1
|
Sen S, Kumar R, Tomar RS, Roy S. Designing Short Cardin-Motif Peptide and Biopolymer-Based Multicomponent Hydrogels for Developing Advanced Composite Scaffolds for Improving Cellular Behavior. Macromol Biosci 2025:e2400555. [PMID: 39838741 DOI: 10.1002/mabi.202400555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/01/2025] [Indexed: 01/23/2025]
Abstract
Multicomponent self-assembly represents a cutting-edge strategy in peptide nanotechnology, enabling the creation of nanomaterials with enhanced physical and biological characteristics. This approach draws inspiration from the highly complex nature of the native extracellular matrix (ECM) constituting multicomponent biomolecular entities. In recent years, the combination of bioactive peptide with polymer has gained significant attention for the fabrication of novel biomaterials due to their inherent specificity, tunable physiochemical properties, biocompatibility, and biodegradability. This advanced strategy can address the limitation of the lower mechanical strength of the individual peptide hydrogel by incorporating the biopolymer, resulting in the formation of a composite scaffold. In this direction, this advanced strategy is explored using noncovalent interactions between cellulose nano-fiber (CNF) and cationic Cardin-motif peptide to develop advanced composite scaffolds. The bioactive cationic peptide otherwise failed to form hydrogel at physiological conditions. Interestingly, the differential mixing ratio of CNF and peptide modulated the surface charge, functionality, and mechanical properties of the composite scaffolds, resulting in diverse cellular responses. 10:1 (w/w) ratio of CNF and peptide-based composite scaffold demonstrates improved cellular survival and proliferation in 2D culture conditions. Notably, in 3D cultures, cell proliferation on the 10:1 matrix is comparable to Matrigel, highlighting its potential for advanced tissue engineering applications.
Collapse
Affiliation(s)
- Sourav Sen
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Rakesh Kumar
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Rahul Singh Tomar
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Sangita Roy
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| |
Collapse
|
2
|
Ligorio C, Martinez-Espuga M, Laurenza D, Hartley A, Rodgers CB, Kotowska AM, Scurr DJ, Dalby MJ, Ordóñez-Morán P, Mata A. Disassembly of self-assembling peptide hydrogels as a versatile method for cell extraction and manipulation. J Mater Chem B 2024; 12:11939-11952. [PMID: 39449374 PMCID: PMC11502993 DOI: 10.1039/d4tb01575d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Self-assembling peptide hydrogels (SAPHs) are increasingly being used as two-dimensional (2D) cell culture substrates and three-dimensional (3D) matrices due to their tunable properties and biomimicry of native tissues. Despite these advantages, SAPHs often represent an end-point in cell culture, as isolating cells from them leads to low yields and disruption of cells, limiting their use and post-culture analyses. Here, we report on a protocol designed to easily and effectively disassemble peptide amphiphile (PA) SAPHs to retrieve 3D encapsulated cells with high viability and minimal disruption. Due to the pivotal role played by salt ions in SAPH gelation, tetrasodium ethylenediaminetetraacetic acid (Na4EDTA) was used as metal chelator to sequester ions participating in PA self-assembly and induce a rapid, efficient, clean, and gentle gel-to-sol transition. We characterise PA disassembly from the nano- to the macro-scale, provide mechanistic and practical insights into the PA disassembly mechanism, and assess the potential use of the process. As proof-of-concept, we isolated different cell types from cell-laden PA hydrogels and demonstrated the possibility to perform downstream biological analyses including cell re-plating, gene analysis, and flow cytometry with high reproducibility and no material interference. Our work offers new opportunities for the use of SAPHs in cell culture and the potential use of cells cultured on SAPHs, in applications such as cell expansion, analysis of in vitro models, cell therapies, and regenerative medicine.
