1
|
Tang C, Liu H, Fan Y, He J, Li F, Wang J, Hou Y. Functional Nanomedicines for Targeted Therapy of Bladder Cancer. Front Pharmacol 2021; 12:778973. [PMID: 34867408 PMCID: PMC8635105 DOI: 10.3389/fphar.2021.778973] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/29/2021] [Indexed: 12/29/2022] Open
Abstract
Bladder cancer is one of most common malignant urinary tract tumor types with high incidence worldwide. In general, transurethral resection of non-muscle-invasive bladder cancer followed by intravesical instillation of chemotherapy is the standard treatment approach to minimize recurrence and delay progression of bladder cancer. However, conventional intravesical chemotherapy lacks selectivity for tumor tissues and the concentration of drug is reduced with the excretion of urine, leading to frequent administration and heavy local irritation symptoms. While nanomedicines can overcome all the above shortcomings and adhere to the surface of bladder tumors for a long time, and continuously and efficiently release drugs to bladder cancers. The rapid advances in targeted therapy have led to significant improvements in drug efficacy and precision of targeted drug delivery to eradicate tumor cells, with reduced side-effects. This review summarizes the different available nano-systems of targeted drug delivery to bladder cancer tissues. The challenges and prospects of targeted therapy for bladder cancer are additionally discussed.
Collapse
Affiliation(s)
- Chao Tang
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Heng Liu
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Yanpeng Fan
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Jiahao He
- School of Chemical Engineering, Changchun University of Technology, Changchun, China
| | - Fuqiu Li
- Department of Dermatology, the Second Hospital of Jilin University, Changchun, China
| | - Jin Wang
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Yuchuan Hou
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Cui T, Li S, Chen S, Liang Y, Sun H, Wang L. "Stealth" dendrimers with encapsulation of indocyanine green for photothermal and photodynamic therapy of cancer. Int J Pharm 2021; 600:120502. [PMID: 33746010 DOI: 10.1016/j.ijpharm.2021.120502] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/06/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022]
Abstract
Poly(amido amine) dendrimers and indocyanine green have inevitable interaction with proteins and cells, which induces biological toxicity and reduces therapeutic efficacy in vivo. To overcome these shortcomings, a new drug delivery system G5MEK7C(n)-ICG with a "stealth" layer was prepared. The surface of G5MEK7C(n)-ICG was modified with double-layer super hydrophilic zwitterionic materials. In the "stealth" double-layer structure, the outer layer was consisted of zwitterionic Glu-Lys-Glu-Lys-Glu-Lys-Cys (EK7) peptide, and the inner layer was composed of amino and carboxyl groups with a ratio of 1:1. DLS results showed that the average hydrodynamic size of G5MEK7C(n)-ICG was about 25-30 nm, and the zeta potential was proven to undergo a slight charge reversal with the increasing pH values of solutions. Furthermore, G5MEK7C(n)-ICG exhibited excellent biocompatibility to red blood cells and proteins resistance. Photothermal and photodynamic experiments demonstrated that G5MEK7C(n)-ICG had a good photothermal conversion effect and generated singlet oxygen (1O2) under laser irradiation. The MTT and hemolysis results showed that the toxicity of G5 PAMAM was significantly reduced after modification double-layer structure. Cytotoxicity studies and flow cytometry showed G5MEK7C(70)-ICG under laser irradiation had a good effect on killing A549 cells. More importantly, the tumor inhibition rate of mice treated with G5MEK7C(70)-ICG (under laser irradiation) was 78.2% in vivo, which was higher than that of mice treated with free ICG. Compared with free ICG, G5MEK7C(70)-ICG caused less damage to the liver according to the enzyme activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Therefore, dendrimers modified with a zwitterionic double layer will be a promising candidate as a drug delivery system.
