1
|
Banerjee SM, MacRobert AJ, Mosse CA, Periera B, Bown SG, Keshtgar MRS. Photodynamic therapy: Inception to application in breast cancer. Breast 2016; 31:105-113. [PMID: 27833041 DOI: 10.1016/j.breast.2016.09.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 09/12/2016] [Accepted: 09/26/2016] [Indexed: 01/04/2023] Open
Abstract
Photodynamic therapy (PDT) is already being used in the treatment of many cancers. This review examines its components and the new developments in our understanding of its immunological effects as well as pre-clinical and clinical studies, which have investigated its potential use in the treatment of breast cancer.
Collapse
Affiliation(s)
- S M Banerjee
- Royal Free London NHS Foundation Trust, UK; Division of Surgery and Interventional Science, University College London, UK
| | - A J MacRobert
- Division of Surgery and Interventional Science, University College London, UK
| | - C A Mosse
- Division of Surgery and Interventional Science, University College London, UK
| | - B Periera
- Royal Free London NHS Foundation Trust, UK
| | - S G Bown
- Division of Surgery and Interventional Science, University College London, UK
| | - M R S Keshtgar
- Royal Free London NHS Foundation Trust, UK; Division of Surgery and Interventional Science, University College London, UK.
| |
Collapse
|
2
|
Soler DC, Ohtola J, Sugiyama H, Rodriguez ME, Han L, Oleinick NL, Lam M, Baron ED, Cooper KD, McCormick TS. Activated T cells exhibit increased uptake of silicon phthalocyanine Pc 4 and increased susceptibility to Pc 4-photodynamic therapy-mediated cell death. Photochem Photobiol Sci 2016; 15:822-31. [PMID: 27161819 DOI: 10.1039/c6pp00058d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) is an emerging treatment for malignant and inflammatory dermal disorders. Photoirradiation of the silicon phthalocyanine (Pc) 4 photosensitizer with red light generates singlet oxygen and other reactive oxygen species to induce cell death. We previously reported that Pc 4-PDT elicited cell death in lymphoid-derived (Jurkat) and epithelial-derived (A431) cell lines in vitro, and furthermore that Jurkat cells were more sensitive than A431 cells to treatment. In this study, we examined the effectiveness of Pc 4-PDT on primary human CD3(+) T cells in vitro. Fluorometric analyses of lysed T cells confirmed the dose-dependent uptake of Pc 4 in non-stimulated and stimulated T cells. Flow cytometric analyses measuring annexin V and propidium iodide (PI) demonstrated a dose-dependent increase of T cell apoptosis (6.6-59.9%) at Pc 4 doses ranging from 0-300 nM. Following T cell stimulation through the T cell receptor using a combination of anti-CD3 and anti-CD28 antibodies, activated T cells exhibited increased susceptibility to Pc 4-PDT-induced apoptosis (10.6-81.2%) as determined by Pc 4 fluorescence in each cell, in both non-stimulated and stimulated T cells, Pc 4 uptake increased with Pc 4 dose up to 300 nM as assessed by flow cytometry. The mean fluorescence intensity (MFI) of Pc 4 uptake measured in stimulated T cells was significantly increased over the uptake of resting T cells at each dose of Pc 4 tested (50, 100, 150 and 300 nM, p < 0.001 between 50 and 150 nM, n = 8). Treg uptake was diminished relative to other T cells. Cutaneous T cell lymphoma (CTCL) T cells appeared to take up somewhat more Pc 4 than normal resting T cells at 100 and 150 nm Pc 4. Confocal imaging revealed that Pc 4 localized in cytoplasmic organelles, with approximately half of the Pc 4 co-localized with mitochondria in T cells. Thus, Pc 4-PDT exerts an enhanced apoptotic effect on activated CD3(+) T cells that may be exploited in targeting T cell-mediated skin diseases, such as cutaneous T cell lymphoma (CTCL) or psoriasis.