Collapse
Affiliation(s)
- Cosimo Ligorio
- Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- School of Pharmacy, University of Nottingham, Nottingham, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK
| | - Magda Martinez-Espuga
- Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Domenico Laurenza
- Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Alex Hartley
- Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Chloe B Rodgers
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, UK
| | - Anna M Kotowska
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - David J Scurr
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, UK
| | - Paloma Ordóñez-Morán
- Translational Medical Sciences Unit, School of Medicine, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Alvaro Mata
- Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- School of Pharmacy, University of Nottingham, Nottingham, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK
| |
Collapse
|
3
|
Bai T, Chen H, Wei F, Sun G, Chen X, Shi Z, Zhu S. Assessing the impact of different Urushiol primer solvents on dentin remineralization and bond strength. Clin Oral Investig 2024; 28:500. [PMID: 39186077 DOI: 10.1007/s00784-024-05892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVES To investigate urushiol's potential as a dentin cross-linking agent, promoting remineralization of etched dentin and preventing activation of endogenous proteases causing collagen degradation within the hybrid layer. The goal is to improve bond strength and durability at the resin-dentin interface. METHODS Urushiol primers with varying concentrations were prepared using ethanol and dimethyl sulfoxide (DMSO) as solvents. Dentin from healthy molars underwent grinding and acid etching for 15 s, followed by a 1min application of urushiol primer. After 14 and 28 days of remineralization incubation and remineralization were used to assess by Attenuated Total Reflection Fourier Transform Infrared spectroscopy (ATR-FTIR), Micro-Raman spectroscopy, X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), Vickers Hardness, Scanning Electron Microscopy (SEM), and Energy X-ray dispersive spectroscopy (EDS). The overall performance of urushiol primers as dentin adhesives was observed by microtensile bond strength (μTBS) testing and nanoleakage assessment. Investigated the inhibitory properties of the urushiol primers on endogenous metalloproteinases (MMPs) utilizing in situ zymography, and the cytotoxicity of the primers was tested. RESULTS Based on ATR-FTIR, Raman, XRD, EM-EDS and Vickers hardness analyses, the 0.7%-Ethanol group significantly enhanced dentin mineral content and improved mechanical properties the most. Pretreatment notably increased the μTBS of restorations, promoted the stability of the mixed layer, and reduced nanoleakage and MMPs activity after 28 days. SIGNIFICANCE The urushiol primer facilitates remineralization in demineralized dentin, enhancing remineralization in etched dentin, effectively improving the bonding interface stability, with optimal performance observed at a 0.7 wt% concentration of the urushiol primer.
Collapse
Affiliation(s)
- Tingting Bai
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China
| | - Huan Chen
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China
| | - Fei Wei
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China
| | - Guangdi Sun
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China
| | - Xue Chen
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China
| | - Zuosen Shi
- Zuosen Shi, State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Gaoxin District, Changchun City, Jilin Province, China.
| | - Song Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China.
| |
Collapse
|
4
|
Zheng B, Zhao L, Chen L, Lai H, Wang C, Chen Y, Shao C, Tang R, Gu X. Phosphorylation of collagen fibrils enhances intrafibrillar mineralization and dentin remineralization. NANOSCALE 2024; 16:11633-11641. [PMID: 38687191 DOI: 10.1039/d4nr00652f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The hierarchical assembly of nanoapatite within a type I collagen matrix was achieved through biomimetic mineralization in vitro, cooperatively regulated by non-collagenous proteins and small biomolecules. Here, we demonstrated that IP6 could significantly promote intrafibrillar mineralization in two- and three-dimensional collagen models through binding to collagen fibrils via hydrogen bonds (the interaction energy ∼10.21 kJ mol-1), as confirmed by the FTIR spectra and isothermal experimental results. In addition, we find that IP6 associated with dental collagen fibrils can also enhance the remineralization of calcium-depleted dentin and restore its mechanical properties similar to the natural dentin within 4 days. The promoting effect is mainly due to the chemical modification of IP6, which alters the interfacial physicochemical properties of collagen fibrils, strengthening the interaction of calcium phosphate minerals and mineral ions with collagen fibrils. This strategy of interfacial regulation to accelerate the mineralization of collagen fibrils is essential for dental repair and the development of a clinical product for the remineralization of hard tissue.
