1
|
Zhao X, Zhang M, Liu Y, Liu H, Ren K, Xue Q, Zhang H, Zhi N, Wang W, Wu S. Terahertz exposure enhances neuronal synaptic transmission and oligodendrocyte differentiation in vitro. iScience 2021; 24:103485. [PMID: 34927027 PMCID: PMC8649796 DOI: 10.1016/j.isci.2021.103485] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/06/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
Terahertz (THz) frequency occupies a large portion of the electromagnetic spectrum that is between the infrared and microwave regions. Recent advances in THz application have stimulated interests regarding the biological effects within this frequency range. In the current study, we report that irradiation with a single-frequency THz laser on mice cortical neuron cultures increases excitatory synaptic transmission and neuronal firing activities. Microarray assay reveals gene expression dynamics after THz exposure, which is consistent with morphology and electrophysiology results. Besides, certain schedule of THz irradiation inhibits the proliferation of oligodendrocyte precursor cells (OPCs) and promotes OPC differentiation. Of note, the myelination process is enhanced after THz exposure. In summary, our observations suggest that THz irradiation can modulate the functions of different neuronal cells, with different sensitivity to THz. These results provide important understanding of the mechanisms that govern THz interactions with nervous systems and suggest THz wave as a new strategy for neuromodulation. THz irradiation increases excitatory synaptic transmission and neuronal firing Microarray assay reveals neuronal gene expression dynamics after THz exposure THz irradiation promotes the maturation of oligodendrocytes The myelination process in neuron is enhanced after THz exposure
Collapse
Affiliation(s)
- Xianghui Zhao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ming Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuming Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haiying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Keke Ren
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qian Xue
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haifeng Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Na Zhi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,College of Life Sciences, Northwest University, Xi'an, Shaanxi 710127, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
2
|
Yang Y, Wang F, Zheng K, Deng L, Yang L, Zhang N, Xu C, Ran H, Wang Z, Wang Z, Zheng Y. Injectable PLGA/Fe3O4 implants carrying cisplatin for synergistic magnetic hyperthermal ablation of rabbit VX2 tumor. PLoS One 2017; 12:e0177049. [PMID: 28472102 PMCID: PMC5417648 DOI: 10.1371/journal.pone.0177049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/23/2017] [Indexed: 11/30/2022] Open
Abstract
Magnetic hyperthermia ablation has attracted wide attention in tumor therapy for its minimal invasion. Although the chemo-hyperthermal synergism has been proven to be effective in subcutaneously xenografted tumors of nude mice in our previous experiment, the occurrence of residual tumors due to incomplete ablation is more common in relatively larger and deeper-seated tumors in anti-tumor therapy. Thus, a larger tumor and larger animal model are needed for further study of the therapeutic efficacy. In this study, we tested the efficiency of this newly developed technique using a rabbit tumor model. Furthermore, we chose cisplatin (DDP), which has been confirmed with high efficiency in enhancing hyperthermia therapy as the chemotherapeutic drug for the synergistic magnetic hyperthermal ablation therapy of tumors. In vitro studies demonstrated that developed DDP-loaded magnetic implants (DDP/PLGA-Fe3O4) have great heating efficacy and the drug release can be significantly boosted by an external alternating magnetic field (AMF). In vivo studies showed that the phase-transitional DDP/PLGA-Fe3O4 materials that are ultrasound (US) and computerized tomography (CT) visible can be well confined in the tumor tissues after injection. When exposed to AMF, efficient hyperthermia was induced, which led to the cancer cells’ coagulative necrosis and accelerating release of the drug to kill residual tumors. Furthermore, an activated anti-tumor immune system can promote apoptosis of tumor cells. In conclusion, the DDP/PLGA-Fe3O4 implants can be used efficiently for the combined chemotherapy and magnetic-hyperthermia ablation of rabbit tumors.
