1
|
Lai WF. Design and Applications of Polymersomes for Oral Drug Administration. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40370090 DOI: 10.1021/acsami.5c04658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Polymersomes are nanostructures consisting of a hollow aqueous compartment enclosed by a coating of amphiphilic block copolymers. Owing to the entangled nature of their membrane, polymersomes exhibit higher mechanical stability than some other extensively studied nanostructures such as liposomes. This also enables the properties of the polymersome membrane to be more easily tuned to meet practical needs, making polymersomes promising carriers for drug delivery. Since the turn of the last century, the use of polymersomes has been exploited in diverse areas, ranging from protein therapy to medical imaging. Yet, discussions exploring the opportunities and challenges of the development of polymersomes for oral drug administration have been scant. This review addresses this gap by offering a snapshot of the current advances in the design, fabrication, and use of polymersomes as oral drug carriers. It is hoped that this review will not only highlight the practical potential of polymersomes for oral drug administration but will also shed light on the challenges determining the wider clinical potential of polymersomes in the forthcoming decades.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
2
|
Thanapongpibul C, Rifaie‐Graham O, Ojansivu M, Najer A, Kim H, Bakker SE, Chami M, Peeler DJ, Liu C, Yeow J, Stevens MM. Unlocking Intracellular Protein Delivery by Harnessing Polymersomes Synthesized at Microliter Volumes using Photo-PISA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408000. [PMID: 39417762 PMCID: PMC11619233 DOI: 10.1002/adma.202408000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/06/2024] [Indexed: 10/19/2024]
Abstract
Efficient delivery of therapeutic proteins and vaccine antigens to intracellular targets is challenging due to generally poor cell membrane permeation and endolysosomal entrapment causing degradation. Herein, these challenges are addressed by developing an oxygen-tolerant photoinitiated polymerization-induced self-assembly (Photo-PISA) process, allowing for the microliter-scale (10 µL) synthesis of protein-loaded polymersomes directly in 1536-well plates. High-resolution techniques capable of analysis at a single particle level are employed to analyze protein encapsulation and release mechanisms. Using confocal microscopy and super-resolution stochastic optical reconstruction microscopy (STORM) imaging, their ability to deliver proteins into the cytosol following endosomal escape is subsequently visualized. Lastly, the adaptability of these polymersomes is exploited to encapsulate and deliver a prototype vaccine antigen, demonstrating its ability to activate antigen-presenting cells and support antigen cross-presentation for applications in subunit vaccines and cancer immunotherapy. This combination of ultralow volume synthesis and efficient intracellular delivery holds significant promise for unlocking the high throughput screening of a broad range of otherwise cost-prohibitive or early-stage therapeutic protein and vaccine antigen candidates that can be difficult to obtain in large quantities. The versatility of this platform for rapid screening of intracellular protein delivery can result in significant advancements across the fields of nanomedicine and biomedical engineering.
Collapse
Affiliation(s)
- Chalaisorn Thanapongpibul
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Omar Rifaie‐Graham
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Miina Ojansivu
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm17177Sweden
| | - Adrian Najer
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Hyemin Kim
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Saskia E. Bakker
- Advanced Bioimaging Research Technology PlatformUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Mohamed Chami
- BioEM LabBiozentrumUniversity of BaselBasel4058Switzerland
| | - David J. Peeler
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Chenchen Liu
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
- Kavli Institute for Nanoscience DiscoveryDepartment of Physiology, Anatomy and GeneticsDepartment of Engineering ScienceUniversity of OxfordOxfordOX1 3QUUK
| | - Jonathan Yeow
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm17177Sweden
- Kavli Institute for Nanoscience DiscoveryDepartment of Physiology, Anatomy and GeneticsDepartment of Engineering ScienceUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
3
|
Zhang K, Zhou Y, Moreno S, Schwarz S, Boye S, Voit B, Appelhans D. Reversible crowdedness of pH-responsive and host-guest active polymersomes: Mimicking µm-sized cell structures. J Colloid Interface Sci 2024; 654:1469-1482. [PMID: 37858368 DOI: 10.1016/j.jcis.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
The structure-function characteristics of isolated artificial organelles (AOs) in protocells are mainly known, but there are few reports on clustered or aggregated AOs. To imitate µm-sized complex and heterogeneous cell structures, approaches are needed that enable reversible changes in the aggregation state of colloidal structures in response to chemical, biological, and external stimuli. To construct adaptive organelle-like or cell-like reorganization characteristics, we present an advanced crosslinking strategy to fabricate clustered polymersomes as a platform based on host-guest interactions between azobenzene-containing polymersomes (Azo-Psomes) and a β-cyclodextrin-modified polymer (β-CD polymer) as a crosslinker. First, the reversible (dis)assembly of clustered Azo-Psomes is carried out by the alternating input of crosslinker and adamantane-PEG3000 as a decrosslinker. Moreover, cluster size dependence is demonstrated by environmental pH. These offer the controlled fabrication of various homogeneous and heterogeneous Azo-Psomes structures, including the size regulation and visualization of clustered AOs through a fluorescent enzymatic cascade reaction. Finally, a temperature-sensitive crosslinking agent with β-CD units can promote the coaggregation of Azo-Psomes mediated by temperature changes. Overall, these (co-)clustered Azo-Psomes and their successful transformation in AOs may provide new features for modelling biological systems for eukaryotic cells and systems biology.