Collapse
Affiliation(s)
- David C Soler
- Department of Dermatology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Zhang P, Yang Y, Liu Y, Rodriguez ME, Kenney ME. Studies directed towards nonyl acridine orange analogues having the potential to act as FRET donors with the PDT drug Pc 4. RSC Adv 2016. [DOI: 10.1039/c5ra28126a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Analogues of nonyl acridine orange (NAO) were made by quaternization of substituted acridine oranges. The Pc 4-FRET occurrence of these NAO analogues in cells was investigated.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Chemistry
- Case Western Reserve University
- Cleveland
- USA
| | - Yang Yang
- Department of Chemistry
- Case Western Reserve University
- Cleveland
- USA
| | - Yun Liu
- Department of Chemistry
- Case Western Reserve University
- Cleveland
- USA
| | - Myriam E. Rodriguez
- Department of Radiation Oncology
- School of Medicine
- Case Western Reserve University
- USA
| | | |
Collapse
|
4
|
Photodynamic therapy of malignant brain tumours: A complementary approach to conventional therapies. Cancer Treat Rev 2014; 40:229-41. [DOI: 10.1016/j.ctrv.2012.07.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022]
|
5
|
Li J, Yang Y, Zhang P, Sounik JR, Kenney ME. Synthesis, properties and drug potential of the photosensitive alkyl- and alkylsiloxy-ligated silicon phthalocyanine Pc 227. Photochem Photobiol Sci 2014; 13:1690-8. [DOI: 10.1039/c4pp00321g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photolysis of Pc 227 yields the extensively studied photodynamic therapy drug Pc 4. The photolytic pathway is a homolysis involving a phthalocyanine π radical and low bond dissociation energy.
Collapse
Affiliation(s)
- Jun Li
- Department of Chemistry
- Case Western Reserve University
- Cleveland, USA
| | - Yang Yang
- Department of Chemistry
- Case Western Reserve University
- Cleveland, USA
| | - Ping Zhang
- Department of Chemistry
- Case Western Reserve University
- Cleveland, USA
| | - James R. Sounik
- Department of Chemistry
- Case Western Reserve University
- Cleveland, USA
| | - Malcolm E. Kenney
- Department of Chemistry
- Case Western Reserve University
- Cleveland, USA
| |
Collapse
|
6
|
Master A, Malamas A, Solanki R, Clausen DM, Eiseman JL, Sen Gupta A. A cell-targeted photodynamic nanomedicine strategy for head and neck cancers. Mol Pharm 2013; 10:1988-97. [PMID: 23531079 DOI: 10.1021/mp400007k] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) holds great promise for the treatment of head and neck (H&N) carcinomas where repeated loco-regional therapy often becomes necessary due to the highly aggressive and recurrent nature of the cancers. While interstitial light delivery technologies are being refined for PDT of H&N and other cancers, a parallel clinically relevant research area is the formulation of photosensitizers in nanovehicles that allow systemic administration yet preferential enhanced uptake in the tumor. This approach can render dual-selectivity of PDT, by harnessing both the drug and the light delivery within the tumor. To this end, we report on a cell-targeted nanomedicine approach for the photosensitizer silicon phthalocyanine-4 (Pc 4), by packaging it within polymeric micelles that are surface-decorated with GE11-peptides to promote enhanced cell-selective binding and receptor-mediated internalization in EGFR-overexpressing H&N cancer cells. Using fluorescence spectroscopy and confocal microscopy, we demonstrate in vitro that the EGFR-targeted Pc 4-nanoformulation undergoes faster and higher uptake in EGFR-overexpressing H&N SCC-15 cells. We further demonstrate that this enhanced Pc 4 uptake results in significant cell-killing and drastically reduced post-PDT clonogenicity. Building on this in vitro data, we demonstrate that the EGFR-targeted Pc 4-nanoformulation results in significant intratumoral drug uptake and subsequent enhanced PDT response, in vivo, in SCC-15 xenografts in mice. Altogether our results show significant promise toward a cell-targeted photodynamic nanomedicine for effective treatment of H&N carcinomas.
Collapse
Affiliation(s)
- Alyssa Master
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Blvd, Cleveland, Ohio 44106, United States
| | | | | | | | | | | |
Collapse
|
7
|
Josefsen LB, Boyle RW. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2012; 2:916-66. [PMID: 23082103 PMCID: PMC3475217 DOI: 10.7150/thno.4571] [Citation(s) in RCA: 393] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/10/2012] [Indexed: 02/07/2023] Open
Abstract
Porphyrinic molecules have a unique theranostic role in disease therapy; they have been used to image, detect and treat different forms of diseased tissue including age-related macular degeneration and a number of different cancer types. Current focus is on the clinical imaging of tumour tissue; targeted delivery of photosensitisers and the potential of photosensitisers in multimodal biomedical theranostic nanoplatforms. The roles of porphyrinic molecules in imaging and pdt, along with research into improving their selective uptake in diseased tissue and their utility in theranostic applications are highlighted in this Review.