Collapse
Affiliation(s)
- Yang Yang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengjuan Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kaiyuan Zheng
- Department of Nephrology, Chongqing People’s Hospital, Chongqing, China
| | - Liming Deng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Yang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nan Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunyan Xu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaoxia Wang
- Department of Ultrasound, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyi Zheng
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University affiliated Shanghai Sixth People's Hospital, Shanghai, China
- * E-mail:
| |
Collapse
|
3
|
Liu FW, Liu FC, Wang YR, Tsai HI, Yu HP. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System. PLoS One 2015; 10:e0143528. [PMID: 26637174 PMCID: PMC4670167 DOI: 10.1371/journal.pone.0143528] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/05/2015] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system.
Collapse
Affiliation(s)
- Fu-Wei Liu
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital Puli Branch, Nantou, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ren Wang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-I Tsai
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
4
|
Cheng CY, Tu WL, Wang SH, Tang PC, Chen CF, Chen HH, Lee YP, Chen SE, Huang SY. Annotation of Differential Gene Expression in Small Yellow Follicles of a Broiler-Type Strain of Taiwan Country Chickens in Response to Acute Heat Stress. PLoS One 2015; 10:e0143418. [PMID: 26587838 PMCID: PMC4654548 DOI: 10.1371/journal.pone.0143418] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/04/2015] [Indexed: 12/19/2022] Open
Abstract
This study investigated global gene expression in the small yellow follicles (6-8 mm diameter) of broiler-type B strain Taiwan country chickens (TCCs) in response to acute heat stress. Twelve 30-wk-old TCC hens were divided into four groups: control hens maintained at 25°C and hens subjected to 38°C acute heat stress for 2 h without recovery (H2R0), with 2-h recovery (H2R2), and with 6-h recovery (H2R6). Small yellow follicles were collected for RNA isolation and microarray analysis at the end of each time point. Results showed that 69, 51, and 76 genes were upregulated and 58, 15, 56 genes were downregulated after heat treatment of H2R0, H2R2, and H2R6, respectively, using a cutoff value of two-fold or higher. Gene ontology analysis revealed that these differentially expressed genes are associated with the biological processes of cell communication, developmental process, protein metabolic process, immune system process, and response to stimuli. Upregulation of heat shock protein 25, interleukin 6, metallopeptidase 1, and metalloproteinase 13, and downregulation of type II alpha 1 collagen, discoidin domain receptor tyrosine kinase 2, and Kruppel-like factor 2 suggested that acute heat stress induces proteolytic disintegration of the structural matrix and inflamed damage and adaptive responses of gene expression in the follicle cells. These suggestions were validated through gene expression, using quantitative real-time polymerase chain reaction. Functional annotation clarified that interleukin 6-related pathways play a critical role in regulating acute heat stress responses in the small yellow follicles of TCC hens.
Collapse
Affiliation(s)
- Chuen-Yu Cheng
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Lin Tu
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Han Wang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Pin-Chi Tang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Feng Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Hsin Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yen-Pai Lee
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (SEC); (SYH)
| | - San-Yuan Huang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, Taiwan
- Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (SEC); (SYH)
| |
Collapse
|
5
|
Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chem Rev 2015; 115:10637-89. [PMID: 26250431 DOI: 10.1021/acs.chemrev.5b00112] [Citation(s) in RCA: 612] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University , Seoul 136-702, Korea
| | - Dongwon Yoo
- Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| | - Daishun Ling
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 151-742, Korea.,School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Korea.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, PR China
| | - Mi Hyeon Cho
- Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 151-742, Korea.,School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Korea
| | - Jinwoo Cheon
- Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| |
Collapse
|
6
|
Kumar R, Gupta ID, Verma A, Verma N, Vineeth MR. Genetic polymorphisms within exon 3 of heat shock protein 90AA1 gene and its association with heat tolerance traits in Sahiwal cows. Vet World 2015; 8:932-6. [PMID: 27047179 PMCID: PMC4774691 DOI: 10.14202/vetworld.2015.932-936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/24/2015] [Accepted: 07/02/2015] [Indexed: 01/06/2023] Open
Abstract
