1
|
Gallo E, Diaferia C. Editorial for Special Issue "Hydrogelated Matrices: Structural, Functional and Applicative Aspects". Gels 2025; 11:146. [PMID: 39996690 PMCID: PMC11854532 DOI: 10.3390/gels11020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
Gel-based materials have found important applications in fields such as food, healthcare, cosmetics, and bioanalysis [...].
Collapse
Affiliation(s)
- Enrico Gallo
- IRCCS SYNLAB SDN, Via G. Ferraris 144, 80146 Naples, Italy;
| | - Carlo Diaferia
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
2
|
Rosa M, Gallo E, Pellegrino P, Mercurio FA, Leone M, Cascione M, Carrese B, Morelli G, Accardo A, Diaferia C. Inclusion of Cationic Amphiphilic Peptides in Fmoc-FF Generates Multicomponent Functional Hydrogels. ACS APPLIED BIO MATERIALS 2025; 8:488-502. [PMID: 39648955 DOI: 10.1021/acsabm.4c01409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Peptide building blocks have been recently proposed for the fabrication of supramolecular nanostructures able to encapsulate and in vivo deliver drugs of a different nature. The primary sequence design is essential for nanostructure property modulation, directing and affecting affinity for specific drugs. For instance, the presence of positively charged residues of lysine (K) or arginine (R) could allow improving electrostatic interactions and, in turn, the encapsulation of negatively charged active pharmaceutical ingredients, including nucleic acids. In this context, here, we describe the formulation and the multiscale structural characterization of hybrid cationic peptide containing hydrogels (HGs). In these matrices, the well-known low-molecular-weight hydrogelator, Fmoc-diphenylalanine (Fmoc-FF, Fmoc = fluorenyl methoxycarbonyl), was mixed with a library of cationic amphiphilic peptides (CAPs) differing for their alkyl chain (from C8 to C18) in a 1/1 mol/mol ratio. The structural characterization highlighted that in mixed HGs, the aggregation is guided by Fmoc-FF, whereas the cationic peptides are only partially immobilized into the hydrogelated matrix. Moreover, morphology, stiffness, topography, and toxicity are significantly affected by the length of the alkyl chain. The capability of the hydrogels to encapsulate negative drugs was evaluated using the 5-carboxyfluorescein (5-FAM) dye as a model.
Collapse
Affiliation(s)
- Mariangela Rosa
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via T. De Amicis 95, Naples 80145, Italy
| | - Enrico Gallo
- IRCCS SYNLAB SDN, Via G. Ferraris 144, Naples 80146, Italy
| | - Paolo Pellegrino
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, Lecce 73100, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Monteroni, Lecce 73100, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging (IBB), CNR, Via P. Castellino 111, Naples 80131, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging (IBB), CNR, Via P. Castellino 111, Naples 80131, Italy
| | - Mariafrancesca Cascione
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, Lecce 73100, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Monteroni, Lecce 73100, Italy
| | | | - Giancarlo Morelli
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via T. De Amicis 95, Naples 80145, Italy
| | - Antonella Accardo
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via T. De Amicis 95, Naples 80145, Italy
| | - Carlo Diaferia
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via T. De Amicis 95, Naples 80145, Italy
| |
Collapse
|
3
|
Masri S, Fauzi MB, Rajab NF, Lee WH, Zainal Abidin DA, Siew EL. In vitro 3D skin culture and its sustainability in toxicology: a narrative review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:476-499. [PMID: 39359233 DOI: 10.1080/21691401.2024.2407617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
In current toxicological research, 2D cell cultures and animal models are well- accepted and commonly employed methods. However, these approaches have many drawbacks and are distant from the actual environment in human. To embrace this, great efforts have been made to provide alternative methods for non-animal skin models in toxicology studies with the need for more mechanistically informative methods. This review focuses on the current state of knowledge regarding the in vitro 3D skin model methods, with different functional states that correspond to the sustainability in the field of toxicology testing. We discuss existing toxicology testing methods using in vitro 3D skin models which provide a better understanding of the testing requirements that are needed. The challenges and future landscape in using the in vitro 3D skin models in toxicology testing are also discussed. We are confident that the in vitro 3D skin models application may become an important tool in toxicology in the context of risk assessment.
