1
|
Ma X, Knowles JC, Poma A. Biodegradable and Sustainable Synthetic Antibodies-A Perspective. Pharmaceutics 2023; 15:pharmaceutics15051440. [PMID: 37242682 DOI: 10.3390/pharmaceutics15051440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/12/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Molecular imprinting technology has been around for almost a century, and we have witnessed dramatic advancements in the overall design and production of molecularly imprinted polymers (MIPs), particularly in terms of possible formats of the final products when it comes to truly resembling antibody substitutes, i.e., MIP nanoparticles (MIP NPs). Nonetheless, the overall technology appears to struggle to keep up with the current global sustainability efforts, as recently elucidated in the latest comprehensive reviews, which introduced the "GREENIFICATION" concept. In this review, we will try to elucidate if these advancements in MIP nanotechnology have indeed resulted in a sustainability amelioration. We will do so by discussing the general production and purification strategies for MIP NPs, specifically from a sustainability and biodegradation perspective, also considering the final intended application and ultimate waste management.
Collapse
Affiliation(s)
- Xiaohan Ma
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, UCL Medical School, Rowland Hill Street, London NW3 2PF, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, UCL Medical School, Rowland Hill Street, London NW3 2PF, UK
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, UCL Medical School, Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
2
|
Kalecki J, Cieplak M, Iskierko Z, Piechowska J, Nogala W, D'Souza F, Sharma PS. Post-imprinting modification: electrochemical and scanning electrochemical microscopy studies of a semi-covalently surface imprinted polymer. J Mater Chem B 2023; 11:1659-1669. [PMID: 36722440 DOI: 10.1039/d2tb02116a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Herein we described a post-imprinting modification of the imprinted molecular cavities for electrochemical sensing of a target protein. Imprinted molecular cavities were generated by following the semi-covalent surface imprinting approach. These mesoporous cavities were modified with a ferrocene 'electrochemical' tracer for electrochemical transduction of the target protein recognition. Electrochemical sensors prepared after post-imprinting modification showed a linear response in the concentration range of 0.5 to 50 μM. Chemosensors fabricated based on capacitive impedimetric transduction demonstrated that imprinted molecular cavities without post-imprinting modification showed better selectivity. Scanning electrochemical microscopy (SECM) was used for the surface characterization of imprinted molecular cavities modified with ferrocene electrochemical tracers. SECM analysis performed in the feedback mode monitor changes in the surface state of the ferrocene-modified polymer film. The kinetics of the mediator regeneration was almost 1.8 times higher on the non-imprinted surface versus the post-imprinting modified molecular imprinted polymer.
Collapse
Affiliation(s)
- Jakub Kalecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Joanna Piechowska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle No. 305070, Denton, TX 76203-5017, USA
| | - Piyush Sindhu Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
3
|
Chen H, Guo J, Wang Y, Dong W, Zhao Y, Sun L. Bio-Inspired Imprinting Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202038. [PMID: 35908804 PMCID: PMC9534966 DOI: 10.1002/advs.202202038] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Indexed: 05/27/2023]
Abstract
Inspired by the recognition mechanism of biological molecules, molecular imprinting techniques (MITs) are imparted with numerous merits like excellent stability, recognition specificity, adsorption properties, and easy synthesis processes, and thus broaden the avenues for convenient fabrication protocol of bio-inspired molecularly imprinted polymers (MIPs) with desirable functions to satisfy the extensive demands of biomedical applications. Herein, the recent research progress made with respect to bio-inspired imprinting materials is discussed in this review. First, the underlying mechanism and basic components of a typical molecular imprinting procedure are briefly explored. Then, emphasis is put on the introduction of diverse MITs and novel bio-inspired imprinting materials. Following these two sections, practical applications of MIPs in the field of biomedical science are focused on. Last but not least, perspectives on the remaining challenges and future development of bio-inspired imprinting materials are presented.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Jiahui Guo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800P. R. China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| |