AIM The present study was undertaken to identify novel single nucleotide polymorphism (SNP) in Exon 3 of HSP90AA1 gene and to analyze their association with respiration rate (RR) and rectal temperature (RT) in Sahiwal cows. MATERIALS AND METHODS The present study was carried out in Sahiwal cows (n=100) with the objectives to identify novel SNP in exon 3 of HSP90AA1 gene and to explore the association with heat tolerance traits. CLUSTAL-W multiple sequence analysis was used to identify novel SNPs in exon 3 of HSP90AA1 gene in Sahiwal cows. Gene and genotype frequencies of different genotypes were estimated by standard procedure POPGENE version 1.32 (University of Alberta, Canada). The significant effect of SNP variants on physiological parameters, e.g. RR and RT were analyzed using the General Linear model procedure of SAS Version 9.2. RESULTS The polymerase chain reaction product with the amplicon size of 450 bp was successfully amplified, covering exon 3 region of HSP90AA1 gene in Sahiwal cows. On the basis of comparative sequence analysis of Sahiwal samples (n=100), transitional mutations were detected at locus A1209G as compared to Bos taurus (NCBI GenBank AC_000178.1). After chromatogram analysis, three genotypes AA, AG, and GG with respective frequencies of 0.23, 0.50, and 0.27 ascertained. RR and RT were recorded once during probable extreme hours in winter, spring, and summer seasons. It was revealed that significant difference (p<0.01) among genetic variants of HSP90AA1 gene with heat tolerance trait was found in Sahiwal cattle. The homozygotic animals with AA genotype had lower heat tolerance coefficient (HTC) (1.78±0.04(a)), as compared to both AG and GG genotypes (1.85±0.03(b) and 1.91±0.02(c)), respectively. The gene and genotype frequencies for the locus A1209G were ascertained. CONCLUSIONS Novel SNP was found at the A1209G position showed all possible three genotypes (homozygous and heterozygous). Temperature humidity index has a highly significant association with RR, RT, and HTC in all the seasons. Perusal of results across different seasons showed the significant (p<0.01) difference in RR, RT, and HTC among winter, spring, and summer seasons. Genetic association with heat tolerance traits reveals their importance as a potential genetic marker for heat tolerance traits in Sahiwal cows.
Collapse
Affiliation(s)
- Rakesh Kumar
- Division of Dairy Cattle Breeding, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, Haryana, India
| | - I. D. Gupta
- Division of Dairy Cattle Breeding, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, Haryana, India
| | - Archana Verma
- Division of Dairy Cattle Breeding, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, Haryana, India
| | - Nishant Verma
- Division of Dairy Cattle Breeding, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, Haryana, India
| | - M. R. Vineeth
- Division of Dairy Cattle Breeding, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
7
|
Kumar A, Kumar S, Rhim WK, Kim GH, Nam JM. Oxidative Nanopeeling Chemistry-Based Synthesis and Photodynamic and Photothermal Therapeutic Applications of Plasmonic Core-Petal Nanostructures. J Am Chem Soc 2014; 136:16317-25. [DOI: 10.1021/ja5085699] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Amit Kumar
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea
| | - Sumit Kumar
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea
| | - Won-Kyu Rhim
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea
| | - Gyeong-Hwan Kim
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea
| |
Collapse
|
8
|
Rajoriya J, Prasad J, Ghosh S, Perumal P, Kumar A, Kaushal S, Ramteke S. Studies on effect of different seasons on expression of HSP70 and HSP90 gene in sperm of Tharparkar bull semen. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2014. [DOI: 10.1016/s2305-0500(14)60025-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Sakurai T, Narita E, Shinohara N, Miyakoshi J. Alteration of gene expression by exposure to a magnetic field at 23 kHz is not detected in astroglia cells. JOURNAL OF RADIATION RESEARCH 2013; 54:1005-1009. [PMID: 23722077 PMCID: PMC3823784 DOI: 10.1093/jrr/rrt063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/04/2013] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
The increasing use of induction heating (IH) cooktops has roused public concern in Japan and Europe regarding potential health effects. The purpose of this study was to evaluate the effects of exposure to a magnetic field at 23 kHz (which is the maximum output power frequency of most IH cooktops) on gene expression in a human-fetus-derived astroglia cell line, SVGp12. The cells were exposed to the magnetic field at 2 mTrms [which is approximately 74 times higher than the reference level in the most recent International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines], for 2, 4 and 6 h, using a previously reported exposure system. Gene expression was evaluated using an Agilent cDNA microarray. We did not detect any significant effects of the magnetic field on the gene expression profile. On the contrary, heat treatment at 43°C for 2 h used as a positive control significantly affected gene expression, including inducing heat shock proteins, which indicated that our protocol for microarray analysis was appropriate. From these results, we conclude that exposure of human-fetus-derived astroglia cells to an intermediate-frequency magnetic field at 23 kHz and 2 mTrms for up to 6 h does not induce detectable alteration of gene expression.
