1
|
Jalessi M, Moghaddam YT, Khanmohammadi M, Hassanzadeh S, Azad Z, Farhadi M. Sustained co-release of ciprofloxacin and dexamethasone in rabbit maxillary sinus using polyvinyl alcohol-based hydrogel microparticle. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:60. [PMID: 39348071 PMCID: PMC11442669 DOI: 10.1007/s10856-024-06832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
Topical delivery to paranasal sinuses through sustained-release stents is one of the new horizons in treating chronic rhinosinusitis (CRS). This study aims to introduce and evaluate sustained co-release of encapsulated ciprofloxacin (CIP) and dexamethasone (DEX) in polyvinyl alcohol-based carriers within the maxillary sinus of rabbit animals. DEX and CIP were loaded in a tyramine-substituted polyvinyl alcohol microparticle (PVATyr MP). The mechanical stability, degradability, and sustained-release patterns of both drugs as well as cellular cytocompatibility were assessed in vitro. The PVATyr MPs were then injected into the maxillary sinus of rabbits and they were monitored weekly for 21 days. Nasal endoscopy, MRI imaging, and tissue microscopy were used to follow the changes and compared them with the control condition. Also, the concentrations of drugs were evaluated in the maxillary sinus and blood samples over the study period. Produced PVA-based MPs possessed a relatively narrow particle size distribution (CV 7.7%) with proper physical stability until 30 days of incubation. The uniform-sized PVATyr MPs and their surrounding hydrogel showed sustained-release profiles for DEX and CIP for up to 32 days in vitro. The injected drugs-loaded hydrogel showed complete clearance from the maxillary sinus of rabbits within 28 days. The concentrations of DEX and CIP in mucosal remained within the therapeutic window when measured on days 7, 14, and 21, which were well above the plasma concentrations without any pathological changes in endoscopy, MRI imaging, and histological examinations. DEX/CIP loaded PVATyr MPs provided an effective, controlled, and safe sustained-drug delivery in both in vitro and in vivo analyses at therapeutic concentrations with minimal systemic absorption, suggesting a promising treatment approach for CRS.
Collapse
Affiliation(s)
- Maryam Jalessi
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences (IUMS), Tehran, Iran
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Yasaman Tavakoli Moghaddam
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mehdi Khanmohammadi
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland.
| | - Sajad Hassanzadeh
- Eye Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Zahra Azad
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
2
|
Lim DJ, Bicknell BT, Rivers N, Jones MP, Menon AJ, Kelly OJ, Skinner D, Zhang S, Woodworth BA, Cho DY. Safety and Pharmacokinetics of a Ciprofloxacin and Azithromycin Stent for Chronic Rhinosinusitis. Laryngoscope 2024; 134:3953-3959. [PMID: 38563347 PMCID: PMC11305968 DOI: 10.1002/lary.31431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES Previously, we developed a novel double-coated sinus stent containing ciprofloxacin (inner layer) and azithromycin (outer layer) (CASS), but released drug concentrations were found to be insufficient for clinical usage. Our objectives are to improve drug release of CASS and assess safety and pharmacokinetics in rabbits. METHODS Dip coating was used to create the CASS with 2 mg ciprofloxacin and 5 mg azithromycin. A uniformed double coating was assessed with scanning electron microscopy (SEM), and the release patterns of both drugs and lactate dehydrogenase (LDH) assay were evaluated over 14 days in vitro. Safety, tolerability, and pharmacokinetics of the CASS were tested in rabbits through insertion into the maxillary sinus and evaluated with nasal endoscopy, CT scans, histology, blood counts and chemistries, and in vivo drug release. RESULTS SEM confirmed the uniformity of the dual coating of ciprofloxacin and azithromycin, and thickness (μm) was found to be 14.7 ± 2.4 and 28.1 ± 4.6, respectively. The inner coated ciprofloxacin showed a sustained release over 14 days (release %) when soaked in saline solution (day 7, 86.2 ± 3.4 vs. day 14,99.2 ± 5.1). In vivo analysis showed that after 12 days, 78.92 ± 7.67% of CP and 84.12 ± 0.45% of AZ were released into the sinus. There were no significant differences in body weight, white blood cell counts, and radiographic changes before and after CASS placement. No significant histological changes were observed compared to the contralateral control side. CONCLUSION Findings suggest that the CASS is an effective method for delivering therapeutic levels of antibiotics. Further studies are needed to validate efficacy in a preclinical sinusitis model. LEVEL OF EVIDENCE N/A Laryngoscope, 134:3953-3959, 2024.