Collapse
|
4
|
Mohd Hir ZA, Abdullah AH. Hybrid polymer-based photocatalytic materials for the removal of selected endocrine disrupting chemicals (EDCs) from aqueous media: A review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Köse K, Kehribar DY, Uzun L. Molecularly imprinted polymers in toxicology: a literature survey for the last 5 years. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35437-35471. [PMID: 34024002 DOI: 10.1007/s11356-021-14510-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/17/2021] [Indexed: 05/23/2023]
Abstract
The science of toxicology dates back almost to the beginning of human history. Toxic chemicals, which are encountered in different forms, are always among the chemicals that should be investigated in criminal field, environmental application, pharmaceutic, and even industry, where many researches have been carried out studies for years. Almost all of not only drugs but also industrial dyes have toxic side and direct effects. Environmental micropollutants accumulate in the tissues of all living things, especially plants, and show short- or long-term toxic symptoms. Chemicals in forensic science can be known by detecting the effect they cause to the body with the similar mechanism. It is clear that the best tracking tool among analysis methods is molecularly printed polymer-based analytical setups. Different polymeric combinations of molecularly imprinted polymers allow further study on detection or extraction using chromatographic and spectroscopic instruments. In particular, methods used in forensic medicine can detect trace amounts of poison or biological residues on the scene. Molecularly imprinted polymers are still in their infancy and have many variables that need to be developed. In this review, we summarized how molecular imprinted polymers and toxicology intersect and what has been done about molecular imprinted polymers in toxicology by looking at the studies conducted in the last 5 years.
Collapse
Affiliation(s)
- Kazım Köse
- Department of Joint Courses, Hitit University, Çorum, Turkey.
| | - Demet Yalçın Kehribar
- Department of Internal Medicine, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Lokman Uzun
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
6
|
Saylan Y, Denizli A. Advances in Molecularly Imprinted Systems: Materials, Characterization Methods and Analytical Applications. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666181214155042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
A molecular imprinting is one of the fascinating modification methods that
employ molecules as targets to create geometric cavities for recognition of targets in the polymeric
matrix. This method provides a broad versatility to imprint target molecules with different size,
three-dimensional structure and physicochemical features. In contrast to the complex and timeconsuming
laboratory surface modification procedures, this method offers a rapid, sensitive,
inexpensive, easy-to-use, and selective approach for the diagnosis, screening and monitoring
disorders. Owing to their unique features such as high selectivity, physical and chemical robustness,
high stability, low-cost and reusability of this method, molecularly imprinted polymers have become
very attractive materials and been applied in various applications from separation to detection.
Background:
The aims of this review are structured according to the fundamentals of molecularly
imprinted polymers involving essential elements, preparation procedures and also the analytical
applications platforms. Finally, the future perspectives to increase the development of molecularly
imprinted platforms.
Methods:
A molecular imprinting is one of the commonly used modification methods that apply
target as a recognition element itself and provide a wide range of versatility to replica other targets
with a different structure, size, and physicochemical features. A rapid, easy, cheap and specific
recognition approach has become one of the investigation areas on, especially biochemistry,
biomedicine and biotechnology. In recent years, several technologies of molecular imprinting method
have gained prompt development according to continuous use and improvement of traditional
polymerization techniques.
Results:
The molecularly imprinted polymers with excellent performances have been prepared and
also more exciting and universal applications have been recognized. In contrast to the conventional
methods, the imprinted systems have superior advantages including high stability, relative ease and
low cost of preparation, resistance to elevated temperature, and pressure and potential application to
various target molecules. In view of these considerations, molecularly imprinted systems have found
application in various fields of analytical chemistry including separation, purification, detection and
spectrophotometric systems.
