2019 to June 2023, in any of the objective subject(s) or keywords listed above, noting the relevant references relating to these advances with a global overview and noting areas of recommendation(s). The final manuscript was prepared with input from all panel members. CONCLUSIONS In conclusion, ex vivo and in vivo OM research models have seen great advancements in the past 4 years. From the usage of novel genetic and molecular tools to the refinement of in vivo inducible and spontaneous mouse models, to the introduction of a wide array of reliable middle ear epithelium (MEE) cell culture systems, the next five years are likely to experience exponential growth in OM pathophysiology discoveries. Moreover, advances in these systems will predictably facilitate rapid means for novel molecular therapeutic studies.
Collapse
Affiliation(s)
- Arwa Kurabi
- Department of Otolaryngology, University of California San Diego, School of Medicine, La Jolla, CA, USA.
| | - Kalyan Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Joseph E Kerschner
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anke Leichtle
- Department of Otorhinolaryngology, University of Luebeck, Luebeck, Germany
| | - Jian-Dong Li
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Peter Luke Santa Maria
- Department of Otolaryngology - Head & Neck Surgery, Stanford University, Stanford, CA, USA
| | - Diego Preciado
- Children's National Hospital, Division of Pediatric Otolaryngology, Washington, DC, USA
| |
Collapse
|
2
|
Blaine‐Sauer S, Samuels TL, Khampang P, Yan K, McCormick ME, Chun RH, Harvey SA, Friedland DR, Johnston N, Kerschner JE. Establishment of novel immortalized middle ear cell lines as models for otitis media. Laryngoscope Investig Otolaryngol 2023; 8:1428-1435. [PMID: 37899851 PMCID: PMC10601576 DOI: 10.1002/lio2.1141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/08/2023] [Indexed: 10/31/2023] Open
Abstract
Objective Otitis media (OM) is among the most frequently diagnosed pediatric diseases in the US. Despite the significant public health burden of OM and the contribution research in culture models has made to understanding its pathobiology, a singular immortalized human middle ear epithelial (MEE) cell line exists (HMEEC-1, adult-derived). We previously developed MEE cultures from pediatric patients with non-inflamed MEE (PCI), recurrent OM (ROM), or OM with effusion (OME) and demonstrated differences in their baseline inflammatory cytokine expression and response to stimulation with an OM-relevant pathogen lysate and cytokines. Herein, we sought to immortalize these cultures and assess retention of their phenotypes. Methods MEE cultures were immortalized via lentivirus encoding temperature-sensitive SV40 T antigen. Immortalized MEE lines and HMEEC-1 grown in monolayer were stimulated with non-typeable Haemophilus influenzae (NTHi) lysate. Gene expression (TNFA, IL1B, IL6, IL8, MUC5AC, and MUC5B) was assessed by qPCR. Results Similar to parental cultures, baseline cytokine expressions were higher in pediatric OM lines than in HMEEC-1 and PCI, and HMEEC-1 cells were less responsive to stimulation than pediatric lines. Conclusion Immortalized MEE lines retained the inflammatory expression and responsiveness of their tissues of origin and differences between non-OM versus OM and pediatric versus adult cultures, supporting their value as novel in vitro culture models for OM.
