1
|
Tian H, Yao J, Ba Q, Meng Y, Cui Y, Quan L, Gong W, Wang Y, Yang Y, Yang M, Gao C. Cerebral biomimetic nano-drug delivery systems: A frontier strategy for immunotherapy. J Control Release 2024; 376:1039-1067. [PMID: 39505218 DOI: 10.1016/j.jconrel.2024.10.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/19/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Brain diseases are a significant threat to human health, especially in the elderly, and this problem is growing as the aging population increases. Efficient brain-targeted drug delivery has been the greatest challenge in treating brain disorders due to the unique immune environment of the brain, including the blood-brain barrier (BBB). Recently, cerebral biomimetic nano-drug delivery systems (CBNDSs) have provided a promising strategy for brain targeting by mimicking natural biological materials. Herein, this review explores the latest understanding of the immune microenvironment of the brain, emphasizing the immune mechanisms of the occurrence and progression of brain disease. Several brain targeting systems are summarized, including cell-based, exosome-based, protein-based, and microbe-based CBNDSs, and their immunological mechanisms are highlighted. Moreover, given the rise of immunotherapy, the latest applications of CBNDSs in immunotherapy are also discussed. This review provides a comprehensive understanding of CBNDSs and serves as a guideline for immunotherapy in treating brain diseases. In addition, it provides inspiration for the future of CBNDSs.
Collapse
Affiliation(s)
- Hao Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Jiaxin Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Qi Ba
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yuanyuan Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanan Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Liangzhu Quan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Wei Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuli Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Meiyan Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
2
|
Sun L, Liu M, Li Y, Zhang S, Zhu T, Du J, Khan AUR. Biomimetic short fiber reinforced 3-dimensional scaffold for bone tissue regeneration. Biomed Mater 2024; 19:025030. [PMID: 38290159 DOI: 10.1088/1748-605x/ad2405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Bone defects caused by diseases and trauma are considered serious clinical challenges. Autologous and allogeneic transplantations are the most widely used methods to mitigate bone defects. However, transplantation poses risks such as secondary trauma, immune rejection, and disease transmission to patients. Preparing a biologically active bone tissue engineering scaffold as a bone substitute can overcome this problem. In the current study, a PLGA/gelatin (Gel) short fiber-reinforced composite three-dimensional (3D) scaffold was fabricated by electrospinning for bone tissue defect repair. A hybrid scaffold adding inorganic materials hydrotalcite (CaAl-LDH) and osteogenic factors deferoxamine (DFO) based on PLGA and Gel composite filaments was prepared. The structure, swelling, drug release, and compressive resilience performance of the 3D scaffolds in a wet state were characterized and the osteogenic effect of the crosslinked scaffold (C-DLPG) was also investigated. The scaffold has shown the optimum physicochemical attributes which still has 380 kPa stress after a 60% compression cycle and sustainedly released the drug for about twenty days. Moreover, a promisingIn vivoosteogenic performance was noted with better tissue organization. At 8 weeks after implantation, the C-DLPG scaffold could fill the bone defect site, and the new bone area reached 19 mm2. The 3D microfiber scaffold, in this study, is expected to be a promising candidate for the treatment of bone defects in the future.