Collapse
Affiliation(s)
- Syafira Masri
- Department of Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
- Advance Bioactive Materials-Cells (Adv-BioMaC) UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nor Fadilah Rajab
- Centre for Health Aging and Wellness, Faculty of Helath Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wing-Hin Lee
- Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), Perak, Malaysia
| | | | - Ee Ling Siew
- ASASIpintar Unit, Pusat PERMATA@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Ye B, Lu G, Zhou J, Li Y, Ma Y, Zhang Y, Chen J. Sulfated glyco-based hydrogels as self-healing, adhesive, and anti-inflammatory dressings for wound healing. Colloids Surf B Biointerfaces 2024; 238:113915. [PMID: 38631281 DOI: 10.1016/j.colsurfb.2024.113915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Hydrogels have emerged as a new type of wound dressing materials that involved in different stages of the healing processes. However, most of the existing wound dressings mainly offer a protective and moisturizing layer to prevent cross-infection, while the anti-inflammatory and anti-oxidative properties are frequently induced by extra addition of other bioactive molecules. Here, a novel type of sulfated glyco-functionalized hydrogels for wound dressing was prepared through the hybrid supramolecular co-assembly of carbohydrate segments (FG, FGS and FG3S), fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF), and diphenylalanine-dopamine (FFD). Implanting sulfated carbohydrates can mimic the structure of glycosaminoglycans (GAGs), promoting cell proliferation and migration, along with anti-inflammatory effects. In situ polymerization of FFD introduced a secondary covalent network to the hydrogel, meanwhile, providing anti-oxidation and adhesion properties to wound surfaces. Furthermore, the dynamic supramolecular interactions within the hydrogels also confer self-healing capabilities to the wound dressing materials. In vivo experiments further demonstrated significantly accelerated healing rates with the multifunctional hydrogel FG3S-FFD, indicating high application potential.
Collapse
Affiliation(s)
- Baotong Ye
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; School of Chemical & Material Engineering, Jiangnan Universtiy, Wuxi 214122, PR China
| | - Guodong Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jingjing Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yi Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yongxin Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
5
|
Kashyap S, Pal VK, Mohanty S, Roy S. Exploring a Solvent Dependent Strategy to Control Self-Assembling Behavior and Cellular Interaction in Laminin-Mimetic Short Peptide based Supramolecular Hydrogels. Chembiochem 2024; 25:e202300835. [PMID: 38390634 DOI: 10.1002/cbic.202300835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Self-assembled hydrogels, fabricated through diverse non-covalent interactions, have been extensively studied in regenerative medicines. Inspired from bioactive functional motifs of ECM protein, short peptide sequences have shown remarkable abilities to replicate the intrinsic features of the natural extracellular milieu. In this direction, we have fabricated two short hydrophobic bioactive sequences derived from the laminin protein i. e., IKVAV and YIGSR. Based on the substantial hydrophobicity of these peptides, we selected a co-solvent approach as a suitable gelation technique that included different concentrations of DMSO as an organic phase along with an aqueous solution containing 0.1 % TFA. These hydrophobic laminin-based bioactive peptides with limited solubility in aqueous physiological environment showed significantly enhanced solubility with higher DMSO content in water. The enhanced solubility resulted in extensive intermolecular interactions that led to the formation of hydrogels with a higher-order entangled network along with improved mechanical properties. Interestingly, by simply modulating DMSO content, highly tunable gels were accessed in the same gelator domain that displayed differential physicochemical properties. Further, the cellular studies substantiated the potential of these laminin-derived hydrogels in enhancing cell-matrix interactions, thereby reinforcing their applications in tissue engineering.