Collapse
Affiliation(s)
- Tianming Cui
- Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Shukai Li
- Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying Liang
- Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Haotian Sun
- Ocean Nano Tech, LLC, San Diego, CA 92126, USA
| | - Longgang Wang
- Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
3
|
Feng Z, Xu J, Ni C. Preparation of redox responsive modified xanthan gum nanoparticles and the drug controlled release. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1767618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Zhiyun Feng
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, P. R. China
| | - Jie Xu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, P. R. China
| | - Caihua Ni
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
4
|
Yang HY, Li Y, Lee DS. Recent Advances of pH‐Induced Charge‐Convertible Polymer‐Mediated Inorganic Nanoparticles for Biomedical Applications. Macromol Rapid Commun 2020; 41:e2000106. [DOI: 10.1002/marc.202000106] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering Jilin Institute of Chemical Technology Jilin Jilin Province 132022 P. R. China
| | - Yi Li
- College of Material and Textile Engineering Jiaxing University Jiaxing Zhejiang 314001 P. R. China
- Theranostic Macromolecules Research Center and School of Chemical Engineering Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
| |
Collapse
|
5
|
Zhang L, Ding Y, Wen Q, Ni C. Synthesis of core-crosslinked zwitterionic polymer nano aggregates and pH/Redox responsiveness in drug controlled release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110288. [DOI: 10.1016/j.msec.2019.110288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 08/22/2019] [Accepted: 10/05/2019] [Indexed: 10/25/2022]
|
6
|
Pan H, Sun Y, Cao D, Wang L. Low-density lipoprotein decorated and indocyanine green loaded silica nanoparticles for tumor-targeted photothermal therapy of breast cancer. Pharm Dev Technol 2019; 25:308-315. [PMID: 31820663 DOI: 10.1080/10837450.2019.1684944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hongying Pan
- Department of Thyroid and Breast Surgery, Danyang People’s Hospital, Danyang, Jiangsu, China
| | - Yi Sun
- Department of Thyroid and Breast Surgery, Danyang People’s Hospital, Danyang, Jiangsu, China
| | - Danxia Cao
- Department of Thyroid and Breast Surgery, Danyang People’s Hospital, Danyang, Jiangsu, China
| | - Lihui Wang
- Central Laboratory, Danyang People’s Hospital, Danyang, Jiangsu, China
| |
Collapse
|
7
|
Ren DX, Chen PC, Zheng P, Xu ZN. pH/redox dual response nanoparticles with poly-γ-glutamic acid for enhanced intracellular drug delivery. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Yang J, Teng Y, Fu Y, Zhang C. Chlorins e6 loaded silica nanoparticles coated with gastric cancer cell membrane for tumor specific photodynamic therapy of gastric cancer. Int J Nanomedicine 2019; 14:5061-5071. [PMID: 31371947 PMCID: PMC6628142 DOI: 10.2147/ijn.s202910] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Photodynamic therapy (PDT) is widely recognized as a promising way to cure cancer. However, the limited tumor homing property of currently available drug delivery systems (DDSs) is the bottleneck for the delivery of photodynamic agents. Purpose: In our study, we decorated silica nanoparticles (SLN) with cell membrane (CM) derived from SGC7901 cells to construct carrier (CM/SLN) which was able to to specifically target the homogenous SGC7901 cells. Materials and methods: Furthermore, the decent drug loading capability of CM/SLN was adopted to load photodynamic agent chlorins e6 (Ce6) to finally construct aDDS suitable for tumor-targeted PDT of gastric cancer. Results: The experimental results suggested that CM/SLN/Ce6 was nano-sized particles with good dispersion and stability in physiological conditions. Moreover, due to the modification of CM,CM/SLN/Ce6 could specifically target the homogenous SGC7901 cells both in vitro and in vivo. Most importantly, further in vivo results demonstrated that the CM/SLN/Ce6 showed a better anticancer outcome compared to SLN/Ce6. Conclusion: CM/SLN/Ce6 might be a promising platform for effective tumor targeted PDT of gastric cancer.