Collapse
|
8
|
Sekkat N, van den Bergh H, Nyokong T, Lange N. Like a bolt from the blue: phthalocyanines in biomedical optics. Molecules 2011; 17:98-144. [PMID: 22198535 PMCID: PMC6269082 DOI: 10.3390/molecules17010098] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/05/2011] [Accepted: 12/14/2011] [Indexed: 01/08/2023] Open
Abstract
The purpose of this review is to compile preclinical and clinical results on phthalocyanines (Pcs) as photosensitizers (PS) for Photodynamic Therapy (PDT) and contrast agents for fluorescence imaging. Indeed, Pcs are excellent candidates in these fields due to their strong absorbance in the NIR region and high chemical and photo-stability. In particular, this is mostly relevant for their in vivo activation in deeper tissular regions. However, most Pcs present two major limitations, i.e., a strong tendency to aggregate and a low water-solubility. In order to overcome these issues, both chemical tuning and pharmaceutical formulation combined with tumor targeting strategies were applied. These aspects will be developed in this review for the most extensively studied Pcs during the last 25 years, i.e., aluminium-, zinc- and silicon-based Pcs.
Collapse
Affiliation(s)
- Nawal Sekkat
- School of Pharmaceutical Sciences, University of Lausanne/Geneva, Geneva, 30, quai Ernest Ansermet, Geneva CH-1211, Switzerland
| | - Hubert van den Bergh
- Laboratory of Photomedicine, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Norbert Lange
- School of Pharmaceutical Sciences, University of Lausanne/Geneva, Geneva, 30, quai Ernest Ansermet, Geneva CH-1211, Switzerland
- Author to whom correspondence should be addressed; ; Tel.:+41-22-379-3335; Fax: +41-22-379-6567
| |
Collapse
|
9
|
Photodynamic therapy and the development of metal-based photosensitisers. Met Based Drugs 2011; 2008:276109. [PMID: 18815617 PMCID: PMC2535827 DOI: 10.1155/2008/276109] [Citation(s) in RCA: 330] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 10/30/2007] [Indexed: 11/17/2022] Open
Abstract
Photodynamic therapy (PDT) is a treatment modality that has been used in the successful treatment of a number of diseases and disorders, including age-related macular degeneration (AMD), psoriasis, and certain cancers. PDT uses a combination of a selectively localised light-sensitive drug (known as a photosensitiser) and light of an appropriate wavelength. The light-activated form of the drug reacts with molecular oxygen to produce reactive oxygen species (ROS) and radicals; in a biological environment these toxic species can interact with cellular constituents causing biochemical disruption to the cell. If the homeostasis of the cell is altered significantly then the cell enters the process of cell death. The first photosensitiser to gain regulatory approval for clinical PDT was Photofrin. Unfortunately, Photofrin has a number of associated disadvantages, particularly pro-longed patient photosensitivity. To try and overcome these disadvantages second and third generation photosensitisers have been developed and investigated. This Review highlights the key photosensitisers investigated, with particular attention paid to the metallated and non-metallated cyclic tetrapyrrolic derivatives that have been studied in vitro and in vivo; those which have entered clinical trials; and those that are currently in use in the clinic for PDT.