Collapse
Affiliation(s)
| | | | | | - Junji Miyakoshi
- Corresponding author. Laboratory of Applied Radio Engineering for Humanosphere, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan. Tel/Fax: +81-774-38-3872; Email;
| |
Collapse
|
10
|
Matz MV, Wright RM, Scott JG. No control genes required: Bayesian analysis of qRT-PCR data. PLoS One 2013; 8:e71448. [PMID: 23977043 PMCID: PMC3747227 DOI: 10.1371/journal.pone.0071448] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 07/02/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR) is potentially more powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions about the stability of control genes directly into the model-fitting process. RESULTS In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the joint posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR amplification process, and can also glean information from instances of no amplification (zero counts). Our method is very flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete absence of control genes. We also present a natural Bayesian analogue of the "classic" analysis, which uses standard data pre-processing steps (logarithmic transformation and multi-gene normalization) but estimates all gene expression changes jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta Ct analysis based on pairwise t-tests. CONCLUSIONS Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions concerning target stability. These procedures have been implemented as the MCMC.qpcr package in R.
Collapse
Affiliation(s)
- Mikhail V. Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Rachel M. Wright
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - James G. Scott
- McCombs School of Business and Division of Statistics and Scientific Computing, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
11
|
Islam A, Deuster PA, Devaney JM, Ghimbovschi S, Chen Y. An exploration of heat tolerance in mice utilizing mRNA and microRNA expression analysis. PLoS One 2013; 8:e72258. [PMID: 23967293 PMCID: PMC3744453 DOI: 10.1371/journal.pone.0072258] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/09/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Individuals who rapidly develop hyperthermia during heat exposure (heat-intolerant) are vulnerable to heat associated illness and injury. We recently reported that heat intolerant mice exhibit complex alterations in stress proteins in response to heat exposure. In the present study, we further explored the role of genes and molecular networks associated with heat tolerance in mice. METHODOLOGY Heat-induced physiological and biochemical changes were assessed to determine heat tolerance levels in mice. We performed RNA and microRNA expression profiling on mouse gastrocnemius muscle tissue samples to determine novel biological pathways associated with heat tolerance. PRINCIPAL FINDINGS Mice (n = 18) were assigned to heat-tolerant (TOL) and heat-intolerant (INT) groups based on peak core temperatures during heat exposures. This was followed by biochemical assessments (Hsp40, Hsp72, Hsp90 and Hsf1 protein levels). Microarray analysis identified a total of 3,081 mRNA transcripts that were significantly misregulated in INT compared to TOL mice (p<0.05). Among them, Hspa1a, Dnajb1 and Hspb7 were differentially expressed by more than two-fold under these conditions. Furthermore, we identified 61 distinct microRNA (miRNA) sequences significantly associated with TOL compared to INT mice; eight miRNAs corresponded to target sites in seven genes identified as being associated with heat tolerance pathways (Hspa1a, Dnajb1, Dnajb4, Dnajb6, Hspa2, Hspb3 and Hspb7). CONCLUSIONS The combination of mRNA and miRNA data from the skeletal muscle of adult mice following heat stress provides new insights into the pathophysiology of thermoregulatory disturbances of heat intolerance.