Collapse
Affiliation(s)
- Shambhavi Kashyap
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Vijay Kumar Pal
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Sweta Mohanty
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Sangita Roy
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| |
Collapse
|
6
|
Giordano S, Gallo E, Diaferia C, Rosa E, Carrese B, Borbone N, Scognamiglio PL, Franzese M, Oliviero G, Accardo A. Multicomponent Peptide-Based Hydrogels Containing Chemical Functional Groups as Innovative Platforms for Biotechnological Applications. Gels 2023; 9:903. [PMID: 37998993 PMCID: PMC10671135 DOI: 10.3390/gels9110903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/03/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
Multicomponent hydrogels (HGs) based on ultrashort aromatic peptides have been exploited as biocompatible matrices for tissue engineering applications, the delivery of therapeutic and diagnostic agents, and the development of biosensors. Due to its capability to gel under physiological conditions of pH and ionic strength, the low molecular-weight Fmoc-FF (Nα-fluorenylmethoxycarbonyl-diphenylalanine) homodimer is one of the most studied hydrogelators. The introduction into the Fmoc-FF hydrogel of additional molecules like protein, organic compounds, or other peptide sequences often allows the generation of novel hydrogels with improved mechanical and functional properties. In this perspective, here we studied a library of novel multicomponent Fmoc-FF based hydrogels doped with different amounts of the tripeptide Fmoc-FFX (in which X= Cys, Ser, or Thr). The insertion of these tripeptides allows to obtain hydrogels functionalized with thiol or alcohol groups that can be used for their chemical post-derivatization with bioactive molecules of interest like diagnostic or biosensing agents. These novel multicomponent hydrogels share a similar peptide organization in their supramolecular matrix. The hydrogels' biocompatibility, and their propensity to support adhesion, proliferation, and even cell differentiation, assessed in vitro on fibroblast cell lines, allows us to conclude that the hybrid hydrogels are not toxic and can potentially act as a scaffold and support for cell culture growth.
Collapse
Affiliation(s)
- Sabrina Giordano
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (S.G.); (C.D.); (N.B.)
| | - Enrico Gallo
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143 Naples, Italy; (E.G.); (B.C.); (M.F.)
| | - Carlo Diaferia
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (S.G.); (C.D.); (N.B.)
| | - Elisabetta Rosa
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (S.G.); (C.D.); (N.B.)
| | - Barbara Carrese
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143 Naples, Italy; (E.G.); (B.C.); (M.F.)
| | - Nicola Borbone
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (S.G.); (C.D.); (N.B.)
| | | | - Monica Franzese
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143 Naples, Italy; (E.G.); (B.C.); (M.F.)
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy;
| | - Antonella Accardo
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (S.G.); (C.D.); (N.B.)
| |
Collapse
|
7
|
Hu T, Xu Y, Xu G. Dipeptide-polysaccharides hydrogels through co-assembly. Food Chem 2023; 422:136272. [PMID: 37141751 DOI: 10.1016/j.foodchem.2023.136272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Self-assembling dipeptide hydrogels are attracting attention in food, materials, and biomedicine. However, there are still limitations such as weak hydrogel properties. Herein, we introduced two types of polysaccharides (Arabic gum and citrus pectin) into an alkyl-chain modified dipeptide (C13-tryptophan-tyrosine (C13-WY)) to generate co-assembled C13-WY-arabic gum and C13-WY-pectin hydrogels. The co-assembled hydrogels exhibited enhanced mechanical properties and stability. The G' value of C13-WY-arabic gum and C13-WY-pectin hydrogels was 3 and 10 times larger than that of C13-WY hydrogel, respectively. The addition of Arabic gum and citrus pectin led to the co-assembly and molecular rearrangement. Moreover, co-assembled hydrogels showed more β-sheet structure and hydrogen bonds. Importantly, the self-/co-assembled hydrogels showed low cytotoxicity. We utilized these hydrogels for the encapsulation of docetaxel and they showed a high embedding rate and slow-release. Our findings provide a novel strategy for the development of stable supramolecular peptide hydrogels with good biocompatibility through simple co-assembly.