Collapse
Affiliation(s)
- Kehu Zhang
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Yang Zhou
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.
| | - Simona Schwarz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.
| |
Collapse
|
4
|
Wang D, Moreno S, Boye S, Voit B, Appelhans D. Crosslinked and Multi-Responsive Polymeric Vesicles as a Platform to Study Enzyme-Mediated Undocking Behavior: Toward Future Artificial Organelle Communication. Macromol Rapid Commun 2023; 44:e2200885. [PMID: 36755359 DOI: 10.1002/marc.202200885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/19/2023] [Indexed: 02/10/2023]
Abstract
Various cellular functions are successfully mimicked, opening the door to the next generation of therapeutic approaches and systems biology. Herein, the first steps are taken toward the construction of artificial organelles for mimicking cell communication by docking and undocking of cargo in the membrane of swollen artificial organelles. Stimuli-responsive and crosslinked polymeric vesicles are used to allow docking processes at acidic pH at which ferrocene units in the swollen membrane state can undergo desired specific host-guest interaction using β-cyclodextrin as model cargo. The release of the cargo mediated by two different enzymes, glucose oxidase and α-amylase, is investigated, triggered by distinct enzymatic undocking mechanisms. Different release times for a useful transport are shown that can be adapted to different communication pathways. In addition, Förster resonance energy transfer (FRET) experiments further support the hypotheses of host-guest inclusion complexation formation and their time-dependent breakdown. This work paves a way to a platform based on polymeric vesicles for synthetic biology, cell functions mimicking, and the construction of multifunctional cargo delivery system.
Collapse
Affiliation(s)
- Dishi Wang
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| |
Collapse
|
5
|
Xu X, Moreno S, Boye S, Wang P, Voit B, Appelhans D. Artificial Organelles with Digesting Characteristics: Imitating Simplified Lysosome- and Macrophage-Like Functions by Trypsin-Loaded Polymersomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207214. [PMID: 37076948 PMCID: PMC10265080 DOI: 10.1002/advs.202207214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/12/2023] [Indexed: 05/03/2023]
Abstract
Defects in cellular protein/enzyme encoding or even in organelles are responsible for many diseases. For instance, dysfunctional lysosome or macrophage activity results in the unwanted accumulation of biomolecules and pathogens implicated in autoimmune, neurodegenerative, and metabolic disorders. Enzyme replacement therapy (ERT) is a medical treatment that replaces an enzyme that is deficient or absent in the body but suffers from short lifetime of the enzymes. Here, this work proposes the fabrication of two different pH-responsive and crosslinked trypsin-loaded polymersomes as protecting enzyme carriers mimicking artificial organelles (AOs). They allow the enzymatic degradation of biomolecules to mimic simplified lysosomal function at acidic pH and macrophage functions at physiological pH. For optimal working of digesting AOs in different environments, pH and salt composition are considered the key parameters, since they define the permeability of the membrane of the polymersomes and the access of model pathogens to the loaded trypsin. Thus, this work demonstrates environmentally controlled biomolecule digestion by trypsin-loaded polymersomes also under simulated physiological fluids, allowing a prolonged therapeutic window due to protection of the enzyme in the AOs. This enables the application of AOs in the fields of biomimetic therapeutics, specifically in ERT for dysfunctional lysosomal diseases.
Collapse
Affiliation(s)
- Xiaoying Xu
- Deaprtment Bioactive and Responsive PolymersLeibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
- Organic Chemistry of PolymersTechnische Universität DresdenD‐01062DresdenGermany
| | - Silvia Moreno
- Deaprtment Bioactive and Responsive PolymersLeibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Susanne Boye
- Center Macromolecular Structure AnalysisLeibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Peng Wang
- Deaprtment Bioactive and Responsive PolymersLeibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Brigitte Voit
- Deaprtment Bioactive and Responsive PolymersLeibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
- Organic Chemistry of PolymersTechnische Universität DresdenD‐01062DresdenGermany
| | - Dietmar Appelhans
- Deaprtment Bioactive and Responsive PolymersLeibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| |
Collapse
|
6
|
Wang P, Moreno S, Janke A, Boye S, Wang D, Schwarz S, Voit B, Appelhans D. Probing Crowdedness of Artificial Organelles by Clustering Polymersomes for Spatially Controlled and pH-Triggered Enzymatic Reactions. Biomacromolecules 2022; 23:3648-3662. [PMID: 35981858 DOI: 10.1021/acs.biomac.2c00546] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most sophisticated biological functions and features of cells are based on self-organization, and the coordination and connection between their cell organelles determines their key functions. Therefore, spatially ordered and controllable self-assembly of polymersomes to construct clusters to simulate complex intracellular biological functions has attracted widespread attention. Here, we present a simple one-step copper-free click strategy to cross-link nanoscale pH-responsive and photo-cross-linked polymersomes (less than 100 nm) to micron-level clusters (more than 90% in 0.5-2 μm range). Various influencing factors in the clustering process and subsequent purification methods were studied to obtain optimal clustered polymeric vesicles. Even when polymeric vesicles separately loaded with different enzymes (glucose oxidase and myoglobin) are coclustered, the overall permeability of the clusters can still be regulated through tuning the pH values on demand. Compared with simple blending of those enzyme-loaded polymersomes, the rate of enzymatic cascade reaction increased significantly due to the interconnected complex microstructure established. The connection of catalytic nanocompartments into clusters confining different enzymes of a cascade reaction provides an excellent platform for the development of artificial systems mimicking natural organelles or cells.