Collapse
Affiliation(s)
- Aminul Islam
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America.
| | | | | | | | | |
Collapse
|
12
|
Kus-Liśkiewicz M, Polańska J, Korfanty J, Olbryt M, Vydra N, Toma A, Widłak W. Impact of heat shock transcription factor 1 on global gene expression profiles in cells which induce either cytoprotective or pro-apoptotic response following hyperthermia. BMC Genomics 2013; 14:456. [PMID: 23834426 PMCID: PMC3711851 DOI: 10.1186/1471-2164-14-456] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/01/2013] [Indexed: 11/23/2022] Open
Abstract
Background Elevated temperatures induce activation of the heat shock transcription factor 1 (HSF1) which in somatic cells leads to heat shock proteins synthesis and cytoprotection. However, in the male germ cells (spermatocytes) caspase-3 dependent apoptosis is induced upon HSF1 activation and spermatogenic cells are actively eliminated. Results To elucidate a mechanism of such diverse HSF1 activity we carried out genome-wide transcriptional analysis in control and heat-shocked cells, either spermatocytes or hepatocytes. Additionally, to identify direct molecular targets of active HSF1 we used chromatin immunoprecipitation assay (ChIP) combined with promoter microarrays (ChIP on chip). Genes that are differently regulated after HSF1 binding during hyperthermia in both types of cells have been identified. Despite HSF1 binding to promoter sequences in both types of cells, strong up-regulation of Hsps and other genes typically activated by the heat shock was observed only in hepatocytes. In spermatocytes HSF1 binding correlates with transcriptional repression on a large scale. HSF1-bound and negatively regulated genes encode mainly for proteins required for cell division, involved in RNA processing and piRNA biogenesis. Conclusions Observed suppression of the transcription could lead to genomic instability caused by meiotic recombination disturbances, which in turn might induce apoptosis of spermatogenic cells. We propose that HSF1-dependent induction of cell death is caused by the simultaneous repression of many genes required for spermatogenesis, which guarantees the elimination of cells damaged during heat shock. Such activity of HSF1 prevents transmission of damaged genetic material to the next generation.
Collapse
Affiliation(s)
- Małgorzata Kus-Liśkiewicz
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | | | | | | | | | | | | |
Collapse
|
13
|
Effect of melatonin administration on thyroid hormones, cortisol and expression profile of heat shock proteins in goats (Capra hircus) exposed to heat stress. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2012.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Echchgadda I, Roth CC, Cerna CZ, Wilmink GJ. Temporal gene expression kinetics for human keratinocytes exposed to hyperthermic stress. Cells 2013; 2:224-43. [PMID: 24709698 PMCID: PMC3972685 DOI: 10.3390/cells2020224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/29/2013] [Accepted: 04/02/2013] [Indexed: 01/06/2023] Open
Abstract
The gene expression kinetics for human cells exposed to hyperthermic stress are not well characterized. In this study, we identified and characterized the genes that are differentially expressed in human epidermal keratinocyte (HEK) cells exposed to hyperthermic stress. In order to obtain temporal gene expression kinetics, we exposed HEK cells to a heat stress protocol (44 °C for 40 min) and used messenger RNA (mRNA) microarrays at 0 h, 4 h and 24 h post-exposure. Bioinformatics software was employed to characterize the chief biological processes and canonical pathways associated with these heat stress genes. The data shows that the genes encoding for heat shock proteins (HSPs) that function to prevent further protein denaturation and aggregation, such as HSP40, HSP70 and HSP105, exhibit maximal expression immediately after exposure to hyperthermic stress. In contrast, the smaller HSPs, such as HSP10 and HSP27, which function in mitochondrial protein biogenesis and cellular adaptation, exhibit maximal expression during the “recovery phase”, roughly 24 h post-exposure. These data suggest that the temporal expression kinetics for each particular HSP appears to correlate with the cellular function that is required at each time point. In summary, these data provide additional insight regarding the expression kinetics of genes that are triggered in HEK cells exposed to hyperthermic stress.