Collapse
Affiliation(s)
- Bo Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Luyi Zhao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Lelu Chen
- Department of Stomatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haiyan Lai
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Chengze Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Yi Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Changyu Shao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
5
|
Hao Z, Feng Q, Wang Y, Wang Y, Li H, Hu Y, Chen T, Wang J, Chen R, Lv X, Yang Z, Chen J, Guo X, Li J. A parathyroid hormone related supramolecular peptide for multi-functionalized osteoregeneration. Bioact Mater 2024; 34:181-203. [PMID: 38235308 PMCID: PMC10792172 DOI: 10.1016/j.bioactmat.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/30/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024] Open
Abstract
Supramolecular peptide nanofiber hydrogels are emerging biomaterials for tissue engineering, but it is difficult to fabricate multi-functional systems by simply mixing several short-motif-modified supramolecular peptides because relatively abundant motifs generally hinder nanofiber cross-linking or the formation of long nanofiber. Coupling bioactive factors to the assembling backbone is an ideal strategy to design multi-functional supramolecular peptides in spite of challenging synthesis and purification. Herein, a multi-functional supramolecular peptide, P1R16, is developed by coupling a bioactive factor, parathyroid hormone related peptide 1 (PTHrP-1), to the basic supramolecular peptide RADA16-Ⅰ via solid-phase synthesis. It is found that P1R16 self-assembles into long nanofibers and co-assembles with RADA16-Ⅰ to form nanofiber hydrogels, thus coupling PTHrP-1 to hydrogel matrix. P1R16 nanofiber retains osteoinductive activity in a dose-dependent manner, and P1R16/RADA16-Ⅰ nanofiber hydrogels promote osteogenesis, angiogenesis and osteoclastogenesis in vitro and induce multi-functionalized osteoregeneration by intramembranous ossification and bone remodeling in vivo when loaded to collagen (Col) scaffolds. Abundant red blood marrow formation, ideal osteointegration and adapted degradation are observed in the 50% P1R16/Col scaffold group. Therefore, this study provides a promising strategy to develop multi-functional supramolecular peptides and a new method to topically administrate parathyroid hormone or parathyroid hormone related peptides for non-healing bone defects.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qinyu Feng
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hanke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xuan Lv
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhiqiang Yang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiayao Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
6
|
Wang J, Chen R, Ren B, Feng Q, Li B, Hao Z, Chen T, Hu Y, Huang Y, Zhang Q, Wang Y, Huang J, Li J. A Novel PTH-Related Peptide Combined With 3D Printed Macroporous Titanium Alloy Scaffold Enhances Osteoporotic Osseointegration. Adv Healthc Mater 2023; 12:e2301604. [PMID: 37584445 DOI: 10.1002/adhm.202301604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/01/2023] [Indexed: 08/17/2023]
Abstract
Previous parathyroid hormone (PTH)-related peptides (PTHrPs) cannot be used to prevent implant loosening in osteoporosis patients due to the catabolic effect of local sustained release. A novel PTHrP (PTHrP-2) that can be used locally to promote osseointegration of macroporous titanium alloy scaffold (mTAS) and counteract implant slippage in osteoporosis patients is designed. In vitro, PTHrP-2 enhances the proliferation, adhesion, and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) within the mTAS. Further, it promotes proliferation, migration, angiogenesis-related protein expression, and angiogenesis in human umbilical vein endothelial cells (HUVECs). Compared to PTH(1-34), PTHrP-2 can partially weaken the osteoclast differentiation of RAW 264.7 cells. Even in an oxidative stress microenvironment, PTHrP-2 safeguards the proliferation and migration of BMSCs and HUVECs, reduces reactive oxygen species generation and mitochondrial damage, and partially preserves the angiogenesis of HUVECs. In the Sprague-Dawley (SD) rat osteoporosis model, the therapeutic benefits of PTHrP-2-releasing mTAS (mTASP2 ) and ordinary mTAS implanted for 12 weeks via micro-CT, sequential fluorescent labeling, and histology are compared. The results demonstrate that mTASP2 exhibits high bone growth rate, without osteophyte formation. Consequently, PTHrP-2 exhibits unique local synthesis properties and holds the potential for assisting the osseointegration of alloy implants in osteoporosis patients.
Collapse
Affiliation(s)
- Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Bin Ren
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qinyu Feng
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Beihai Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yilong Huang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qi Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinghuan Huang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
7
|
Asokan V, Yelleti G, Bhat C, Bajaj M, Banerjee P. A novel peptide isolated from Catla skin collagen acts as a self-assembling scaffold promoting nucleation of calcium-deficient hydroxyapatite nanocrystals. J Biochem 2023; 173:197-224. [PMID: 36494197 DOI: 10.1093/jb/mvac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Catla collagen hydrolysate (CH) was fractionated by chromatography and each fraction was subjected to HA nucleation, with the resultant HA-fraction composites being scored based on the structural and functional group of the HA formed. The process was repeated till a single peptide with augmented HA nucleation capacity was obtained. The peptide (4.6 kDa), exhibited high solubility, existed in polyproline-II conformation and displayed a dynamic yet stable hierarchical self-assembling property. The 3D modelling of the peptide revealed multiple calcium and phosphate binding sites and a high propensity to self-assemble. Structural analysis of the peptide-HA crystals revealed characteristic diffraction planes of HA with mineralization following the (002) plane, retention of the self-assembled hierarchy of the peptide and intense ionic interactions between carboxyl groups and calcium. The peptide-HA composite crystals were mostly of 25-40 nm dimensions and displayed 79% mineralization, 92% crystallinity, 39.25% porosity, 12GPa Young's modulus and enhanced stability in physiological pH. Cells grown on peptide-HA depicted faster proliferation rates and higher levels of osteogenic markers. It was concluded that the prerequisite for HA nucleation by a peptide included: a conserved sequence with a unique charge topology allowing calcium chelation and its ability to form a dynamic self-assembled hierarchy for crystal propagation.