Collapse
Affiliation(s)
- Peng Wang
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany.,Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Silvia Moreno
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - Andreas Janke
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - Susanne Boye
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - Dishi Wang
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany.,Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Simona Schwarz
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany.,Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| |
Collapse
|
7
|
Sztandera K, Gorzkiewicz M, Wang X, Boye S, Appelhans D, Klajnert-Maculewicz B. pH-stable polymersome as nanocarrier for post-loaded rose bengal in photodynamic therapy. Colloids Surf B Biointerfaces 2022; 217:112662. [PMID: 35785717 DOI: 10.1016/j.colsurfb.2022.112662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
Photodynamic therapy is one of the best alternatives to chemo-, radio- or surgical therapy, as it is noninvasive and causes no severe side effects. The mechanism of photodynamic therapy involves activation of the drug (photosensitizer) with light of appropriate wavelength, which combined with molecular oxygen, leads to production of reactive oxygen species. This starts a cascade of reactions leading to cell death. Thus, the efficiency of this therapy is based mainly on the properties of a photosensitizer, including singlet oxygen yield and accumulation in the tumor area. Current research is aimed at applying nanosystems for the improvement of availability and photodynamic properties of photosensitizers. In order to improve the activity and increase photodynamic potential of rose bengal, one of the most promising drugs in anticancer photodynamic therapy, several drug delivery systems were developed. Among them, polymersomes represent a group of innovative polymeric vesicles mimicking membranous cell structures. Polymersomes are nanosystems made of amphiphilic block copolymers, possessing a spherical, liposome-like architecture. Within this study we present biophysical and in vitro biological characterization of this novel pH-stable nanosystem, which due to the improvement of singlet oxygen and reactive oxygen species (ROS) production by rose bengal is a good candidate for nanocarrier in photodynamic therapy.
Collapse
Affiliation(s)
- K Sztandera
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.
| | - M Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - X Wang
- Dongguan Hospital, Southern Medical University, Dongguan 523059, PR China
| | - S Boye
- Leibniz Institute for Polymer Research Dresden, 6 Hohe St., 01069 Dresden, Germany
| | - D Appelhans
- Leibniz Institute for Polymer Research Dresden, 6 Hohe St., 01069 Dresden, Germany
| | - B Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| |
Collapse
|
8
|
Heuberger L, Korpidou M, Eggenberger OM, Kyropoulou M, Palivan CG. Current Perspectives on Synthetic Compartments for Biomedical Applications. Int J Mol Sci 2022; 23:5718. [PMID: 35628527 PMCID: PMC9145047 DOI: 10.3390/ijms23105718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
Nano- and micrometer-sized compartments composed of synthetic polymers are designed to mimic spatial and temporal divisions found in nature. Self-assembly of polymers into compartments such as polymersomes, giant unilamellar vesicles (GUVs), layer-by-layer (LbL) capsules, capsosomes, or polyion complex vesicles (PICsomes) allows for the separation of defined environments from the exterior. These compartments can be further engineered through the incorporation of (bio)molecules within the lumen or into the membrane, while the membrane can be decorated with functional moieties to produce catalytic compartments with defined structures and functions. Nanometer-sized compartments are used for imaging, theranostic, and therapeutic applications as a more mechanically stable alternative to liposomes, and through the encapsulation of catalytic molecules, i.e., enzymes, catalytic compartments can localize and act in vivo. On the micrometer scale, such biohybrid systems are used to encapsulate model proteins and form multicompartmentalized structures through the combination of multiple compartments, reaching closer to the creation of artificial organelles and cells. Significant progress in therapeutic applications and modeling strategies has been achieved through both the creation of polymers with tailored properties and functionalizations and novel techniques for their assembly.
Collapse
Affiliation(s)
- Lukas Heuberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
| | - Maria Korpidou
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
| | - Olivia M. Eggenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
| | - Myrto Kyropoulou
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
- NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
- NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058 Basel, Switzerland
| |
Collapse
|