Conclusion:
Recent analytical methods are reported to develop the binding kinetics of imprinted
systems by using the development of other technologies. The combined platforms are among the
most encouraging systems to detect and recognize several molecules. The diversity of molecular
imprinting methods was overviewed for different analytical application platforms. There is still a
requirement of more knowledge on the molecular features of these polymers. A next step would
further be the optimization of different systems with more homogeneous and easily reachable
recognition sites to reduce the laborious in the accessibility in the three-dimensional polymeric
materials in sufficient recognition features and also better selectivity and sensitivity for a wide range
of molecules.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| |
Collapse
|
7
|
Pirdadeh-Beiranvand M, Afkhami A, Madrakian T. Magnetic molecularly imprinted electrospun nanofibers for selective extraction of nilotinib from human serum. Anal Bioanal Chem 2020; 412:1629-1637. [DOI: 10.1007/s00216-020-02393-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/08/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
|
8
|
Zhang H. Molecularly Imprinted Nanoparticles for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806328. [PMID: 31090976 DOI: 10.1002/adma.201806328] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Molecularly imprinted polymers (MIPs) are synthetic receptors with tailor-made recognition sites for target molecules. Their high affinity and selectivity, excellent stability, easy preparation, and low cost make them promising substitutes to biological receptors in many applications where molecular recognition is important. In particular, spherical MIP nanoparticles (or nanoMIPs) with diameters typically below 200 nm have drawn great attention because of their high surface-area-to-volume ratio, easy removal of templates, rapid binding kinetics, good dispersion and handling ability, undemanding functionalization and surface modification, and their high compatibility with various nanodevices and in vivo biomedical applications. Recent years have witnessed significant progress made in the preparation of advanced functional nanoMIPs, which has eventually led to the rapid expansion of the MIP applications from the traditional separation and catalysis fields to the burgeoning biomedical areas. Here, a comprehensive overview of key recent advances made in the preparation of nanoMIPs and their important biomedical applications (including immunoassays, drug delivery, bioimaging, and biomimetic nanomedicine) is presented. The pros and cons of each synthetic strategy for nanoMIPs and their biomedical applications are discussed and the present challenges and future perspectives of the biomedical applications of nanoMIPs are also highlighted.
Collapse
Affiliation(s)
- Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
9
|
Refaat D, Aggour MG, Farghali AA, Mahajan R, Wiklander JG, Nicholls IA, Piletsky SA. Strategies for Molecular Imprinting and the Evolution of MIP Nanoparticles as Plastic Antibodies-Synthesis and Applications. Int J Mol Sci 2019; 20:E6304. [PMID: 31847152 PMCID: PMC6940816 DOI: 10.3390/ijms20246304] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
Materials that can mimic the molecular recognition-based functions found in biology are a significant goal for science and technology. Molecular imprinting is a technology that addresses this challenge by providing polymeric materials with antibody-like recognition characteristics. Recently, significant progress has been achieved in solving many of the practical problems traditionally associated with molecularly imprinted polymers (MIPs), such as difficulties with imprinting of proteins, poor compatibility with aqueous environments, template leakage, and the presence of heterogeneous populations of binding sites in the polymers that contribute to high levels of non-specific binding. This success is closely related to the technology-driven shift in MIP research from traditional bulk polymer formats into the nanomaterial domain. The aim of this article is to throw light on recent developments in this field and to present a critical discussion of the current state of molecular imprinting and its potential in real world applications.
Collapse
Affiliation(s)
- Doaa Refaat
- Department of Pathology, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza 12618, Egypt;
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Mohamed G. Aggour
- Department of Biotechnology, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza 12618, Egypt;
| | - Ahmed A. Farghali
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Rashmi Mahajan
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden; (R.M.); (J.G.W.)
| | - Jesper G. Wiklander
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden; (R.M.); (J.G.W.)
| | - Ian A. Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden; (R.M.); (J.G.W.)
| | - Sergey A. Piletsky
- Chemistry Department, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
10
|
Mohamed S, Balieu S, Petit E, Galas L, Schapman D, Hardouin J, Baati R, Estour F. A versatile and recyclable molecularly imprinted polymer as an oxidative catalyst of sulfur derivatives: a new possible method for mustard gas and V nerve agent decontamination. Chem Commun (Camb) 2019; 55:13243-13246. [PMID: 31620710 DOI: 10.1039/c9cc04928b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A molecularly imprinted polymer containing a porphyrin unit was developed as a biomimetic heterogenous catalyst for the oxidation of sulfur derivatives. Its catalytic efficiency under mild conditions and its easy recovery represent a great asset for the design of new decontamination tools for yperite and VX.