Collapse
Affiliation(s)
- Vishwadeep Asokan
- Department of Biochemistry, School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka 560078, India
| | - Geethika Yelleti
- Department of Biochemistry, School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka 560078, India
| | - Chetna Bhat
- Department of Biochemistry, School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka 560078, India
| | - Mayur Bajaj
- School of Biological Sciences, Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh 517507, India
| | - Pradipta Banerjee
- Department of Biochemistry, School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka 560078, India
| |
Collapse
|
8
|
Hao Z, Li H, Wang Y, Hu Y, Chen T, Zhang S, Guo X, Cai L, Li J. Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103820. [PMID: 35128831 PMCID: PMC9008438 DOI: 10.1002/advs.202103820] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/02/2022] [Indexed: 05/03/2023]
Abstract
Bone tissue engineering is becoming an ideal strategy to replace autologous bone grafts for surgical bone repair, but the multihierarchical complexity of natural bone is still difficult to emulate due to the lack of suitable biomaterials. Supramolecular peptide nanofiber hydrogels (SPNHs) are emerging biomaterials because of their inherent biocompatibility, satisfied biodegradability, high purity, facile functionalization, and tunable mechanical properties. This review initially focuses on the multihierarchical fabrications by SPNHs to emulate natural bony extracellular matrix. Structurally, supramolecular peptides based on distinctive building blocks can assemble into nanofiber hydrogels, which can be used as nanomorphology-mimetic scaffolds for tissue engineering. Biochemically, bioactive motifs and bioactive factors can be covalently tethered or physically absorbed to SPNHs to endow various functions depending on physiological and pharmacological requirements. Mechanically, four strategies are summarized to optimize the biophysical microenvironment of SPNHs for bone regeneration. Furthermore, comprehensive applications about SPNHs for bone tissue engineering are reviewed. The biomaterials can be directly used in the form of injectable hydrogels or composite nanoscaffolds, or they can be used to construct engineered bone grafts by bioprinting or bioreactors. Finally, continuing challenges and outlook are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Hanke Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yi Wang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yingkun Hu
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Tianhong Chen
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Shuwei Zhang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Xiaodong Guo
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Road 1277Wuhan430022China
| | - Lin Cai
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Jingfeng Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| |
Collapse
|
9
|
Yang J, Huang J, Qin H, Long J, Lin X, Xie F. Remineralization of human dentin type I collagen fibrils induced by carboxylated polyamidoamine dendrimer/amorphous calcium phosphate nanocomposite: an in vitro study. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:668-686. [PMID: 34809527 DOI: 10.1080/09205063.2021.2008789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Intrafibrillar mineralization of type I collagen fibrils is of great significance in dental remineralization, which is the key of caries prevention and treatment. Herein, two substances that have the remineralization ability, carboxylated polyamidoamine dendrimer (PAMAM-COOH) and nano-sized amorphous calcium phosphate (n-ACP) were combined to synthesize a novel nanomaterial, carboxylated polyamidoamine dendrimer/amorphous calcium phosphate nanocomposite (PAMAM-COOH/ACP). This article aims to evaluate the remineralization effect of PAMAM-COOH/ACP of dentin type I collagen fibrils in vitro. Fluorescence labeling technique was innovatively used to observe and evaluate the remineralization effect. PAMAM-COOH/ACP showed superior remineralization ability of human dentin type I collagen fibrils, especially the intrafibrillar remineralization. Therefore, the novel nanomaterial PAMAM-COOH/ACP is promising to prevent and treat various diseases caused by dentin demineralization and to improve various dental materials.