Collapse
Affiliation(s)
- Dong-Jin Lim
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brenton T. Bicknell
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nicholas Rivers
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Martin P. Jones
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Adithya J Menon
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Olivia Jo Kelly
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Daniel Skinner
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shaoyan Zhang
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bradford A. Woodworth
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Do-Yeon Cho
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Division of Otolaryngology, Department of Surgery, Veterans Affairs, Birmingham, Alabama, United States of America
| |
Collapse
|
3
|
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is comprised of a diverse group of endotypes that cause significant morbidity for afflicted patients. While endoscopic sinus surgery helps ameliorate the disease, polyps frequently recur. Newer strategies are intended to provide access for topical steroid irrigations in attempts to improve the disease process and quality of life, and decrease overall recurrence of polyps. OBJECTIVE To review the current literature examining the latest surgical approaches for CRSwNP. METHODS Review article. RESULTS In dealing with the recalcitrant nature of CRSwNP, surgical techniques have simultaneously become more nuanced and aggressive. Bony resection in anatomically unfavorable areas such as the frontal, maxillary, and sphenoid outflow regions, replacing diseased or denuded mucosa with healthy grafts or flaps at the neo-ostia, and introducing drug-eluting biomaterials to newly opened sinus outflow tracts are highlights in the recent advancements in sinus surgery for CRSwNP. The Draf 3 or modified endoscopic Lothrop procedure has become a standard technique and demonstrated to improve quality of life and decrease polyp recurrence. A number of mucosal grafting or mucosal flap techniques have been described that cover exposed bone of the neo-ostium and evidence shows that this improves healing and diameter of the Draf 3. Partial middle turbinectomy, while controversial, appears to help decrease polyp recurrence in long-term follow-up studies. Modified endoscopic medial maxillectomy improves access to the maxillary sinus mucosa, facilitates debridement and, particularly, in the cystic fibrosis nasal polyp patient, improves overall management of the disease. Sphenoid drill-out procedure provides wider access for topical steroid irrigations and also may improve management of CRSwNP. CONCLUSION Surgical intervention remains a mainstay of therapy for CRSwNP. Newer techniques revolve around improving access for topical steroid therapy.
Collapse
Affiliation(s)
- T Graham Norwood
- Department of Otolaryngology/Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jessica W Grayson
- Department of Otolaryngology/Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bradford A Woodworth
- Department of Otolaryngology/Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
4
|
Cho DY, Zhang S, Skinner DF, Lim DJ, Banks C, Grayson JW, Tearney GJ, Rowe SM, Woodworth BA. Ivacaftor restores delayed mucociliary transport caused by Pseudomonas aeruginosa-induced acquired cystic fibrosis transmembrane conductance regulator dysfunction in rabbit nasal epithelia. Int Forum Allergy Rhinol 2022; 12:690-698. [PMID: 34704673 PMCID: PMC9038953 DOI: 10.1002/alr.22907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Abnormal chloride (Cl- ) transport dehydrates airway surface liquid (ASL) in sinonasal epithelium leading to mucus stasis and chronic rhinosinusitis. As an experimental epithelium, rabbit tissue provides an excellent representation of human sinus disease, and the rabbit sinusitis model is both established and well suited for therapeutic interventions in vivo. Our objective in this study was to evaluate whether ivacaftor reverses the consequences of Pseudomonas aeruginosa-induced acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. METHODS Rabbit nasal cavities were assessed for responsiveness to ivacaftor in vivo (by nasal potential difference [NPD] assay). Rabbit nasal epithelial (RNE) cultures were incubated with an ultrafiltrate of P aeruginosa (PAO1 strain) for 4 hours and tested for acquired CFTR dysfunction. Markers of mucociliary function, including airway surface liquid depth (ASL), periciliary liquid depth (PCL), ciliary beat frequency (CBF), and mucociliary transport (MCT), were measured by micro-optical coherence tomography (μOCT) after PAO1 and/or ivacaftor incubation. RESULTS Ivacaftor resulted in a significant mean NPD polarization of 21.8 ± 2.1 mV, which was significantly greater than that seen in the low Cl- control (12.9 ± 1.3; p = 0.01). PAO1 exposure induced a state of acquired CFTR dysfunction in rabbit nasal epithelium as measured by forskolin-stimulated short-circuit current (ISC ) (control, 37.0 ± 1.1 μA/cm2 ; PAO1, 24.4 ± 1.1 μA/cm2 ; p < 0.001). RNE cultures exposed to PAO1 had inhibited mucociliary function, whereas coincubation with ivacaftor restored mucociliary clearance, as measured by μOCT. CONCLUSION In rabbit nasal epithelium, ivacaftor robustly stimulates CFTR-mediated Cl- secretion and normalizes ASL and CBF in PAO1-induced acquired CFTR dysfunction. Preclinical testing of CFTR potentiators as therapy for P aeruginosa rabbit sinusitis is planned.