Collapse
Affiliation(s)
- Sophie Mohamed
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014 & FR3038), 76000 Rouen, France.
| | - Sébastien Balieu
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014 & FR3038), 76000 Rouen, France.
| | - Emilie Petit
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014 & FR3038), 76000 Rouen, France.
| | - Ludovic Galas
- Normandie Univ., Inserm, UNIROUEN, PRIMACEN, Cell Imaging Platform of Normandy, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Damien Schapman
- Normandie Univ., Inserm, UNIROUEN, PRIMACEN, Cell Imaging Platform of Normandy, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Julie Hardouin
- Normandie Université, UNIROUEN, UMR-6270, CNRS, IRIB, Mont-Saint-Aignan, France
| | - Rachid Baati
- Université de Strasbourg, ICPEES, UMR CNRS 7515, 67087 Strasbourg, France
| | - François Estour
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014 & FR3038), 76000 Rouen, France.
| |
Collapse
|
11
|
Dąbrowski M, Zimińska A, Kalecki J, Cieplak M, Lisowski W, Maksym R, Shao S, D'Souza F, Kuhn A, Sharma PS. Facile Fabrication of Surface-Imprinted Macroporous Films for Chemosensing of Human Chorionic Gonadotropin Hormone. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9265-9276. [PMID: 30714713 DOI: 10.1021/acsami.8b17951] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present an improved approach for the preparation of highly selective and homogeneous molecular cavities in molecularly imprinted polymers (MIPs) via the combination of surface imprinting and semi-covalent imprinting. Toward that, first, a colloidal crystal mold was prepared via the Langmuir-Blodgett (LB) technique. Then, human chorionic gonadotropin (hCG) template protein was immobilized on the colloidal crystal mold. Later, hCG derivatization with electroactive functional monomers via amide chemistry was performed. In a final step, optimized potentiostatic polymerization of 2,3'-bithiophene enabled depositing an MIP film as the macroporous structure. This synergistic strategy resulted in the formation of molecularly imprinted cavities exclusively on the internal surface of the macropores, which were accessible after dissolution of silica molds. The recognition of hCG by the macroporous MIP film was transduced with the help of electric transducers, namely, extended-gate field-effect transistors (EG-FET) and capacitive impedimetry (CI). These readout strategies offered the ability to create chemosensors for the label-free determination of the hCG hormone. Other than the simple confirmation of pregnancy, hCG assay is a common tool for the diagnosis and follow-up of ectopic pregnancy or trophoblast tumors. Concentration measurements with these EG-FET and CI-based devices allowed real-time measurements of hCG in the range of 0.8-50 and 0.17-2.0 fM, respectively, in 10 mM carbonate buffer (pH = 10). Moreover, the selectivity of chemosensors with respect to protein interferences was very high.