Collapse
Affiliation(s)
- Liangqiang Sun
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, People's Republic of China
| | - Mingming Liu
- Hepatobiliary Pancreatic Surgery, Weifang Traditional Chinese Medicine Hospital, Weifang Medical University, Shandong 261053, People's Republic of China
| | - Yaqiang Li
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200430, People's Republic of China
| | - Shuhua Zhang
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, People's Republic of China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, People's Republic of China
| | - Juan Du
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, People's Republic of China
| | - Atta Ur Rehman Khan
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, People's Republic of China
| |
Collapse
|
3
|
Milano F, Masi A, Madaghiele M, Sannino A, Salvatore L, Gallo N. Current Trends in Gelatin-Based Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15051499. [PMID: 37242741 DOI: 10.3390/pharmaceutics15051499] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Gelatin is a highly versatile natural polymer, which is widely used in healthcare-related sectors due to its advantageous properties, such as biocompatibility, biodegradability, low-cost, and the availability of exposed chemical groups. In the biomedical field, gelatin is used also as a biomaterial for the development of drug delivery systems (DDSs) due to its applicability to several synthesis techniques. In this review, after a brief overview of its chemical and physical properties, the focus is placed on the commonly used techniques for the development of gelatin-based micro- or nano-sized DDSs. We highlight the potential of gelatin as a carrier of many types of bioactive compounds and its ability to tune and control select drugs' release kinetics. The desolvation, nanoprecipitation, coacervation, emulsion, electrospray, and spray drying techniques are described from a methodological and mechanistic point of view, with a careful analysis of the effects of the main variable parameters on the DDSs' properties. Lastly, the outcomes of preclinical and clinical studies involving gelatin-based DDSs are thoroughly discussed.
Collapse
Affiliation(s)
- Francesca Milano
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Annalia Masi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Typeone Biomaterials Srl, Via Europa 113, 73021 Calimera, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
4
|
Nordin AH, Husna SMN, Ahmad Z, Nordin ML, Ilyas RA, Azemi AK, Ismail N, Siti NH, Ngadi N, Azami MSM, Mohamad Norpi AS, Reduan MFH, Osman AY, Pratama DAOA, Nabgan W, Shaari R. Natural Polymeric Composites Derived from Animals, Plants, and Microbes for Vaccine Delivery and Adjuvant Applications: A Review. Gels 2023; 9:227. [PMID: 36975676 PMCID: PMC10048722 DOI: 10.3390/gels9030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
A key element in ensuring successful immunization is the efficient delivery of vaccines. However, poor immunogenicity and adverse inflammatory immunogenic reactions make the establishment of an efficient vaccine delivery method a challenging task. The delivery of vaccines has been performed via a variety of delivery methods, including natural-polymer-based carriers that are relatively biocompatible and have low toxicity. The incorporation of adjuvants or antigens into biomaterial-based immunizations has demonstrated better immune response than formulations that just contain the antigen. This system may enable antigen-mediated immunogenicity and shelter and transport the cargo vaccine or antigen to the appropriate target organ. In this regard, this work reviews the recent applications of natural polymer composites from different sources, such as animals, plants, and microbes, in vaccine delivery systems.
Collapse
Affiliation(s)
- Abu Hassan Nordin
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia
| | - Siti Muhamad Nur Husna
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia
| | - Zuliahani Ahmad
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia
| | - Muhammad Luqman Nordin
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
- Centre for Veterinary Vaccinology (VetVaCC), Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Rushdan Ahmad Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia
| | - Nordin Hawa Siti
- Pharmacology Unit, School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia
| | - Norzita Ngadi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | | | - Abdin Shakirin Mohamad Norpi
- Faculty Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia
| | - Mohd Farhan Hanif Reduan
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
- Centre for Veterinary Vaccinology (VetVaCC), Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Abdinasir Yusuf Osman
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, Hertfordshire, UK
- National Institutes of Health (NIH), Ministry of Health, Corso Somalia Street, Shingani, Mogadishu P.O. Box 22, Somalia
| | | | - Walid Nabgan
- Departament d’Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Rumaizi Shaari
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| |
Collapse
|
5
|
Enzymatically-Crosslinked Gelatin Hydrogels with Nanostructured Architecture and Self-Healing Performance for Potential Use as Wound Dressings. Polymers (Basel) 2023; 15:polym15030780. [PMID: 36772082 PMCID: PMC9921451 DOI: 10.3390/polym15030780] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Development of natural protein-based hydrogels with self-healing performance and tunable physical properties has attracted increased attention owing to their wide potential not only in the pharmaceutical field, but also in wounds management. This work reports the development of a versatile hydrogel based on enzymatically-crosslinked gelatin and nanogels loaded with amoxicillin (Amox), an antibiotic used in wound infections. The transglutaminase (TGase)-crosslinked hydrogels and encapsulating nanogels were formed rapidly through enzymatic crosslinking and self-assembly interactions in mild conditions. The nanogels formed through the self-assemble of maleoyl-chitosan (MAC5) and polyaspartic acid (PAS) may have positive influence on the self-healing capacity and drug distribution within the hydrogel network through the interactions established between gelatin and gel-like nanocarriers. The physicochemical properties of the enzymatically-crosslinked hydrogels, such as internal structure, swelling and degradation behavior, were studied. In addition, the Amox release studies indicated a rapid release when the pH of the medium decreased, which represents a favorable characteristic for use in the healing of infected wounds. It was further observed through the in vitro and in vivo biocompatibility assays that the optimized scaffolds have great potential to be used as wound dressings.