Collapse
|
10
|
Kim J, Rodriguez ME, Oleinick NL, Anderson VE. Photo-oxidation of cardiolipin and cytochrome c with bilayer-embedded Pc 4. Free Radic Biol Med 2010; 49:718-25. [PMID: 20510355 PMCID: PMC2921921 DOI: 10.1016/j.freeradbiomed.2010.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 04/30/2010] [Accepted: 05/15/2010] [Indexed: 12/20/2022]
Abstract
Singlet oxygen, (1)O(2), is produced by absorption of red light by the phthalocyanine dye Pc 4, followed by energy transfer to dissolved triplet molecular oxygen, (3)O(2). In tissues, Pc 4 concentrates in lipid bilayers, and particularly in mitochondrial membranes, because of its positive charge. Illumination of cells and tissues with red light after uptake of Pc 4 results in cell death. The potential initial chemical steps that result in cellular dysfunction have been characterized in this study. Both unsaturated acyl chains of phospholipids and proteins are identified as targets of oxidation. Tetra-linoleoyl cardiolipin was oxidized in both liposomes and mitochondria after Pc 4-mediated (1)O(2) generation. Evidence for the formation of both mono- and bis-hydroperoxide adducts of single linoleoyl side chains is provided by ESI-MS and ESI-MS/MS. Similarly, illumination of Pc 4 in liposomes and mitochondria resulted in cytochrome c oxidation as detected by oxidation of His 26 in the peptide H(26)*KTGPNLHGLFGK, further supporting the potential use of this peptide as a biomarker for the presence of mitochondrial oxidative stress characteristic of (1)O(2) in vivo (J. Kim et al., Free Radic. Biol. Med. 44:1700-1711; 2008). These observations provide evidence that formation of lipid hydroperoxides and/or protein oxidation can be the initial chemical steps in Pc 4-mediated induction of apoptosis in photodynamic therapy.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Biochemistry, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | - Myriam E. Rodriguez
- Department of Radiation Oncology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
- Department of Dermatology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | - Nancy L. Oleinick
- Department of Radiation Oncology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | - Vernon E. Anderson
- Department of Biochemistry, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
- Correspondence to: Division of Pharmacology, Physiology and Biological Chemistry NIGMS Building 45, Room 2As.43J Bethesda, MD 20892 301-594-3827 (phone) 301-480-2802 (fax)
| |
Collapse
|
11
|
Lee RG, Vecchiotti MA, Heaphy J, Panneerselvam A, Schluchter MD, Oleinick NL, Lavertu P, Alagramam KN, Arnold JE, Sprecher RC. Photodynamic therapy of cottontail rabbit papillomavirus-induced papillomas in a severe combined immunodeficient mouse xenograft system. Laryngoscope 2010; 120:618-24. [PMID: 20091778 DOI: 10.1002/lary.20709] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVES/HYPOTHESIS To evaluate the efficacy of photodynamic therapy (PDT) with the phthalocyanine photosensitizer Pc 4 for treating an animal model of recurrent respiratory papillomatosis (RRP). METHODS Rabbit skin was grafted onto the dorsum of severe combined immunodeficient mice, two xenografts per animal. After the graft healed, it was inoculated with cottontail rabbit papillomavirus (CRPV). When papillomas developed, Pc 4 (0.6 or 1.0 mg/kg) was administered systemically, and 48 hours later, one papilloma of the two on each animal was exposed to 675-nm photoactivating light at either 100 or 150 J/cm(2). In addition to the contralateral tumors, which received Pc 4 but no light, other controls included animals receiving light only or neither agent. Response was assessed by measuring papilloma size with a caliper. Some papillomas and residual skin were harvested for histological assessment. RESULTS For the lower-dose PDT regimens, papilloma growth rates were not significantly different from the controls. In contrast, 13 of 15 papillomas receiving the higher Pc 4 dose (1.0 mg/kg) and the higher light fluence (150 J/cm(2)) regressed completely and did not regrow within the observation period of up to 79 days. The response of these papillomas was significantly different from the controls (P < .001). Histological analysis confirmed the absence of residual tumor following complete response and replacement with near-normal epithelium. CONCLUSIONS Pc 4-PDT is highly effective in treating virally induced (CRPV) papillomas in a murine model of RRP, and thus warrants further study as a treatment for HPV-induced papillomas.