Collapse
Affiliation(s)
- Jing Yang
- Department of Stomatology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jingxian Huang
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Hejia Qin
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Jindong Long
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Xuandong Lin
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Fangfang Xie
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Yazdanian M, Rahmani A, Tahmasebi E, Tebyanian H, Yazdanian A, Mosaddad SA. Current and Advanced Nanomaterials in Dentistry as Regeneration Agents: An Update. Mini Rev Med Chem 2021; 21:899-918. [PMID: 33234102 DOI: 10.2174/1389557520666201124143449] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
In modern dentistry, nanomaterials have strengthened their foothold among tissue engineering strategies for treating bone and dental defects due to a variety of reasons, including trauma and tumors. Besides their finest physiochemical features, the biomimetic characteristics of nanomaterials promote cell growth and stimulate tissue regeneration. The single units of these chemical substances are small-sized particles, usually between 1 to 100 nm, in an unbound state. This unbound state allows particles to constitute aggregates with one or more external dimensions and provide a high surface area. Nanomaterials have brought advances in regenerative dentistry from the laboratory to clinical practice. They are particularly used for creating novel biomimetic nanostructures for cell regeneration, targeted treatment, diagnostics, imaging, and the production of dental materials. In regenerative dentistry, nanostructured matrices and scaffolds help control cell differentiation better. Nanomaterials recapitulate the natural dental architecture and structure and form functional tissues better compared to the conventional autologous and allogenic tissues or alloplastic materials. The reason is that novel nanostructures provide an improved platform for supporting and regulating cell proliferation, differentiation, and migration. In restorative dentistry, nanomaterials are widely used in constructing nanocomposite resins, bonding agents, endodontic sealants, coating materials, and bioceramics. They are also used for making daily dental hygiene products such as mouth rinses. The present article classifies nanostructures and nanocarriers in addition to reviewing their design and applications for bone and dental regeneration.
Collapse
Affiliation(s)
- Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Aghil Rahmani
- Dental Materials Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Yazdanian
- Department of veterinary, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Liu M, Li W, Xia X, Wang F, MacDougall M, Chen S. Dentine sialophosphoprotein signal in dentineogenesis and dentine regeneration. Eur Cell Mater 2021; 42:43-62. [PMID: 34275129 PMCID: PMC9019922 DOI: 10.22203/ecm.v042a04] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Dentineogenesis starts on odontoblasts, which synthesise and secrete non-collagenous proteins (NCPs) and collagen. When dentine is injured, dental pulp progenitors/mesenchymal stem cells (MSCs) can migrate to the injured area, differentiate into odontoblasts and facilitate formation of reactionary dentine. Dental pulp progenitor cell/MSC differentiation is controlled at given niches. Among dental NCPs, dentine sialophosphoprotein (DSPP) is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family, whose members share common biochemical characteristics such as an Arg-Gly-Asp (RGD) motif. DSPP expression is cell- and tissue-specific and highly seen in odontoblasts and dentine. DSPP mutations cause hereditary dentine diseases. DSPP is catalysed into dentine glycoprotein (DGP)/sialoprotein (DSP) and phosphoprotein (DPP) by proteolysis. DSP is further processed towards active molecules. DPP contains an RGD motif and abundant Ser-Asp/Asp-Ser repeat regions. DPP-RGD motif binds to integrin αVβ3 and activates intracellular signalling via mitogen-activated protein kinase (MAPK) and focal adhesion kinase (FAK)-ERK pathways. Unlike other SIBLING proteins, DPP lacks the RGD motif in some species. However, DPP Ser-Asp/Asp-Ser repeat regions bind to calcium-phosphate deposits and promote hydroxyapatite crystal growth and mineralisation via calmodulin-dependent protein kinase II (CaMKII) cascades. DSP lacks the RGD site but contains signal peptides. The tripeptides of the signal domains interact with cargo receptors within the endoplasmic reticulum that facilitate transport of DSPP from the endoplasmic reticulum to the extracellular matrix. Furthermore, the middle- and COOH-terminal regions of DSP bind to cellular membrane receptors, integrin β6 and occludin, inducing cell differentiation. The present review may shed light on DSPP roles during odontogenesis.
Collapse
Affiliation(s)
- M.M. Liu
- Department of Developmental Dentistry, School of Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA,Department of Endodontics, School of Stomatology, Tongji University, Shanghai, 200072, China
| | - W.T. Li
- Department of Developmental Dentistry, School of Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA,Department of Pathology, Weifang Medical University, Weifang, 261053, China
| | - X.M. Xia
- Department of Developmental Dentistry, School of Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA,Department of Obstetrics and Gynaecology, Second Xiangya Hospital, Central South University Changsha, 410011, China
| | - F. Wang
- Department of Anatomy, Fujian Medical University, Fuzhou, 350122, China
| | - M. MacDougall
- UBC Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - S. Chen
- Department of Developmental Dentistry, School of Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
12
|
Experimental Dental Composites Containing a Novel Methacrylate-Functionalized Calcium Phosphate Component: Evaluation of Bioactivity and Physical Properties. Polymers (Basel) 2021; 13:polym13132095. [PMID: 34202144 PMCID: PMC8271644 DOI: 10.3390/polym13132095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to synthesize and characterize a novel methacrylate-functionalized calcium phosphate (MCP) to be used as a bioactive compound for innovative dental composites. The characterization was accomplished by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The incorporation of MCP as a bioactive filler in esthetic dental composite formulations and the ability of MCP containing dental composites to promote the precipitation of hydroxyapatite (HAp) on the surfaces of those dental composites was explored. The translucency parameter, depth of cure, degree of conversion, ion release profile, and other physical properties of the composites were studied with respect to the amount of MCP added to the composites. Composite with 3 wt.% MCP showed the highest flexural strength and translucency compared to the control composite and composites with 6 wt.% and 20 wt.% MCP. The progress of the surface precipitation of hydroxyapatite on the MCP containing dental composites was studied by systematically increasing the MCP content in the composite and the time of specimen storage in Dulbecco's phosphate-buffered solution with calcium and magnesium. The results suggested that good bioactivity properties are exhibited by MCP containing composites. A direct correlation between the percentage of MCP in a composite formulation, the amount of time the specimen was stored in PBS, and the deposition of hydroxyapatite on the composite's surface was observed.