Collapse
|
6
|
Acet Ö, Shcharbin D, Zhogla V, Kirsanov P, Halets-Bui I, Önal Acet B, Gök T, Bryszewska M, Odabaşı M. Dipeptide nanostructures: Synthesis, interactions, advantages and biomedical applications. Colloids Surf B Biointerfaces 2023; 222:113031. [PMID: 36435026 DOI: 10.1016/j.colsurfb.2022.113031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Short peptides are important in the design of self-assembled materials due to their versatility and flexibility. Self-assembled dipeptides, a group of peptide nanostructures, have highly attractive uses in the field of biomedicine. Recently these materials have proved to be important nanostructures because of their biocompatibility, low-cost and simplicity of synthesis, functionality/easy tunability and nano dimensions. Although there are different studies on peptide and protein-based nanostructures, more information about self-assembled nanostructures for dipeptides is still required to discover the advantages, challenges, importance, synthesis, interactions, and applications. This review describes and discusses the self-assembled dipeptide nanostructures especially for biomedical applications.
Collapse
Affiliation(s)
- Ömür Acet
- Vocational School of Health Science, Pharmacy Services Program, Tarsus University, Tarsus, Turkey.
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus.
| | - Victoriya Zhogla
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Pavel Kirsanov
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Inessa Halets-Bui
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Burcu Önal Acet
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray, Turkey
| | - Tuba Gök
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray, Turkey
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Science, University of Lodz, Poland
| | - Mehmet Odabaşı
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray, Turkey
| |
Collapse
|
7
|
Tundisi LL, Ataide JA, Costa JSR, Coêlho DDF, Liszbinski RB, Lopes AM, Oliveira-Nascimento L, de Jesus MB, Jozala AF, Ehrhardt C, Mazzola PG. Nanotechnology as a tool to overcome macromolecules delivery issues. Colloids Surf B Biointerfaces 2023; 222:113043. [PMID: 36455361 DOI: 10.1016/j.colsurfb.2022.113043] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Nanocarriers can deliver drugs to specific organs or cells, potentially bridging the gap between a drug's function and its interaction with biological systems such as human physiology. The untapped potential of nanotechnology stems from its ability to manipulate materials, allowing control over physical and chemical properties and overcoming drug-related problems, e.g., poor solubility or poor bioavailability. For example, most protein drugs are administered parenterally, each with challenges and peculiarities. Some problems faced by bioengineered macromolecule drugs leading to poor bioavailability are short biological half-life, large size and high molecular weight, low permeability through biological membranes, and structural instability. Nanotechnology emerges as a promising strategy to overcome these problems. Nevertheless, the delivery system should be carefully chosen considering loading efficiency, physicochemical properties, production conditions, toxicity, and regulations. Moving from the bench to the bedside is still one of the major bottlenecks in nanomedicine, and toxicological issues are the greatest challenges to overcome. This review provides an overview of biotech drug delivery approaches, associated nanotechnology novelty, toxicological issues, and regulations.