Collapse
Affiliation(s)
- Ibtissam Echchgadda
- Air Force Research Laboratory, 711th Human Performance Wing, Human Effectiveness Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, 4141 Petroleum Road, Bldg. 3260, Fort Sam Houston, TX 78234, USA.
| | - Caleb C Roth
- Department of Radiology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA.
| | - Cesario Z Cerna
- General Dynamics Information Technology, Fort Sam Houston, TX 78234, USA.
| | - Gerald J Wilmink
- Air Force Research Laboratory, 711th Human Performance Wing, Human Effectiveness Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, 4141 Petroleum Road, Bldg. 3260, Fort Sam Houston, TX 78234, USA.
| |
Collapse
|
15
|
Tabuchi Y, Furusawa Y, Kariya A, Wada S, Ohtsuka K, Kondo T. Common gene expression patterns responsive to mild temperature hyperthermia in normal human fibroblastic cells. Int J Hyperthermia 2013; 29:38-50. [PMID: 23311377 DOI: 10.3109/02656736.2012.753163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Heat stress induces complex cellular responses, and its detailed molecular mechanisms still remain to be clarified. The objective of this study was to investigate the molecular mechanisms underlying cellular responses to mild hyperthermia (MHT) in normal human fibroblastic (NHF) cells. MATERIALS AND METHODS Cells were treated with MHT (41°C, 30 min) and then cultured at 37°C. Gene expression was determined by the GeneChip® system and bioinformatics tools. RESULTS Treatment of the NHF cell lines, Hs68 and OUMS-36, with MHT did not affect the cell viability or cell cycle. In contrast, many probe sets were differentially expressed by >1.5-fold in both cell lines after MHT treatment. Of the 1,196 commonly and differentially expressed probe sets analysed by k-means clustering, three gene clusters, Up-I, Down-I and Down-II, were observed. Interestingly, two gene networks were obtained from the up-regulated genes in cluster Up-I. The gene network E contained DDIT3 and HSPA5 and was mainly associated with the biological process of endoplasmic reticulum stress, while the network S contained HBEGF and LIF and was associated with the biological process of cell survival. Eighteen genes were validated by quantitative real-time polymerase chain reaction, consistent with the microarray data, in four kinds of NHF cells. CONCLUSIONS Common genes that were differentially expressed and/or acted within a gene network in response to MHT in NHF cells were identified. These findings provide the molecular basis for a further understanding of the mechanisms of the MHT response in NHF cells.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Centre, University of Toyama, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Wang SH, Cheng CY, Tang PC, Chen CF, Chen HH, Lee YP, Huang SY. Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress. Theriogenology 2013; 79:374-82.e1-7. [DOI: 10.1016/j.theriogenology.2012.10.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 10/14/2012] [Accepted: 10/14/2012] [Indexed: 01/03/2023]
|
17
|
Yoo D, Jeong H, Preihs C, Choi JS, Shin TH, Sessler JL, Cheon J. Double-effector nanoparticles: a synergistic approach to apoptotic hyperthermia. Angew Chem Int Ed Engl 2012; 51:12482-5. [PMID: 23139178 PMCID: PMC3724511 DOI: 10.1002/anie.201206400] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Indexed: 12/31/2022]
Abstract
Highly efficient apoptotic hyperthermia is achieved using a double-effector nanoparticle that can generate reactive oxygen species (ROS) and heat. ROS render cancer cells more susceptible to subsequent heat treatment, which remarkably increases the degree of apoptotic cell death. Xenograft tumors (100 mm(3)) in mice are completely eliminated within 8 days after a single mild magnetic hyperthermia treatment at 43 °C for 30 min.