Collapse
Affiliation(s)
- Tan Hu
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; College of Food Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China.
| | - Yang Xu
- College of Food Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Gang Xu
- College of Food Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| |
Collapse
|
8
|
Hofmann E, Schwarz A, Fink J, Kamolz LP, Kotzbeck P. Modelling the Complexity of Human Skin In Vitro. Biomedicines 2023; 11:biomedicines11030794. [PMID: 36979772 PMCID: PMC10045055 DOI: 10.3390/biomedicines11030794] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/08/2023] Open
Abstract
The skin serves as an important barrier protecting the body from physical, chemical and pathogenic hazards as well as regulating the bi-directional transport of water, ions and nutrients. In order to improve the knowledge on skin structure and function as well as on skin diseases, animal experiments are often employed, but anatomical as well as physiological interspecies differences may result in poor translatability of animal-based data to the clinical situation. In vitro models, such as human reconstructed epidermis or full skin equivalents, are valuable alternatives to animal experiments. Enormous advances have been achieved in establishing skin models of increasing complexity in the past. In this review, human skin structures are described as well as the fast evolving technologies developed to reconstruct the complexity of human skin structures in vitro.
Collapse
Affiliation(s)
- Elisabeth Hofmann
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Anna Schwarz
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Julia Fink
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Lars-Peter Kamolz
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Petra Kotzbeck
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| |
Collapse
|
9
|
Hamley IW. Self-Assembly, Bioactivity, and Nanomaterials Applications of Peptide Conjugates with Bulky Aromatic Terminal Groups. ACS APPLIED BIO MATERIALS 2023; 6:384-409. [PMID: 36735801 PMCID: PMC9945136 DOI: 10.1021/acsabm.2c01041] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The self-assembly and structural and functional properties of peptide conjugates containing bulky terminal aromatic substituents are reviewed with a particular focus on bioactivity. Terminal moieties include Fmoc [fluorenylmethyloxycarbonyl], naphthalene, pyrene, naproxen, diimides of naphthalene or pyrene, and others. These provide a driving force for self-assembly due to π-stacking and hydrophobic interactions, in addition to the hydrogen bonding, electrostatic, and other forces between short peptides. The balance of these interactions leads to a propensity to self-assembly, even for conjugates to single amino acids. The hybrid molecules often form hydrogels built from a network of β-sheet fibrils. The properties of these as biomaterials to support cell culture, or in the development of molecules that can assemble in cells (in response to cellular enzymes, or otherwise) with a range of fascinating bioactivities such as anticancer or antimicrobial activity, are highlighted. In addition, applications of hydrogels as slow-release drug delivery systems and in catalysis and other applications are discussed. The aromatic nature of the substituents also provides a diversity of interesting optoelectronic properties that have been demonstrated in the literature, and an overview of this is also provided. Also discussed are coassembly and enzyme-instructed self-assembly which enable precise tuning and (stimulus-responsive) functionalization of peptide nanostructures.
Collapse
|
10
|
Rosa E, Gallo E, Sibillano T, Giannini C, Rizzuti S, Gianolio E, Scognamiglio PL, Morelli G, Accardo A, Diaferia C. Incorporation of PEG Diacrylates (PEGDA) Generates Hybrid Fmoc-FF Hydrogel Matrices. Gels 2022; 8:gels8120831. [PMID: 36547355 PMCID: PMC9778368 DOI: 10.3390/gels8120831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Generated by a hierarchical and multiscale self-assembling phenomenon, peptide-based hydrogels (HGs) are soft materials useful for a variety of applications. Short and ultra-short peptides are intriguing building blocks for hydrogel fabrication. These matrices can also be obtained by mixing low-molecular-weight peptides with other chemical entities (e.g., polymers, other peptides). The combination of two or more constituents opens the door to the development of hybrid systems with tunable mechanical properties and unexpected biofunctionalities or morphologies. For this scope, the formulation, the multiscale analysis, and the supramolecular characterization of novel hybrid peptide-polymer hydrogels are herein described. The proposed matrices contain the Fmoc-FF (Nα-fluorenylmethyloxycarbonyl diphenylalanine) hydrogelator at a concentration of 0.5 wt% (5.0 mg/mL) and a diacrylate α-/ω-substituted polyethylene-glycol derivative (PEGDA). Two PEGDA derivatives, PEGDA 1 and PEGDA2 (mean molecular weights of 575 and 250 Da, respectively), are mixed with Fmoc-FF at different ratios (Fmoc-FF/PEGDA at 1/1, 1/2, 1/5, 1/10 mol/mol). All the multicomponent hybrid peptide-polymer hydrogels are scrutinized with a large panel of analytical techniques (including proton relaxometry, FTIR, WAXS, rheometry, and scanning electronic microscopy). The matrices were found to be able to generate mechanical responses in the 2-8 kPa range, producing a panel of tunable materials with the same chemical composition. The release of a model drug (Naphthol Yellow S) is reported too. The tunable features, the different topologies, and the versatility of the proposed materials open the door to the development of tools for different applicative areas, including diagnostics, liquid biopsies and responsive materials. The incorporation of a diacrylate function also suggests the possible development of interpenetrating networks upon cross-linking reactions. All the collected data allow a mutual comparison between the different matrices, thus confirming the significance of the hybrid peptide/polymer-based methodology as a strategy for the design of innovative materials.