Collapse
|
13
|
Niu LN, Jiao K, Fang M, Chen JH. [Application of biomimetic restoration in oral-maxillofacial hard tissue repair]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:129-135. [PMID: 33834666 DOI: 10.7518/hxkq.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oral-maxillofacial hard tissue is the support of maxillofacial structure and appearance, and lays the foundation for functions of oral and maxillofacial system. Once the defect occurs, it will not only affect the physiological functions such as chewing and pronunciation, but also have a significant impact on the psychological and social life of patients. However, the self-repairing capability of the oral-maxillofacial hard tissue is pretty limited, in which case, substitute materials are required for tissue repair. A huge gap exists between the physical, chemical, structural characteristics of conventional substitute materials and those of human hard tissues, resulting in poor repair effect. Based on this, scholars simulated the process of biomineralization in the development of hard tissues, to improve the structure and function of materials through biomimetic mineralization technology and enhance the repair performance of materials. The current understanding of biomineralization theory and the construction of biomimetic repair technology is still in the stage of rapid development. In recent years, a mass of innovative studies are keeping emerging. In this review, the representative advances in the repair of oral-maxillofacial hard tissues of the past five years are reviewed.
Collapse
Affiliation(s)
- Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology, School of Stomatology, Air Force Medical University, Xi,an 710032, China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology, School of Stomatology, Air Force Medical University, Xi,an 710032, China
| | - Ming Fang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology, School of Stomatology, Air Force Medical University, Xi,an 710032, China
| | - Ji-Hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology, School of Stomatology, Air Force Medical University, Xi,an 710032, China
| |
Collapse
|
14
|
Li B, Cui Y, Wang X, Tang R. Novel nanomaterial-organism hybrids with biomedical potential. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1706. [PMID: 33644977 DOI: 10.1002/wnan.1706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/29/2022]
Abstract
Instinctive hierarchically biomineralized structures of various organisms, such as eggs, algae, and magnetotactic bacteria, afford extra protection and distinct performance, which endow fragile organisms with a tenacious ability to adapt and survive. However, spontaneous formation of hybrid materials is difficult for most organisms in nature. Rapid development of chemistry and materials science successfully obtained the combinations of organisms with nanomaterials by biomimetic mineralization thus demonstrating the reproduction of the structures and functions and generation of novel functions that organisms do not possess. The rational design of biomaterial-organism hybridization can control biological recognition, interactions, and metabolism of the organisms. Thus, nanomaterial-organism hybrids represent a next generation of organism engineering with great potential biomedical applications. This review summarizes recent advances in material-directed organism engineering and is mainly focused on biomimetic mineralization technologies and their outstanding biomedical applications. Three representative types of biomimetic mineralization are systematically introduced, including external mineralization, internal mineralization, and genetic engineering mineralization. The methods involving hybridization of nanomaterials and organisms based on biomimetic mineralization strategies are described. These strategies resulted in applications of various nanomaterial-organism hybrids with multiplex functions in cell engineering, cancer treatment, and vaccine improvement. Unlike classical biological approaches, this material-based bioregulation is universal, effective, and inexpensive. In particular, instead of traditional medical solutions, the integration of nanomaterials and organisms may exploit novel strategies to solve current biomedical problems. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Benke Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yihao Cui
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China.,Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Lee YS, Park YH, Lee DS, Seo YM, Lee JH, Park JH, Choung HW, Park SH, Shon WJ, Park JC. Tubular Dentin Regeneration Using a CPNE7-Derived Functional Peptide. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4618. [PMID: 33081300 PMCID: PMC7603008 DOI: 10.3390/ma13204618] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/31/2023]