Collapse
Affiliation(s)
- Dongwon Yoo
- Department of Chemistry, Yonsei University, Seoul 120-749 (Korea)
| | - Heeyeong Jeong
- Department of Chemistry, Yonsei University, Seoul 120-749 (Korea)
| | - Christian Preihs
- Department of Chemistry and Biochemistry, University of Texas, 1 University Station-A5300, Austin, TX 78712-0165 (USA)
| | - Jin-sil Choi
- Department of Chemistry, Yonsei University, Seoul 120-749 (Korea)
| | - Tae-Hyun Shin
- Department of Chemistry, Yonsei University, Seoul 120-749 (Korea)
| | - Jonathan L. Sessler
- Department of Chemistry and Biochemistry, University of Texas, 1 University Station-A5300, Austin, TX 78712-0165 (USA)
| | - Jinwoo Cheon
- Department of Chemistry, Yonsei University, Seoul 120-749 (Korea)
| |
Collapse
|
18
|
Yoo D, Jeong H, Preihs C, Choi JS, Shin TH, Sessler JL, Cheon J. Double-Effector Nanoparticles: A Synergistic Approach to Apoptotic Hyperthermia. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206400] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Sakurai T, Narita E, Shinohara N, Miyakoshi J. Intermediate frequency magnetic field at 23 kHz does not modify gene expression in human fetus-derived astroglia cells. Bioelectromagnetics 2012; 33:662-9. [DOI: 10.1002/bem.21734] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 04/12/2012] [Indexed: 12/13/2022]
|
20
|
Expression profile of HSP genes during different seasons in goats (Capra hircus). Trop Anim Health Prod 2012; 44:1905-12. [PMID: 22535151 DOI: 10.1007/s11250-012-0155-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
The present study has demonstrated the expression of HSP60, HSP70, HSP90, and UBQ in peripheral blood mononuclear cells (PBMCs) during different seasons in three different age groups (Groups I, II, and III with age of 0-2, 2-5, and >5 years, respectively) of goats of tropical and temperate regions. Real-time polymerase chain reaction was applied to investigate mRNA expression of examined factors. Specificity of the desired products was documented using analysis of the melting temperature and high-resolution gel electrophoresis to verify that the transcripts are of the exact molecular size predicted. The mRNA expression of HSP60, HSP90, and UBQ was significantly higher (P < 0.05) in all age groups during peak summer season as compared with peak winter season in both tropical and temperate region goats. HSP70 mRNA expression was significantly higher (P < 0.05) during summer season as compared with winter season in tropical region goats. However, in the temperate region, in goats from all the three age groups studied, a non-significant difference of HSP70 expression between summer and winter seasons was noticed. In conclusion, results demonstrate that (1) HSP genes are expressed in caprine PBMCs and (2) higher expression of HSPs during thermal stress suggest possible involvement of them to ameliorate deleterious effect of thermal stress so as to maintain cellular integrity and homeostasis in goats.