Collapse
Affiliation(s)
- Elisabetta Rosa
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Via Montesano 49, 80131 Naples, Italy
| | - Enrico Gallo
- IRCCS Synlab SDN, Via E. Gianturco 113, 80143 Naples, Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), CNR, Via Amendola 122, 70126 Bari, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), CNR, Via Amendola 122, 70126 Bari, Italy
| | - Serena Rizzuti
- Department of Molecular Biotechnologies and Health Science, University of Turin, Via Nizza 52, 10125 Turin, Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnologies and Health Science, University of Turin, Via Nizza 52, 10125 Turin, Italy
| | | | - Giancarlo Morelli
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Via Montesano 49, 80131 Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Via Montesano 49, 80131 Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Via Montesano 49, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-0812-534-526
| |
Collapse
|
11
|
Pramanik B, Ahmed S. Peptide-Based Low Molecular Weight Photosensitive Supramolecular Gelators. Gels 2022; 8:533. [PMID: 36135245 PMCID: PMC9498526 DOI: 10.3390/gels8090533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Over the last couple of decades, stimuli-responsive supramolecular gels comprising synthetic short peptides as building blocks have been explored for various biological and material applications. Though a wide range of stimuli has been tested depending on the structure of the peptides, light as a stimulus has attracted extensive attention due to its non-invasive, non-contaminant, and remotely controllable nature, precise spatial and temporal resolution, and wavelength tunability. The integration of molecular photo-switch and low-molecular-weight synthetic peptides may thus provide access to supramolecular self-assembled systems, notably supramolecular gels, which may be used to create dynamic, light-responsive "smart" materials with a variety of structures and functions. This short review summarizes the recent advancement in the area of light-sensitive peptide gelation. At first, a glimpse of commonly used molecular photo-switches is given, followed by a detailed description of their incorporation into peptide sequences to design light-responsive peptide gels and the mechanism of their action. Finally, the challenges and future perspectives for developing next-generation photo-responsive gels and materials are outlined.
Collapse
Affiliation(s)
- Bapan Pramanik
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Sahnawaz Ahmed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| |
Collapse
|
12
|
Binaymotlagh R, Chronopoulou L, Haghighi FH, Fratoddi I, Palocci C. Peptide-Based Hydrogels: New Materials for Biosensing and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5871. [PMID: 36079250 PMCID: PMC9456777 DOI: 10.3390/ma15175871] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 05/09/2023]
Abstract
Peptide-based hydrogels have attracted increasing attention for biological applications and diagnostic research due to their impressive features including biocompatibility and biodegradability, injectability, mechanical stability, high water absorption capacity, and tissue-like elasticity. The aim of this review will be to present an updated report on the advancement of peptide-based hydrogels research activity in recent years in the field of anticancer drug delivery, antimicrobial and wound healing materials, 3D bioprinting and tissue engineering, and vaccines. Additionally, the biosensing applications of this key group of hydrogels will be discussed mainly focusing the attention on cancer detection.
Collapse
Affiliation(s)
- Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|