Abstract
We aim to examine the effects of a newly developed peptide derived from CPNE7 (Cpne7-DP) in tertiary dentin formation and peritubular space occlusion, and comprehensively evaluate its potential as a bioactive therapeutic agent. Human dental pulp cells (HDPCs) and a mouse pre-odontoblast cell line, MDPC-23, were chosen for in vitro studies to characterize lineage-specific cell responses after Cpne7-DP treatment. Whether Cpne7-DP reproduces the dentin regenerative potential of CPNE7 was tested using a beagle dog model by generating dentinal defects of various degrees in vivo. Peritubular space occlusion was further examined by scanning electron microscopy and microleakage test, while overall mineralization capacity of Cpne7-DP was tested ex vivo. CPNE7 promotes tubular dentin formation under both shallow and deep dentinal defects, and the functional peptide Cpne7-DP induces odontoblast-like differentiation in vitro, mineralization ex vivo, and tubular dentin formation in in vivo beagle dog dentin exposure and pulp exposure models. Moreover, Cpne7-DP leads to peritubular space occlusion and maintains stability under different conditions. We show that CPNE7 and its derivative functional peptide Cpne7-DP promotes dentin regeneration in dentinal defects of various degrees and that the regenerated hard tissue demonstrates the characteristics of true dentin. Limitations of the current dental materials including post-operative hypersensitivity make biological repair of dentin a field of growing interest. Here, we suggest that the dual functions of Cpne7-DP in tubular dentin formation and peritubular space occlusion are promising for the treatment of dentinal loss and sensitivity.
Collapse
Affiliation(s)
- Yoon Seon Lee
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology—Developmental Biology, School of Dentistry and Dental Research Institute, BK 21, Seoul National University, Seoul 08826, Korea; (Y.S.L.); (Y.-H.P.); (D.-S.L.)
| | - Yeoung-Hyun Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology—Developmental Biology, School of Dentistry and Dental Research Institute, BK 21, Seoul National University, Seoul 08826, Korea; (Y.S.L.); (Y.-H.P.); (D.-S.L.)
| | - Dong-Seol Lee
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology—Developmental Biology, School of Dentistry and Dental Research Institute, BK 21, Seoul National University, Seoul 08826, Korea; (Y.S.L.); (Y.-H.P.); (D.-S.L.)
| | - You-Mi Seo
- Regenerative Dental Medicine R and D Center, HysensBio Co., Ltd., Seoul 03080, Korea; (Y.-M.S.); (J.-H.L.); (J.-H.P.)
| | - Ji-Hyun Lee
- Regenerative Dental Medicine R and D Center, HysensBio Co., Ltd., Seoul 03080, Korea; (Y.-M.S.); (J.-H.L.); (J.-H.P.)
| | - Joo-Hwang Park
- Regenerative Dental Medicine R and D Center, HysensBio Co., Ltd., Seoul 03080, Korea; (Y.-M.S.); (J.-H.L.); (J.-H.P.)
| | - Han-Wool Choung
- Department of Oral and Maxillofacial Surgery, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea;
| | - So-Hyun Park
- Department of Conservative Dentistry, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea; (S.-H.P.); (W.J.S.)
| | - Won Jun Shon
- Department of Conservative Dentistry, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea; (S.-H.P.); (W.J.S.)
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology—Developmental Biology, School of Dentistry and Dental Research Institute, BK 21, Seoul National University, Seoul 08826, Korea; (Y.S.L.); (Y.-H.P.); (D.-S.L.)
| |
Collapse
|
16
|
Tang Y, Chen Y, Huang L, Gao F, Sun H, Huang C. Intramembranous Ossification Imitation Scaffold with the Function of Macrophage Polarization for Promoting Critical Bone Defect Repair. ACS APPLIED BIO MATERIALS 2020; 3:3569-3581. [PMID: 35025227 DOI: 10.1021/acsabm.0c00233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The regeneration of craniofacial bone defects remains a crucial clinical challenge. To date, numerous biomaterials are applied in this field. However, current strategies have ignored the importance of intramembranous ossification and the vital role of macrophages in regulating osteogenesis. Here, an osteoblast (OB)-targeting peptide (SDSSD)-modified chitosan scaffold (CS-SDSSD) is developed for imitating the physiological process of bone development from the fibrous membrane. The addition of free peptide (fSDSSD) can recruit host OBs, and the peptide grafted on the scaffold (CS-SDSSD) can well organize the migrated OBs by binding with their surface periostin. Besides, macrophage polarization is found in the bone defects. CS-SDSSD + fSDSSD displays advantages in prioritizing M2 macrophage polarization and promoting the intramembranous ossification bone repair process. In summary, our strategy provides an economical and effective path for craniofacial bone repair and holds great potential for biomedical applications.