Collapse
Affiliation(s)
- Do-Yeon Cho
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham AL,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham AL,Division of Otolaryngology, Department of Surgery, Veterans Affairs, Birmingham, AL
| | - Shaoyan Zhang
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham AL,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham AL
| | - Daniel F. Skinner
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham AL,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham AL
| | - Dong Jin Lim
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham AL,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham AL
| | - Catherine Banks
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham AL
| | - Jessica W. Grayson
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham AL
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA,Department of Pathology, Harvard Medical School, Boston, MA
| | - Steven M. Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham AL,Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL,Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Bradford A. Woodworth
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham AL,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham AL
| |
Collapse
|
5
|
Surgical Applications of Materials Engineered with Antimicrobial Properties. Bioengineering (Basel) 2022; 9:bioengineering9040138. [PMID: 35447700 PMCID: PMC9030825 DOI: 10.3390/bioengineering9040138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
The infection of surgically placed implants is a problem that is both large in magnitude and that broadly affects nearly all surgical specialties. Implant-associated infections deleteriously affect patient quality-of-life and can lead to greater morbidity, mortality, and cost to the health care system. The impact of this problem has prompted extensive pre-clinical and clinical investigation into decreasing implant infection rates. More recently, antimicrobial approaches that modify or treat the implant directly have been of great interest. These approaches include antibacterial implant coatings (antifouling materials, antibiotics, metal ions, and antimicrobial peptides), antibacterial nanostructured implant surfaces, and antibiotic-releasing implants. This review provides a compendium of these approaches and the clinical applications and outcomes. In general, implant-specific modalities for reducing infections have been effective; however, most applications remain in the preclinical or early clinical stages.
Collapse
|
6
|
Alleviation of Surgery-Induced Osteitis in Sinonasal Cavity by Dexamethasone-Loaded Poly(lactic-co-glycolic acid) (PLGA) Microparticles with Strong Calcium-Binding Affinity. Pharmaceutics 2022; 14:pharmaceutics14030546. [PMID: 35335922 PMCID: PMC8950508 DOI: 10.3390/pharmaceutics14030546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
For the treatment of sinus surgery-induced osteitis in chronic rhinosinusitis (CRS), oral or intranasal administration of corticoids is generally used, although it has critical limitations and unavoidable side effects. To overcome these limitations, we designed dexamethasone (Dex)-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles with bone-specific binding affinity, which could release the encapsulated Dex in a sustained manner on the exposed bone after the surgical wound in the nasal cavity. In a previous report, we prepared poly(butyl methacrylate-co-methacryloyloxyethyl phosphate) (PBMP) with both calcium-binding phosphomonoester groups and PLGA-binding butyl groups to introduce strong calcium-binding property to PLGA particles. In this study, after successful encapsulation of Dex in the PBMP-coated PLGA particles, we applied the Dex-PLGA/PBMP to the treatment of post-operative osteitis in the sinonasal cavity. The Dex-PLGA/PBMP showed more than 5-times higher binding affinity to the hydroxyapatite (HA) surface compared to the non-coated PLGA particles, without altering the morphology and encapsulation efficiency. After establishing the neo-osteogenesis mouse model by mechanical injury of the nasal mucosa, the activity of intranasally administered Dex-PLGA/PBMP was examined to inhibit the formation of undesirable new woven bone during the wound healing process. In addition, significantly lower osteocalcin activity was observed in the group treated with Dex-PLGA/PBMP, indicating decreased activation of osteoblasts. Overall, these results demonstrate that the PLGA/PBMP microparticle strategy has great potential for the treatment of CRS-related osteitis by localized corticoid delivery on the exposed bones with minimal side effects.