Collapse
Affiliation(s)
- Marcin Dąbrowski
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Agnieszka Zimińska
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
- Department of Biomaterials Chemistry, Faculty of Pharmacy with Laboratory Medicine Division , Medical University of Warsaw , Banacha 1 , 02-097 Warsaw , Poland
| | - Jakub Kalecki
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Maciej Cieplak
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Wojciech Lisowski
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Radosław Maksym
- Department of Reproductive Health, Center of Postgraduate Medical Education , St. Sophia Hospital , Zelazna 90 , 01-004 Warsaw , Poland
| | - Shuai Shao
- Department of Chemistry , University of North Texas , 1155 Union Circle No. 305070 , Denton , Texas 76203-5017 , United States
| | - Francis D'Souza
- Department of Chemistry , University of North Texas , 1155 Union Circle No. 305070 , Denton , Texas 76203-5017 , United States
| | - Alexander Kuhn
- University of Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP , 16 Avenue Pey Berland , 33607 Pessac , France
| | - Piyush S Sharma
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| |
Collapse
|
12
|
Joachim I, Rikker S, Hauck D, Ponader D, Boden S, Sommer R, Hartmann L, Titz A. Development and optimization of a competitive binding assay for the galactophilic low affinity lectin LecA from Pseudomonas aeruginosa. Org Biomol Chem 2018; 14:7933-48. [PMID: 27488655 DOI: 10.1039/c6ob01313a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infections with the Gram-negative bacterium Pseudomonas aeruginosa result in a high mortality among immunocompromised patients and those with cystic fibrosis. The pathogen can switch from planktonic life to biofilms, and thereby shields itself against antibiotic treatment and host immune defense to establish chronic infections. The bacterial protein LecA, a C-type lectin, is a virulence factor and an integral component for biofilm formation. Inhibition of LecA with its carbohydrate ligands results in reduced biofilm mass, a potential Achilles heel for treatment. Here, we report the development and optimization of a fluorescence polarization-based competitive binding assay with LecA for application in screening of potential inhibitors. As a consequence of the low affinity of d-galactose for LecA, the fluorescent ligand was optimized to reduce protein consumption in the assay. The assay was validated using a set of known inhibitors of LecA and IC50 values in good agreement with the known Kd values were obtained. Finally, we employed the optimized assay to screen sets of synthetic thio-galactosides and natural blood group antigens and report their structure-activity relationship. In addition, we evaluated a multivalent fluorescent assay probe for LecA and report its applicability in an inhibition assay.
Collapse
Affiliation(s)
- Ines Joachim
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany. and Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover, Braunschweig, Germany and Department of Chemistry and Graduate School Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Sebastian Rikker
- Department of Chemistry and Graduate School Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Dirk Hauck
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany. and Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover, Braunschweig, Germany
| | - Daniela Ponader
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Research Campus Golm, 14424 Potsdam, Germany
| | - Sophia Boden
- Heinrich-Heine-University Duesseldorf, Institute of Organic Chemistry and Macromolecular Chemistry, D-40225 Düsseldorf, Germany
| | - Roman Sommer
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany. and Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover, Braunschweig, Germany
| | - Laura Hartmann
- Heinrich-Heine-University Duesseldorf, Institute of Organic Chemistry and Macromolecular Chemistry, D-40225 Düsseldorf, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany. and Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover, Braunschweig, Germany and Department of Chemistry and Graduate School Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
13
|
Joshi S, Lehmler HJ, Knutson BL, Rankin SE. Imprinting of Stöber particles for chirally-resolved adsorption of target monosaccharides and disaccharides. NEW J CHEM 2017. [DOI: 10.1039/c7nj01938f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soft imprinting of silica particles using sugar surfactants targets chirally resolved binding of saccharides.
Collapse
Affiliation(s)
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health
- University of Iowa
- Iowa City
- USA
| | - Barbara L. Knutson
- Department of Chemical and Materials Engineering
- University of Kentucky
- Lexington
- USA
| | - Stephen E. Rankin
- Department of Chemical and Materials Engineering
- University of Kentucky
- Lexington
- USA
| |
Collapse
|
14
|
Contin M, Bonelli P, Lucangioli S, Cukierman A, Tripodi V. Synthesis and characterization of molecularly imprinted polymer nanoparticles for coenzyme Q10 dispersive micro solid phase extraction. J Chromatogr A 2016; 1456:1-9. [DOI: 10.1016/j.chroma.2016.05.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 11/29/2022]
|
15
|
Wackerlig J, Schirhagl R. Applications of Molecularly Imprinted Polymer Nanoparticles and Their Advances toward Industrial Use: A Review. Anal Chem 2015; 88:250-61. [DOI: 10.1021/acs.analchem.5b03804] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Judith Wackerlig
- Department
of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14 (UZA2), A-1090 Vienna, Austria
| | - Romana Schirhagl
- Department
of Biomedical Engineering, University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| |
Collapse
|
16
|
Hassan S, Sayour H, El Azab W, Mansour M. Synthesis and Characterization of Molecularly Imprinted Nanoparticle Polymers for Selective Separation of Anthracene. J DISPER SCI TECHNOL 2015. [DOI: 10.1080/01932691.2015.1089514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Duan H, Li L, Wang X, Wang Y, Li J, Luo C. Biorecognition and highly sensitive determination of Ribonuclease A with chemiluminescence sensor based on Fe3O4/multi-walled carbon nanotubes/SiO2-surface molecular imprinting polymer. RSC Adv 2015. [DOI: 10.1039/c4ra16878j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new functional material Fe3O4/MWCNTs/SiO2 was used as a supporting material to prepare SMIP for the CL determination of RNase A.