Collapse
|
21
|
Hom LL, Lee ECH, Apicella JM, Wallace SD, Emmanuel H, Klau JF, Poh PYS, Marzano S, Armstrong LE, Casa DJ, Maresh CM. Eleven days of moderate exercise and heat exposure induces acclimation without significant HSP70 and apoptosis responses of lymphocytes in college-aged males. Cell Stress Chaperones 2012; 17:29-39. [PMID: 21796498 PMCID: PMC3227846 DOI: 10.1007/s12192-011-0283-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 07/09/2011] [Accepted: 07/13/2011] [Indexed: 01/29/2023] Open
Abstract
The purpose of this study was to assess whether a lymphocyte heat shock response and altered heat tolerance to ex vivo heat shock is evident during acclimation. We aimed to use flow cytometry to assess the CD3(+)CD4(+) T lymphocyte cell subset. We further aimed to induce acclimation using moderately stressful daily exercise-heat exposures to achieve acclimation. Eleven healthy males underwent 11 days of heat acclimation. Subjects walked for 90 min (50 ± 8% VO(2max)) on a treadmill (3.5 mph, 5% grade), in an environmental chamber (33°C, 30-50% relative humidity). Rectal temperature (°C), heart rate (in beats per minute), rating of perceived exertion , thermal ratings, hydration state, and sweat rate were measured during exercise and recovery. On days 1, 4, 7, 10, and 11, peripheral blood mononuclear cells were isolated from pre- and post-exercise blood samples. Intracellular and surface HSP70 (SPA-820PE, Stressgen, Assay Designs), and annexin V (ab14085, Abcam Inc.), as a marker of early apoptosis, were measured on CD3(+) and CD4(+) (sc-70624, sc-70670, Santa Cruz Biotechnology) gated lymphocytes. On day 10, subjects experienced 28 h of sleep loss. Heat acclimation was verified with decreased post-exercise rectal temperature, heart rate, and increased sweat rate on day 11, versus day 1. Heat acclimation was achieved in the absence of significant changes in intracellular HSP70 mean fluorescence intensity and percent of HSP70(+) lymphocytes during acclimation. Furthermore, there was no increased cellular heat tolerance during secondary ex vivo heat shock of the lymphocytes acquired from subjects during acclimation. There was no effect of a mild sleep loss on any variable. We conclude that our protocol successfully induced physiological acclimation without induction of cellular heat shock responses in lymphocytes and that added mild sleep loss is not sufficient to induce a heat shock response.
Collapse
Affiliation(s)
- Lindsay L. Hom
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Elaine Choung-Hee Lee
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04634 USA
- PO Box 35, Old Bar Harbor Road, Salisbury Cove, ME 04672 USA
| | - Jenna M. Apicella
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Sean D. Wallace
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Holly Emmanuel
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Jennifer F. Klau
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Paula Y. S. Poh
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Stefania Marzano
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Lawrence E. Armstrong
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Douglas J. Casa
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Carl M. Maresh
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
22
|
Mackanos MA, Helms M, Kalish F, Contag CH. Image-guided genomic analysis of tissue response to laser-induced thermal stress. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:058001. [PMID: 21639585 PMCID: PMC3107838 DOI: 10.1117/1.3573387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 05/30/2023]
Abstract
The cytoprotective response to thermal injury is characterized by transcriptional activation of "heat shock proteins" (hsp) and proinflammatory proteins. Expression of these proteins may predict cellular survival. Microarray analyses were performed to identify spatially distinct gene expression patterns responding to thermal injury. Laser injury zones were identified by expression of a transgene reporter comprised of the 70 kD hsp gene and the firefly luciferase coding sequence. Zones included the laser spot, the surrounding region where hsp70-luc expression was increased, and a region adjacent to the surrounding region. A total of 145 genes were up-regulated in the laser irradiated region, while 69 were up-regulated in the adjacent region. At 7 hours the chemokine Cxcl3 was the highest expressed gene in the laser spot (24 fold) and adjacent region (32 fold). Chemokines were the most common up-regulated genes identified. Microarray gene expression was successfully validated using qRT- polymerase chain reaction for selected genes of interest. The early response genes are likely involved in cytoprotection and initiation of the healing response. Their regulatory elements will benefit creating the next generation reporter mice and controlling expression of therapeutic proteins. The identified genes serve as drug development targets that may prevent acute tissue damage and accelerate healing.
Collapse
Affiliation(s)
- Mark A Mackanos
- Department of Pediatrics, Stanford University School of Medicine, Clark Center E-150, 318 Campus Drive, Stanford, California 94305-5427, USA
| | | | | | | |
Collapse
|