Collapse
Affiliation(s)
- Richard G Lee
- Department of Otolaryngology, Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fei B, Wang H, Wu C, Chiu SM. Choline PET for monitoring early tumor response to photodynamic therapy. J Nucl Med 2009; 51:130-8. [PMID: 20008981 DOI: 10.2967/jnumed.109.067579] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Photodynamic therapy (PDT) is a relatively new therapy that has shown promise for treating various cancers in both preclinical and clinical studies. The present study evaluated the potential use of PET with radiolabeled choline to monitor early tumor response to PDT in animal models. METHODS Two human prostate cancer models (PC-3 and CWR22) were studied in athymic nude mice. A second-generation photosensitizer, phthalocyanine 4 (Pc 4), was delivered to each animal by a tail vein injection 48 h before laser illumination. Small-animal PET images with (11)C-choline were acquired before PDT and at 1, 24, and 48 h after PDT. Time-activity curves of (11)C-choline uptake were analyzed before and after PDT. The percentage of the injected dose per gram of tissue was quantified for both treated and control tumors at each time point. In addition, Pc 4-PDT was performed in cell cultures. Cell viability and (11)C-choline uptake in PDT-treated and control cells were measured. RESULTS For treated tumors, normalized (11)C-choline uptake decreased significantly 24 and 48 h after PDT, compared with the same tumors before PDT (P < 0.001). For the control tumors, normalized (11)C-choline uptake increased significantly. For mice with CWR22 tumors, the prostate-specific antigen level decreased 24 and 48 h after PDT. Pc 4-PDT in cell culture showed that the treated tumor cells, compared with the control cells, had less than 50% (11)C-choline activity at 5, 30, and 45 min after PDT, whereas the cell viability test showed that the treated cells were viable longer than 7 h after PDT. CONCLUSION PET with (11)C-choline is sensitive for detecting early changes associated with Pc 4-PDT in mouse models of human prostate cancer. Choline PET has the potential to determine whether a PDT-treated tumor responds to treatment within 48 h after therapy.
Collapse
Affiliation(s)
- Baowei Fei
- Department of Radiology, Emory Center for Systems Imaging, Emory University, Atlanta, Georgia 30329, USA.
| | | | | | | |
Collapse
|
13
|
O'Connor AE, Gallagher WM, Byrne AT. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol 2009; 85:1053-74. [PMID: 19682322 DOI: 10.1111/j.1751-1097.2009.00585.x] [Citation(s) in RCA: 846] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photodynamic therapy (PDT) is now a well-recognized modality for the treatment of cancer. While PDT has developed progressively over the last century, great advances have been observed in the field in recent years. The concept of dual selectivity of PDT agents is now widely accepted due to the relative specificity and selectivity of PDT along with the absence of harmful side effects often encountered with chemotherapy or radiotherapy. Traditionally, porphyrin-based photosensitizers have dominated the PDT field but these first generation photosensitizers have several disadvantages, with poor light absorption and cutaneous photosensitivity being the predominant side effects. As a result, the requirement for new photosensitizers, including second generation porphyrins and porphyrin derivatives as well as third generation photosensitizers has arisen, with the aim of alleviating the problems encountered with first generation porphyrins and improving the efficacy of PDT. The investigation of nonporphyrin photosensitizers for the development of novel PDT agents has been considerably less extensive than porphyrin-based compounds; however, structural modification of nonporphyrin photosensitizers has allowed for manipulation of the photochemotherapeutic properties. The aim of this review is to provide an insight into PDT photosensitizers clinically approved for application in oncology, as well as those which show significant potential in ongoing preclinical studies.
Collapse
Affiliation(s)
- Aisling E O'Connor
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | | | | |
Collapse
|
14
|
Bai L, Guo J, Bontempo FA, Eiseman JL. The relationship of phthalocyanine 4 (pc 4) concentrations measured noninvasively to outcome of pc 4 photodynamic therapy in mice. Photochem Photobiol 2009; 85:1011-9. [PMID: 19320848 DOI: 10.1111/j.1751-1097.2009.00542.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ability to noninvasively measure photosensitizer concentration at target tissues will allow optimization of photodynamic therapy (PDT) and could improve outcome. In this study, we evaluated whether preirradiation tumor phthalocyanine 4 (Pc 4) concentrations, measured noninvasively by the optical pharmacokinetic system (OPS), correlated with tumor response to PDT. Mice bearing human breast cancer xenografts were treated with 2 mg kg(-1) Pc 4 iv only, laser irradiation (150 J cm(-2)) only, Pc 4 followed by fractionated irradiation or Pc 4 followed by continuous irradiation. Laser irradiation treatment was initiated when the tumor to skin ratio of Pc 4 concentration reached a maximum of 2.1 at 48 h after administration. Pc 4 concentrations in tumor, as well as in Intralipid in vitro, decreased monoexponentially with laser fluence. Pc 4-PDT resulted in significant tumor regression, and tumor response was similar in the groups receiving either fractionated or continuous irradiation treatment after Pc 4. Tumor growth delay following Pc 4-PDT correlated with OPS-measured tumor Pc 4 concentrations at 24 h prior to PDT (R2=0.86). In excised tumors, OPS-measured Pc 4 concentrations were similar to the HPLC-measured concentrations. Thus, OPS measurements of photosensitizer concentrations can be used to assist in the scheduling of Pc 4-PDT.