Collapse
Affiliation(s)
- Ying Tang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Yang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Liyuan Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Fan Gao
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430079, China
| | - Hualing Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| |
Collapse
|
17
|
Wei G, Gong C, Hu K, Wang Y, Zhang Y. Biomimetic Hydroxyapatite on Graphene Supports for Biomedical Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1435. [PMID: 31658682 PMCID: PMC6836063 DOI: 10.3390/nano9101435] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 12/18/2022]
Abstract
Hydroxyapatite (HA) has been widely used in fields of materials science, tissue engineering, biomedicine, energy and environmental science, and analytical science due to its simple preparation, low-cost, and high biocompatibility. To overcome the weak mechanical properties of pure HA, various reinforcing materials were incorporated with HA to form high-performance composite materials. Due to the unique structural, biological, electrical, mechanical, thermal, and optical properties, graphene has exhibited great potentials for supporting the biomimetic synthesis of HA. In this review, we present recent advance in the biomimetic synthesis of HA on graphene supports for biomedical applications. More focuses on the biomimetic synthesis methods of HA and HA on graphene supports, as well as the biomedical applications of biomimetic graphene-HA nanohybrids in drug delivery, cell growth, bone regeneration, biosensors, and antibacterial test are performed. We believe that this review is state-of-the-art, and it will be valuable for readers to understand the biomimetic synthesis mechanisms of HA and other bioactive minerals, at the same time it can inspire the design and synthesis of graphene-based novel nanomaterials for advanced applications.
Collapse
Affiliation(s)
- Gang Wei
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, China.
- Faculty of Production Engineering, University of Bremen, D-28359 Bremen, Germany.
| | - Coucong Gong
- Faculty of Production Engineering, University of Bremen, D-28359 Bremen, Germany.
| | - Keke Hu
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, China.
| | - Yabin Wang
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, China.
| | - Yantu Zhang
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
18
|
He L, Hao Y, Zhen L, Liu H, Shao M, Xu X, Liang K, Gao Y, Yuan H, Li J, Li J, Cheng L, van Loveren C. Biomineralization of dentin. J Struct Biol 2019; 207:115-122. [PMID: 31153927 DOI: 10.1016/j.jsb.2019.05.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 02/08/2023]
Abstract
A single biomineralization of demineralized dentin is significant to restore the demineralized dentin due to dental caries or erosion. In recent years, meaningful progress has been made regarding the mechanisms involved in the biomineralization of dentin collagen. Concepts changing from the classical ion-based crystallization to non-classical particle-based crystallization, inspired a different strategy to infiltrate the demineralized dentin collagen. The remarkable discovery was the report of liquid-like amorphous calcium phosphate as nanoprecursor particles to carbonated hydroxyapatite. The non-collagenous proteins and their analogues are widely investigated, for their key role in controlling mineralization during the process of crystal nucleation and growth. The in-depth studies of the gap zone provided significant improvements in our understanding of the structure of collagen and of the intrafibrillar remineralization of collagen fibrils. The collagen is not a passive substrate as previously supposed, and the active role of guiding nanoprecursor infiltration and mediating its nucleation has been demonstrated. Furthermore, recovery of mechanical properties has been evaluated to determine the effectiveness of dentin remineralization. Finally, the problems regarding the origin formation of the calcium phosphate that is deposited in the collagen, and the exact interactions between the non-collagenous proteins, amorphous calcium phosphate and collagen are still unclear. We reviewed the importance of these findings in enriching our understanding of dentin biomineralization, while addressing certain limitations that are inherent to in vitro studies.
Collapse
Affiliation(s)
- Libang He
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Yu Hao
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Li Zhen
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Hongling Liu
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Meiying Shao
- West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Xin Xu
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Yuan Gao
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - He Yuan
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiyao Li
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Lei Cheng
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Cor van Loveren
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam 3004, 1081 LA, The Netherlands.
| |
Collapse
|
19
|
Webber MJ, Dankers PYW. Supramolecular Hydrogels for Biomedical Applications. Macromol Biosci 2019; 19:e1800452. [DOI: 10.1002/mabi.201800452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Matthew J. Webber
- University of Notre Dame; Department of Chemical & Biomolecular Engineering; 205 McCourtney Hall Notre Dame IN 46556 USA
| | - Patricia Y. W. Dankers
- Institute for Complex Molecular Systems; Department of Biomedical Engineering; PO Box 513 Eindhoven MB 5600 The Netherlands
| |
Collapse
|