Collapse
Affiliation(s)
- Huimin Duan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Leilei Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Xiaojiao Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yanhui Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Jianbo Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Chuannan Luo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
18
|
MIPs in Aqueous Environments. MOLECULARLY IMPRINTED POLYMERS IN BIOTECHNOLOGY 2015; 150:131-66. [DOI: 10.1007/10_2015_317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
19
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
20
|
Polydopamine-based superparamagnetic molecularly imprinted polymer nanospheres for efficient protein recognition. Colloids Surf B Biointerfaces 2014; 123:213-8. [DOI: 10.1016/j.colsurfb.2014.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 02/03/2023]
|
21
|
Seifi M, Hassanpour Moghadam M, Hadizadeh F, Ali-Asgari S, Aboli J, Mohajeri SA. Preparation and study of tramadol imprinted micro-and nanoparticles by precipitation polymerization: microwave irradiation and conventional heating method. Int J Pharm 2014; 471:37-44. [PMID: 24792981 DOI: 10.1016/j.ijpharm.2014.04.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
Abstract
In the present work a series of tramadole imprinted micro- and nanoparticles were prepared and study their recognition properties. Methacrylic acid (MAA), as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linker and different solvents (chloroform, toluene and acetonitrile (ACN)) were used for the preparation of molecularly imprinted polymers (MIPs) and non-imprinted polymers (NIPs). Several factors such as template/monomer molar ratio, volume of polymerization solvent, total monomers/solvent volume ratio, polymerization condition (heating or microwave irradiation) were also investigated. Particle size of the polymers, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), rebinding, selectivity tests and release study were applied for evaluation of the polymers. The optimized polymers with smaller particle size and superior binding properties were obtained in acetonitrile under heating method. MIPA4 with a size of 42.6 nm and a binding factor (BF) of 6.79 was selected for selectivity and release tests. The polymerization was not successful in acetonitrile and toluene under microwave irradiation. The MIPA4 could selectively adsorb tramadol, compared to imipramine, naltrexone and gabapentin. The data showed that tramadol release from MIPA4 was significantly slower than that of its non-imprinted polymer. Therefore, MIP nanoparticles with high selectivity, binding capacity and ability to control tramadol release could be obtained in precipitation polymerization with optimized condition.