Collapse
Affiliation(s)
- Simon Blaine‐Sauer
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Tina L. Samuels
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Pawjai Khampang
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Ke Yan
- Department of Pediatrics Quantitative Health SciencesMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Michael E. McCormick
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWisconsinUSA
- Children's WisconsinMilwaukeeWisconsinUSA
| | - Robert H. Chun
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWisconsinUSA
- Children's WisconsinMilwaukeeWisconsinUSA
| | - Steven A. Harvey
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWisconsinUSA
- Children's WisconsinMilwaukeeWisconsinUSA
- Froedtert HospitalMilwaukeeWisconsinUSA
| | - David R. Friedland
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWisconsinUSA
- Children's WisconsinMilwaukeeWisconsinUSA
- Froedtert HospitalMilwaukeeWisconsinUSA
| | - Nikki Johnston
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Joseph E. Kerschner
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWisconsinUSA
- Children's WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
3
|
Baumlin N, Silswal N, Dennis JS, Niloy AJ, Kim MD, Salathe M. Nebulized Menthol Impairs Mucociliary Clearance via TRPM8 and MUC5AC/MUC5B in Primary Airway Epithelial Cells. Int J Mol Sci 2023; 24:1694. [PMID: 36675209 PMCID: PMC9865048 DOI: 10.3390/ijms24021694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Flavorings enhance the palatability of e-cigarettes (e-cigs), with menthol remaining a popular choice among e-cig users. Menthol flavor remains one of the only flavors approved by the United States FDA for use in commercially available, pod-based e-cigs. However, the safety of inhaled menthol at the high concentrations used in e-cigs remains unclear. Here, we tested the effects of menthol on parameters of mucociliary clearance (MCC) in air-liquid interface (ALI) cultures of primary airway epithelial cells. ALI cultures treated with basolateral menthol (1 mM) showed a significant decrease in ciliary beat frequency (CBF) and airway surface liquid (ASL) volumes after 24 h. Menthol nebulized onto the surface of ALI cultures similarly reduced CBF and increased mucus concentrations, resulting in decreased rates of mucociliary transport. Nebulized menthol further increased the expression of mucin 5AC (MUC5AC) and mRNA expression of the inflammatory cytokines IL1B and TNFA. Menthol activated TRPM8, and the effects of menthol on MCC and inflammation could be blocked by a specific TRPM8 antagonist. These data provide further evidence that menthol at the concentrations used in e-cigs could cause harm to the airways.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthias Salathe
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Nano-silver composite antibacterial gel in the treatment of otitis media. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
5
|
Singh R, Birru B, Veit JGS, Arrigali EM, Serban MA. Development and Characterization of an In Vitro Round Window Membrane Model for Drug Permeability Evaluations. Pharmaceuticals (Basel) 2022; 15:ph15091105. [PMID: 36145326 PMCID: PMC9504332 DOI: 10.3390/ph15091105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 12/11/2022] Open
Abstract
Hearing loss and balance disorders are highly common disorders, and the development of effective oto-therapeutics remains an area of intense research. Drug development and screening in the hearing research field heavily rely on the use of preclinical models with often ambiguous translational relevance. This often leads to failed advancement in the market of effective therapeutics. In this context, especially for inner ear-specific pathologies, the availability of an in vitro, physiologically relevant, round window membrane (RWM) model could enable rapid, high-throughput screening of potential topical drugs for inner ear and cochlear dysfunctions and could help accelerate the advancement to clinic and market of more viable drug candidates. In this study, we report the development and evaluation of an in vitro model that mimics the native RWM tissue morphology and microenvironment as shown via immunostaining and histological analyses. The developed three-dimensional (3D) in vitro model was additionally assessed for barrier integrity by transepithelial electrical resistance, and the permeability of lipophilic and hydrophilic drugs was determined. Our collective findings suggest that this in vitro model could serve as a tool for rapid development and screening of topically deliverable oto-therapeutics.