Collapse
|
7
|
Lim DJ, Skinner D, West JM, Ayinala S, Zhang S, Grayson JW, Woodworth BA, Cho DY. In vitro evaluation of a novel oxygen-generating biomaterial for chronic rhinosinusitis therapy. Int Forum Allergy Rhinol 2022; 12:181-190. [PMID: 34448372 PMCID: PMC8792167 DOI: 10.1002/alr.22875] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Hypoxia due to closure at the ostiomeatal complex is widely considered one of the major pathogenic mechanisms leading to chronic inflammation in chronic rhinosinusitis (CRS). The objective of this study was to develop and characterize an oxygen-generating biomaterial (OGB) as an innovative treatment strategy for CRS. METHODS An OGB was fabricated by coating hydrophobic beeswax (BW, 15mg or 30mg) on the surface of calcium peroxide - catalase complex (CPO-CA, 30mg) and characterized using scanning electron microscopy (SEM). In vitro releases of both oxygen and hydrogen peroxide (H2 O2 ) were spectrophotometrically quantified, and cytotoxicity in human sinonasal epithelial cells (HSNECs) was evaluated. The influence of OGB on transepithelial Cl- secretion was also determined by pharmacologically manipulating HSNECs, cultured under hypoxic conditions, in Ussing chambers. RESULTS Three groups of OGBs: (1) CPO only; (2) CPO coated with CA and BW (1:1 ratio, CPO-CA(1)-BW(1)); and (3) CPO coated with CA and BW (1:0.5 ratio, CPO-CA(1)-BW(0.5) were analyzed for accumulated oxygen release over 7 days: highest release (mmol/mg) was observed in CPO-CA(1)-BW(1) = 0.11 ± 0.003, followed by CPO-CA(1)-BW(0.5) = 0.08 ± 0.010, and CPO = 0.05 ± 0.004 (p < 0.0001). H2 O2 production (mM) was significantly higher in CPO (1.87 ± 0.50) compared to CPO-CA (1)-BW(1) (0.00 ± 0.00) (p < 0.001) after 24 h. CPO-CA(1)-BW(1) showed significantly reduced cytotoxicity and increased Cl- transport compared to the CPO group. CONCLUSION A novel OGB (CPO-CA-BW complex) exhibited sustained oxygen release over 7 days without significant cytotoxicity after 24 h in vitro. Preclinical studies evaluating the efficacy of OGB in CRS are warranted, especially for potential therapy in an obstruction-based CRS model.
Collapse
Affiliation(s)
- Dong-Jin Lim
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Daniel Skinner
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - John M. West
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Samrath Ayinala
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shaoyan Zhang
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jessica W. Grayson
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bradford A. Woodworth
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America,,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Do-Yeon Cho
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America,,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America,Division of Otolaryngology, Department of Surgery, Veterans Affairs, Birmingham Alabama, United States of America
| |
Collapse
|
8
|
Shariati A, Vesal S, Khoshbayan A, Goudarzi P, Darban-Sarokhalil D, Razavi S, Didehdar M, Chegini Z. Novel strategies for inhibition of bacterial biofilm in chronic rhinosinusitis. J Appl Microbiol 2021; 132:2531-2546. [PMID: 34856045 DOI: 10.1111/jam.15398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/18/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022]
Abstract
An important role has been recently reported for bacterial biofilm in the pathophysiology of chronic diseases, such as chronic rhinosinusitis (CRS). CRS, affecting sinonasal mucosa, is a persistent inflammatory condition with a high prevalence around the world. Although the exact pathological mechanism of this disease has not been elicited yet, biofilm formation is known to lead to a more significant symptom burden and major objective clinical indicators. The high prevalence of multidrug-resistant bacteria has severely restricted the application of antibiotics in recent years. Furthermore, systemic antibiotic therapy, on top of its insufficient concentration to eradicate bacteria in the sinonasal biofilm, often causes toxicity, antibiotic resistance, and an effect on the natural microbiota, in patients. Thus, coming up with alternative therapeutic options instead of systemic antibiotic therapy is emphasized in the treatment of bacterial biofilm in CRS patients. The use of topical antibiotic therapy and antibiotic eluting sinus stents that induce higher antibiotic concentration, and decrease side effects could be helpful. Besides, recent research recognized that various natural products, nitric oxide, and bacteriophage therapy, in addition to the hindered biofilm formation, could degrade the established bacterial biofilm. However, despite these improvements, new antibacterial agents and CRS biofilm interactions are complicated and need extensive research. Finally, most studies were performed in vitro, and more preclinical animal models and human studies are required to confirm the collected data. The present review is specifically discussing potential therapeutic strategies for the treatment of bacterial biofilm in CRS patients.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Soheil Vesal
- Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parnian Goudarzi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Ali Akbari Ghavimi S, Gehret PM, Aronson MR, Schipani R, Smith KWY, Borek RC, Germiller JA, Jacobs IN, Zur KB, Gottardi R. Drug delivery to the pediatric upper airway. Adv Drug Deliv Rev 2021; 174:168-189. [PMID: 33845038 DOI: 10.1016/j.addr.2021.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 11/25/2022]
Abstract
Pediatric upper airway disorders are frequently life-threatening and require precise assessment and intervention. Targeting these pathologies remains a challenge for clinicians due to the high complexity of pediatric upper airway anatomy and numerous potential etiologies; the most common treatments include systemic delivery of high dose steroids and antibiotics or complex and invasive surgeries. Furthermore, the majority of innovative airway management technologies are only designed and tested for adults, limiting their widespread implementation in the pediatric population. Here, we provide a comprehensive review of the most recent challenges of managing common pediatric upper airway disorders, describe the limitations of current clinical treatments, and elaborate on how to circumvent those limitations via local controlled drug delivery. Furthermore, we propose future advancements in the field of drug-eluting technologies to improve pediatric upper airway management outcomes.
Collapse
Affiliation(s)
- Soheila Ali Akbari Ghavimi
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul M Gehret
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Aronson
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rossana Schipani
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Kyra W Y Smith
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan C Borek
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John A Germiller
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Otorhinolaryngology - Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian N Jacobs
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Otorhinolaryngology - Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karen B Zur
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Otorhinolaryngology - Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Riccardo Gottardi
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Pulmonary Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Ri.MED Foundation, Palermo, PA 90133, Italy.
| |
Collapse
|
10
|
Cho DY, Zhang S, Lazrak A, Skinner D, Thompson HM, Grayson J, Guroji P, Aggarwal S, Bebok Z, Rowe SM, Matalon S, Sorscher EJ, Woodworth BA. LPS decreases CFTR open probability and mucociliary transport through generation of reactive oxygen species. Redox Biol 2021; 43:101998. [PMID: 33971543 PMCID: PMC8129928 DOI: 10.1016/j.redox.2021.101998] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022] Open
Abstract
Lipopolysaccharide (LPS) serves as the interface between gram-negative bacteria (GNB) and the innate immune response in respiratory epithelial cells (REC). Herein, we describe a novel biological role of LPS that permits GNB to persist in the respiratory tract through inducing CFTR and mucociliary dysfunction. LPS reduced cystic fibrosis transmembrane conductance regulater (CFTR)-mediated short-circuit current in mammalian REC in Ussing chambers and nearly abrogated CFTR single channel activity (defined as forskolin-activated Cl- currents) in patch clamp studies, effects of which were blocked with toll-like receptor (TLR)-4 inhibitor. Unitary conductance and single-channel amplitude of CFTR were unaffected, but open probability and number of active channels were markedly decreased. LPS increased cytoplasmic and mitochondrial reactive oxygen species resulting in CFTR carbonylation. All effects of exposure were eliminated when reduced glutathione was added in the medium along with LPS. Functional microanatomy parameters, including mucociliary transport, in human sinonasal epithelial cells in vitro were also decreased, but restored with co-incubation with glutathione or TLR-4 inhibitor. In vivo measurements, following application of LPS in the nasal cavities showed significant decreases in transepithelial Cl- secretion as measured by nasal potential difference (NPD) – an effect that was nullified with glutathione and TLR-4 inhibitor. These data provide definitive evidence that LPS-generated reactive intermediates downregulate CFTR function in vitro and in vivo which results in cystic fibrosis-type disease. Findings have implications for therapeutic approaches intent on stimulating Cl- secretion and/or reducing oxidative stress to decrease the sequelae of GNB airway colonization and infection.
Collapse
Affiliation(s)
- Do Yeon Cho
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Division of Otolaryngology, Department of Surgery, Veterans Affairs, Birmingham, AL, USA
| | - Shaoyan Zhang
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ahmed Lazrak
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel Skinner
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Harrison M Thompson
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica Grayson
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Purushotham Guroji
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Saurabh Aggarwal
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zsuzsanna Bebok
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sadis Matalon
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Bradford A Woodworth
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|