Collapse
Affiliation(s)
- Lihua Bai
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
15
|
Fei B, Wang H, Wu C, Meyers J, Xue LY, Maclennan G, Schluchter M. Choline Molecular Imaging with Small-animal PET for Monitoring Tumor Cellular Response to Photodynamic Therapy of Cancer. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2009; 7262:726211. [PMID: 23336060 DOI: 10.1117/12.812129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We are developing and evaluating choline molecular imaging with positron emission tomography (PET) for monitoring tumor response to photodynamic therapy (PDT) in animal models. Human prostate cancer (PC-3) was studied in athymic nude mice. A second-generation photosensitizer Pc 4 was used for PDT in tumor-bearing mice. MicroPET images with (11)C-choline were acquired before PDT and 48 h after PDT. Time-activity curves of (11)C-choline uptake were analyzed before and after PDT. For treated tumors, normalized choline uptake decreased significantly 48 h after PDT, compared to the same tumors pre-PDT (p < 0.001). However, for the control tumors, normalized choline uptake increased significantly (p < 0.001). PET imaging with (11)C-choline is sensitive to detect early tumor response to PDT in the animal model of human prostate cancer.
Collapse
Affiliation(s)
- Baowei Fei
- Department of Radiology, Emory University, Atlanta, GA ; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | | | | | | | | | | | | |
Collapse
|
16
|
Jiang F, Zhang X, Kalkanis SN, Zhang Z, Yang H, Katakowski M, Hong X, Zheng X, Zhu Z, Chopp M. Combination therapy with antiangiogenic treatment and photodynamic therapy for the nude mouse bearing U87 glioblastoma. Photochem Photobiol 2008; 84:128-37. [PMID: 18173712 DOI: 10.1111/j.1751-1097.2007.00208.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The objective of this study was to evaluate the effects of combination therapy with photodynamic therapy (PDT) and a novel antiangiogenic regimen using monoclonal antibodies against both vascular endothelial growth factor receptors (VEGFR)-1 (MF1) and VEGFR-2 (DC101) on intracranial glioblastoma xenografts in nude mice. Nude mice bearing intracerebral U87 glioblastoma were treated with PDT and the antiangiogenic regimen (MF1 and DC101) either alone or in combination, while those left untreated served as tumor controls. Tumor volume and animal survival time were analyzed to evaluate the outcome of different treatment modalities. In addition, the immunohistochemical expression of VEGF in the brain adjacent to the tumor, von Willebrand factor (vWF), apoptotic, and proliferative markers in the tumor area were examined. PDT or MF1 + DC101 alone significantly reduced the tumor volume and prolonged the survival time of glioma-implanted animals. Combined therapy markedly reduced tumor volume and increased survival time with significantly better outcomes than both monotherapies. Both vWF and VEGF levels significantly increased after PDT while they both significantly decreased after antiangiogenic treatment, compared with no treatment. PDT plus antiangiogenic treatment led to significant decreases in both vWF and VEGF expression, compared with PDT alone. Either PDT or antiangiogenic treatment alone significantly increased tumor cell apoptosis compared with no treatment, while combination therapy resulted in further augmentation of apoptosis. Antiangiogenic treatment with or without PDT significantly decreased tumor cell proliferation, compared with either no treatment or PDT alone. In summary, we demonstrate both significant inhibition of tumor growth and extended survival of mice treated by the combination therapy with PDT and antiangiogenic agents, compared with each single treatment, suggesting that the combination therapy may be a promising strategy to improve clinical outcomes in glioblastoma.