Collapse
Affiliation(s)
- Mahmoud Seifi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Maryam Hassanpour Moghadam
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safa Ali-Asgari
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Jafar Aboli
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Xu X, Chen S, Wu Q. Surface molecular imprinting on polypropylene fibers for rhodamine B selective adsorption. J Colloid Interface Sci 2012; 385:193-201. [DOI: 10.1016/j.jcis.2012.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 11/24/2022]
|
23
|
Abouzarzadeh A, Forouzani M, Jahanshahi M, Bahramifar N. Synthesis and evaluation of uniformly sized nalidixic acid-imprinted nanospheres based on precipitation polymerization method for analytical and biomedical applications. J Mol Recognit 2012; 25:404-13. [PMID: 22733549 DOI: 10.1002/jmr.2201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
For the first time in this work, uniform molecularly imprinted polymer (MIP) nanoparticles were prepared using nalidixic acid as a template. The MIP nanoparticles were successfully synthesized by precipitation polymerization applying methacrylic acid (MAA) as a functional monomer and trimethylolpropane trimethacrylate (TRIM) as a cross-linking monomer at different mole ratios. The morphology, binding, recognition, selectivity, and in vitro release behaviors of obtained particles were studied. The produced polymers were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetric. Furthermore, their morphology was analyzed accurately by scanning electron microscopy, photon correlation spectroscopy, and Brunauer-Emmett-Teller analysis. The nanospheres and microspheres with mean diameter values of 94 nm, 256 nm, and 1.2 µm were obtained using nalidixic acid-MAA-TRIM various mole ratios. Among the MIPs, the product with nalidixic acid-MAA-TRIM mole ratio of 1:12:12 established nanospheres with the lowest polydispersity index (0.003), an average pore diameter (12 nm), and the highest specific surface area (280 m(2) g(-1)) and selectivity factor (10.4). Results from binding experiments demonstrated that the imprinted nanospheres with a 94-nm mean diameter and a binding capacity of 28 mg of nalidixic acid per gram of polymer had higher specific affinity to nalidixic acid in contrast with the other imprinted nanospheres, microspheres, and nonimprinted particles. However, the binding performance of imprinted nanospheres in human serum was estimated using high-performance liquid chromatography analysis (binding approximately 98% of nalidixic acid). In addition, release experiments proved to be successful in the controlled release of nalidixic acid during a long period. The 20% of loaded nalidixic acid was released from the imprinted nanospheres within the first 20 h, whereas the remaining 80% was released in the after 120 h. The nalidixic acid release kinetics from the MIPs was highly affected by properties of the particles.
Collapse
Affiliation(s)
- Atefeh Abouzarzadeh
- Nanotechnology Research Institute, School of Chemical Engineering, Babol University of Technology, Babol, Iran
| | | | | | | |
Collapse
|
24
|
Kecili R, Say R, Ersöz A, Hür D, Denizli A. Investigation of synthetic lipase and its use in transesterification reactions. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Talancé VLD, Massinon O, Baati R, Wagner A, Vincent SP. First steps towards conformationally selective artificial lectins: the chair-boat discrimination by molecularly imprinted polymers. Chem Commun (Camb) 2012; 48:10684-6. [DOI: 10.1039/c2cc35386e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Mohajeri SA, Karimi G, Aghamohammadian J, Khansari MR. Clozapine recognition via molecularly imprinted polymers; bulk polymerization versus precipitation method. J Appl Polym Sci 2011. [DOI: 10.1002/app.34147] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Poma A, Turner APF, Piletsky SA. Advances in the manufacture of MIP nanoparticles. Trends Biotechnol 2010; 28:629-37. [PMID: 20880600 DOI: 10.1016/j.tibtech.2010.08.006] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 11/18/2022]
Abstract
Molecularly imprinted polymers (MIPs) are prepared by creating a three-dimensional polymeric matrix around a template molecule. After the matrix is removed, complementary cavities with respect to shape and functional groups remain. MIPs have been produced for applications in in vitro diagnostics, therapeutics and separations. However, this promising technology still lacks widespread application because of issues related to large-scale production and optimization of the synthesis. Recent developments in the area of MIP nanoparticles might offer solutions to several problems associated with performance and application. This review discusses various approaches used in the preparation of MIP nanoparticles, focusing in particular on the issues associated with large-scale manufacture and implications for the performance of synthesized nanomaterials.
Collapse
Affiliation(s)
- Alessandro Poma
- Cranfield Health, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | | | | |
Collapse
|
28
|
Highly chemo- and stereoselective glycosidation of permethacrylated O-glycosyl trichloroacetimidate reagents promoted by TMSNTf2. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.02.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Zandanel C, Mioskowski C, Baati R, Wagner A. Permethacrylated carbohydrates: synthesis and reactivity in glycosidation reaction. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.08.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|