Collapse
Affiliation(s)
- Jiaxing Yang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yongliang Teng
- Department of Pathology, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yu Fu
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Chunyu Zhang
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
9
|
Lee GJ, Kim TI. Fluorination effect to intermediate molecular weight polyethylenimine for gene delivery systems. J Biomed Mater Res A 2019; 107:2468-2478. [PMID: 31276293 DOI: 10.1002/jbm.a.36753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 01/02/2023]
Abstract
Fluorinated intermediate molecular weight polyethylenimine (FP2ks) with various fluorination degrees was synthesized by conjugation with heptafluorobutyric anhydride and the fluorination effect for gene delivery systems was examined. FP2ks could condense pDNA, forming compact, positively charged, and nano-sized spherical particles. It was thought that their decreased electrostatic interaction with pDNA would be compensated by hydrophobic interaction. The cytotoxicity of FP2ks was increased with the increase of fluorination degree, probably due to the cellular membrane disruption via hydrophobic interaction with FP2ks. The transfection efficiency of highly fluorinated FP2ks was not severely affected in serum condition, assuming their good serum-compatibility. Discrepancy between their higher cellular uptake efficiency and lower transfection efficiency than PEI25k was thought to arise from the formation of compact polyplexes followed by the decreased dissociation of pDNA. It was also suggested that multiple energy-dependent cellular uptake mechanisms and endosome buffering would mediate the transfection of FP2ks.
Collapse
Affiliation(s)
- Gyeong Jin Lee
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Tae-Il Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| |
Collapse
|
10
|
Zhang J, Miao Y, Ni W, Xiao H, Zhang J. Cancer cell membrane coated silica nanoparticles loaded with ICG for tumour specific photothermal therapy of osteosarcoma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2298-2305. [PMID: 31174440 DOI: 10.1080/21691401.2019.1622554] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jingwei Zhang
- Department of Orthopedics, Shanghai Fengxian District Central Hospital / Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Yu Miao
- Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai, China
| | - Weifeng Ni
- Department of Orthopedics, Shanghai Fengxian District Central Hospital / Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Haijun Xiao
- Department of Orthopedics, Shanghai Fengxian District Central Hospital / Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Jieyuan Zhang
- Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
11
|
Zhang L, Xu J, Wen Q, Ni C. Preparation of xanthan gum nanogels and their pH/redox responsiveness in controlled release. J Appl Polym Sci 2019. [DOI: 10.1002/app.47921] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Liping Zhang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi China
| | - Jie Xu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi China
| | - Quanwu Wen
- School of Chemistry and Materials ScienceLudong University Yantai 264025 People's Republic of China
| | - Caihua Ni
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi China
| |
Collapse
|
12
|
Schubert J, Chanana M. Coating Matters: Review on Colloidal Stability of Nanoparticles with Biocompatible Coatings in Biological Media, Living Cells and Organisms. Curr Med Chem 2018; 25:4553-4586. [PMID: 29852857 PMCID: PMC7040520 DOI: 10.2174/0929867325666180601101859] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/13/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022]
Abstract
Within the last two decades, the field of nanomedicine has not developed as successfully as has widely been hoped for. The main reason for this is the immense complexity of the biological systems, including the physico-chemical properties of the biological fluids as well as the biochemistry and the physiology of living systems. The nanoparticles' physicochemical properties are also highly important. These differ profoundly from those of freshly synthesized particles when applied in biological/living systems as recent research in this field reveals. The physico-chemical properties of nanoparticles are predefined by their structural and functional design (core and coating material) and are highly affected by their interaction with the environment (temperature, pH, salt, proteins, cells). Since the coating material is the first part of the particle to come in contact with the environment, it does not only provide biocompatibility, but also defines the behavior (e.g. colloidal stability) and the fate (degradation, excretion, accumulation) of nanoparticles in the living systems. Hence, the coating matters, particularly for a nanoparticle system for biomedical applications, which has to fulfill its task in the complex environment of biological fluids, cells and organisms. In this review, we evaluate the performance of different coating materials for nanoparticles concerning their ability to provide colloidal stability in biological media and living systems.
Collapse
Affiliation(s)
- Jonas Schubert
- Address correspondence to these authors at the Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany and Department of Physical Chemistry II, University of Bayreuth, 95447 Bayreuth, Germany;E-mails: ;
| | - Munish Chanana
- Address correspondence to these authors at the Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany and Department of Physical Chemistry II, University of Bayreuth, 95447 Bayreuth, Germany;E-mails: ;
| |
Collapse
|