Collapse
Affiliation(s)
- Ruby Singh
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Dr., Skaggs 394, Missoula, MT 59812, USA
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT 59812, USA
| | - Bhaskar Birru
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Dr., Skaggs 394, Missoula, MT 59812, USA
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT 59812, USA
| | - Joachim G. S. Veit
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Dr., Skaggs 394, Missoula, MT 59812, USA
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT 59812, USA
| | - Elizabeth M. Arrigali
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Dr., Skaggs 394, Missoula, MT 59812, USA
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT 59812, USA
| | - Monica A. Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Dr., Skaggs 394, Missoula, MT 59812, USA
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT 59812, USA
- Correspondence:
| |
Collapse
|
6
|
Benecke L, Chen Z, Zeidler-Rentzsch I, von Witzleben M, Bornitz M, Zahnert T, Neudert M, Cherif C, Aibibu D. Development of electrospun, biomimetic tympanic membrane implants with tunable mechanical and oscillatory properties for myringoplasty. Biomater Sci 2022; 10:2287-2301. [PMID: 35363238 DOI: 10.1039/d1bm01815a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Most commonly, autologous grafts are used in tympanic membrane (TM) reconstruction. However, apart from the limited availability and the increased surgical risk, they cannot replicate the full functionality of the human TM properly. Hence, biomimetic synthetic TM implants have been developed in our project to overcome these drawbacks. These innovative TM implants are made from synthetic biopolymer polycaprolactone (PCL) and silk fibroin (SF) by electrospinning technology. Static and dynamic experiments have shown that the mechanical and oscillatory behavior of the TM implants can be tuned by adjusting the solution concentration, the SF and PCL mixing ratio and the electrospinning parameters. In addition, candidates for TM implants could have comparable acousto-mechanical properties to human TMs. Finally, these candidates were further validated in in vitro experiments by performing TM reconstruction in human cadaver temporal bones. The reconstructed TM with SF-PCL blend membranes fully recovered the acoustic vibration when the perforation was smaller than 50%. Furthermore, the handling, medium adhesion and transparency of the developed TM implants were similar to those of human TMs.
Collapse
Affiliation(s)
- Lukas Benecke
- Technische Universität Dresden, Faculty of Mechanical Science and Engineering, Institute of Textile Machinery and High Performance Material Technology, Breitscheidstraße 78, 01237 Dresden, Germany.
| | - Zhaoyu Chen
- Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, Ear Research Center Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Ines Zeidler-Rentzsch
- Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, Ear Research Center Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Max von Witzleben
- Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Center for Translational Bone, Joint and Soft Tissue Research, Fetscherstraße 74, 01307 Dresden, Germany
| | - Matthias Bornitz
- Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, Ear Research Center Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Thomas Zahnert
- Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, Ear Research Center Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Marcus Neudert
- Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, Ear Research Center Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Chokri Cherif
- Technische Universität Dresden, Faculty of Mechanical Science and Engineering, Institute of Textile Machinery and High Performance Material Technology, Breitscheidstraße 78, 01237 Dresden, Germany.
| | - Dilbar Aibibu
- Technische Universität Dresden, Faculty of Mechanical Science and Engineering, Institute of Textile Machinery and High Performance Material Technology, Breitscheidstraße 78, 01237 Dresden, Germany.
| |
Collapse
|
7
|
Mather MW, Verdon B, Botting RA, Engelbert J, Delpiano L, Xu X, Hatton C, Davey T, Lisgo S, Yates P, Dawe N, Bingle CD, Haniffa M, Powell J, Ward C. Development of a physiological model of human middle ear epithelium. Laryngoscope Investig Otolaryngol 2021; 6:1167-1174. [PMID: 34667862 PMCID: PMC8513425 DOI: 10.1002/lio2.661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Otitis media is an umbrella term for middle ear inflammation; ranging from acute infection to chronic mucosal disease. It is a leading cause of antimicrobial therapy prescriptions and surgery in children. Despite this, treatments have changed little in over 50 years. Research has been limited by the lack of physiological models of middle ear epithelium. METHODS We develop a novel human middle ear epithelial culture using an air-liquid interface (ALI) system; akin to the healthy ventilated middle ear in vivo. We validate this using immunohistochemistry, immunofluorescence, scanning and transmission electron microscopy, and membrane conductance studies. We also utilize this model to perform a pilot challenge of middle ear epithelial cells with SARS-CoV-2. RESULTS We demonstrate that human middle ear epithelial cells cultured at an ALI undergo mucociliary differentiation to produce diverse epithelial subtypes including basal (p63+), goblet (MUC5AC+, MUC5B+), and ciliated (FOXJ1+) cells. Mature ciliagenesis is visualized and tight junction formation is shown with electron microscopy, and confirmed by membrane conductance. Together, these demonstrate this model reflects the complex epithelial cell types which exist in vivo. Following SARS-CoV-2 challenge, human middle ear epithelium shows positive viral uptake, as measured by polymerase chain reaction and immunohistochemistry. CONCLUSION We describe a novel physiological system to study the human middle ear. This can be utilized for translational research into middle ear diseases. We also demonstrate, for the first time under controlled conditions, that human middle ear epithelium is susceptible to SARS-CoV-2 infection, which has important clinical implications for safe otological surgery. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
- Michael William Mather
- Faculty of Medical SciencesBiosciences Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
- Department of OtolaryngologyFreeman HospitalNewcastle‐upon‐TyneUK
| | - Bernard Verdon
- Faculty of Medical SciencesBiosciences Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Rachel Anne Botting
- Faculty of Medical SciencesBiosciences Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Justin Engelbert
- Faculty of Medical SciencesBiosciences Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Livia Delpiano
- Faculty of Medical SciencesBiosciences Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Xin Xu
- Newcastle Biobank, Faculty of Medical SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Catherine Hatton
- Faculty of Medical SciencesTranslational and Clinical Research Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Tracey Davey
- Electron Microscopy Research Services, Faculty of Medical SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Steven Lisgo
- Faculty of Medical SciencesBiosciences Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Philip Yates
- Department of OtolaryngologyFreeman HospitalNewcastle‐upon‐TyneUK
| | - Nicholas Dawe
- Department of OtolaryngologyFreeman HospitalNewcastle‐upon‐TyneUK
| | - Colin D. Bingle
- Department of Infection, Immunity and Cardiovascular DiseaseThe Medical SchoolSheffieldUK
| | - Muzlifah Haniffa
- Faculty of Medical SciencesBiosciences Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Jason Powell
- Department of OtolaryngologyFreeman HospitalNewcastle‐upon‐TyneUK
- Faculty of Medical SciencesTranslational and Clinical Research Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Chris Ward
- Faculty of Medical SciencesTranslational and Clinical Research Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| |
Collapse
|
8
|
Mulay A, Chowdhury MMK, James CT, Bingle L, Bingle CD. The transcriptional landscape of the cultured murine middle ear epithelium in vitro. Biol Open 2021; 10:258492. [PMID: 33913472 PMCID: PMC8084567 DOI: 10.1242/bio.056564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
Otitis media (OM) is the most common paediatric disease and leads to significant morbidity. Although understanding of underlying disease mechanisms is hampered by complex pathophysiology, it is clear that epithelial abnormalities underpin the disease. The mechanisms underpinning epithelial remodelling in OM remain unclear. We recently described a novel in vitro model of mouse middle ear epithelial cells (mMEECs) that undergoes mucociliary differentiation into the varied epithelial cell populations seen in the middle ear cavity. We now describe genome wide gene expression profiles of mMEECs as they undergo differentiation. We compared the gene expression profiles of original (uncultured) middle ear cells, confluent cultures of undifferentiated cells and cells that had been differentiated for 7 days at an air liquid interface (ALI). >5000 genes were differentially expressed among the three groups of cells. Approximately 4000 genes were differentially expressed between the original cells and day 0 of ALI culture. The original cell population was shown to contain a mix of cell types, including contaminating inflammatory cells that were lost on culture. Approximately 500 genes were upregulated during ALI induced differentiation. These included some secretory genes and some enzymes but most were associated with the process of ciliogenesis. The data suggest that the in vitro model of differentiated murine middle ear epithelium exhibits a transcriptional profile consistent with the mucociliary epithelium seen within the middle ear. Knowledge of the transcriptional landscape of this epithelium will provide a basis for understanding the phenotypic changes seen in murine models of OM. Summary: This paper presents a genome wide transcriptional analysis of murine middle ear epithelial cells as they undergo differentiation to a mucociliary phenotype representative of the native middle ear epithelium.
Collapse
Affiliation(s)
- Apoorva Mulay
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
| | - Md Miraj K Chowdhury
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
| | - Cameron T James
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
| | - Lynne Bingle
- Oral and Maxillofacial Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Colin D Bingle
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.,The Florey Institute for Host Pathogen Interactions, University of Sheffield, Sheffield S102TN, UK
| |
Collapse
|