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang X, Jiang F, Kalkanis SN, Yang H, Zhang Z, Katakowski M, Hong X, Zheng X, Chopp M. Combination of surgical resection and photodynamic therapy of 9L gliosarcoma in the nude rat. Photochem Photobiol 2007; 82:1704-11. [PMID: 17007560 DOI: 10.1562/2006-06-16-ra-934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of the present study was to investigate the treatment of 9L gliosarcoma brain tumor in the rat with the combination of surgical resection and photodynamic therapy (PDT). Nude rats with intracranial 7-day-old 9L gliomas were randomly subjected to no treatment, PDT alone (Photofrin: 2 mg kg(-1), optical: 80 J cm(-2)), surgical resection alone or resection combined with 2 mg kg(-1) Photofrin-mediated PDT at an optical dose of 80 J cm(-2). All animals were sacrificed 14 days after tumor implantation. Hematoxylin-and-eosin and immunohistochemical stainings were performed to assess the tumor volume and the expression of vascular endothelial growth factor (VEGF) in the brain adjacent to the tumor (BAT) as well as the tumor cell apoptosis and proliferation. Our data show that both surgical resection alone and PDT alone significantly decreased tumor volume, but furthermore, surgical resection combined with PDT significantly reduced the tumor volume and reduced local tumor infiltration compared to either surgical resection or PDT treatment alone. PDT treatment with or without resection increased tumor apoptosis, but resection alone did not alter the tumor cell apoptosis compared with a nontreatment control group. Both surgical resection alone and PDT alone induced a significant increase in VEGF expression in the BAT; however intraoperative PDT did not further increase VEGF expression, compared with surgery alone or PDT alone. No significant differences were found in tumor cell proliferation as indicated by Ki67 immunoreactivity among the four groups. Our results suggest that PDT enhances the efficacy of surgical resection in the management of malignant gliomas without increasing VEGF expression in the BAT.
Collapse
Affiliation(s)
- Xuepeng Zhang
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang X, Jiang F, Kalkanis SN, Zhang Z, Hong X, Yang H, Chopp M. Post-acute response of 9L gliosarcoma to Photofrin-mediated PDT in athymic nude mice. Lasers Med Sci 2007; 22:253-9. [PMID: 17505777 DOI: 10.1007/s10103-007-0442-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 08/29/2006] [Indexed: 10/23/2022]
Abstract
The objective of this study is to measure the chronic responses of 9L glioma and normal brain to photodynamic therapy (PDT). Tumor size, proliferation activity of glioma cells, and vascular endothelial growth factor (VEGF) expression in both the tumor area and the brain adjacent to tumor (BAT) were observed 7 days after clinically relevant doses of PDT treatment. 9L Gliosarcoma cells were implanted into the brain of 20 athymic nude mice. Fifteen mice were injected intraperitoneally with Photofrin at a dose of 2 mg/kg on day 6 after tumor implantation and were treated with laser at different optical doses of 40 J/cm(2) (n = 5), 80 J/cm(2) (n = 5), and 120 J/cm(2) (n = 5) at 24 h after Photofrin injection, respectively. The remaining five tumor-bearing mice served as a tumor-only control. All animals were killed 14 days after tumor implantation. Hematoxylin and eosin and immunostaining were performed to assess tumor volume, VEGF expression in the tumor and the BAT, as well as Ki67 expression in the tumor area. The tumor volume of the mice receiving 80 or 120 J/cm(2) group was significantly smaller than the control group (p < 0.01). VEGF immunoreactivity in the BAT was significantly increased in the 120 J/cm(2) PDT-treated mice (p < 0.001), compared with the immunoreactivity seen in untreated mice and those receiving Photofrin and lower optical doses. No significant differences were detected in the proliferation of glioma cells and VEGF expression in the tumor area between these groups. These data indicate that PDT can shrink tumor, especially at the high light dose, and that PDT induces expression of VEGF in the BAT, which is associated with tumor recurrence. Therefore, PDT combined with anti-angiogenic agents may be an effective treatment strategy for glioma.
Collapse
Affiliation(s)
- Xuepeng Zhang
- Neurology Department, Henry Ford Health Sciences Center, Detroit, MI 48202, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Zhang X, Jiang F, Kalkanis SN, Yang H, Zhang Z, Katakowski M, Hong X, Zheng X, Chopp M. Combination of Surgical Resection and Photodynamic Therapy of 9L Gliosarcoma in the Nude Rat. Photochem Photobiol 2006. [DOI: 10.1111/j.1751-1097.2006.tb09834.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|