Collapse
Affiliation(s)
| | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil.
| | - Juliana Souza Ribeiro Costa
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil; Laboratory of Pharmaceutical Technology (Latef), Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | | | - Raquel Bester Liszbinski
- Nano-Cell Interactions Lab., Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | - André Moreni Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Laura Oliveira-Nascimento
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil; Laboratory of Pharmaceutical Technology (Latef), Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Marcelo Bispo de Jesus
- Nano-Cell Interactions Lab., Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | - Angela Faustino Jozala
- LAMINFE - Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba, Brazil
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute Trinity College Dublin, Dublin, Ireland
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
8
|
The Effect of Elasticity of Gelatin Nanoparticles on the Interaction with Macrophages. Pharmaceutics 2023; 15:pharmaceutics15010199. [PMID: 36678828 PMCID: PMC9861130 DOI: 10.3390/pharmaceutics15010199] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Gelatin is a biocompatible, biodegradable, cheap, and nontoxic material, which is already used for pharmaceutical applications. Nanoparticles from gelatin (GNPs) are considered a promising delivery system for hydrophilic and macromolecular drugs. Mechanical properties of particles are recognized as an important parameter affecting drug carrier interaction with biological systems. GNPs offer the preparation of particles with different stiffness. GNPs were loaded with Fluorescein isothiocyanate-labeled 150 kDa dextran (FITC-dextran) yielding also different elastic properties. GNPs were visualized using atomic force microscopy (AFM), and force-distance curves from the center of the particles were evaluated for Young's modulus calculation. The prepared GNPs have Young's moduli from 4.12 MPa for soft to 9.8 MPa for stiff particles. Furthermore, cytokine release (IL-6 and TNF-α), cell viability, and cell uptake were determined on macrophage cell lines from mouse (RAW 264.7) and human (dTHP-1 cells, differentiated human monocytic THP-1 cells) origin for soft and stiff GNPs. Both particle types showed good cell compatibility and did not induce IL-6 and TNF-α release from RAW 264.7 and dTHP-1 cells. Stiffer GNPs were internalized into cells faster and to a larger extent.
Collapse
|
9
|
Biodegradable gelatin/pullulan aerogel modified by a green strategy: Characterization and antimicrobial activity. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Weiss AV, Schorr D, Metz JK, Yildirim M, Khan SA, Schneider M. Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:778-787. [PMID: 36105690 PMCID: PMC9443426 DOI: 10.3762/bjnano.13.68] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Tuning the elastic properties of nanoparticles intended to be used in drug delivery is of great interest. To this end, different potential formulations are developed since the particle elasticity is affecting the in vitro and in vivo performance of the nanoparticles. Here we present a method to determine the elasticity of single gelatin nanoparticles (GNPs). Furthermore, we introduce the possibility of tuning the elastic properties of gelatin nanoparticles during their preparation through crosslinking time. Young's moduli from 5.48 to 14.26 MPa have been obtained. Additionally, the possibility to measure the elasticity of single nanoparticles revealed the influence of loading a macromolecular model drug (FITC-dextran) on the mechanical properties, which decreased with raising amounts of loaded drug. Loaded particles were significantly softer, with Young's moduli between 1.06 and 5.79 MPa for the same crosslinking time, than the blank GNPs. In contrast to this, lysozyme as a crosslinkable macromolecule did not influence the mechanical properties. A good in vitro cell compatibility was found investigating blank GNPs and FITC-dextran-loaded GNPs in viability assays with the cancer cell line A549 and the human primary cell-derived hAELVi cell line.
Collapse
Affiliation(s)
- Agnes-Valencia Weiss
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, Saarbruecken, Germany
| | - Daniel Schorr
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, Saarbruecken, Germany
| | - Julia K Metz
- Department, Drug Delivery, PharmBioTec Research and Development GmbH, Science Park 1, Saarbrücken, Germany
| | - Metin Yildirim
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, Saarbruecken, Germany
- Department of Pharmacy Services, Vocational School of Health Services, Tarsus University, Mersin, Turkey
| | - Saeed Ahmad Khan
- Department of Pharmacy, Kohat University of Science and Technology, 26000 Kohat, Pakistan
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, Saarbruecken, Germany
| |
Collapse
|
11
|
Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. Int J Biol Macromol 2022; 218:601-633. [PMID: 35902015 DOI: 10.1016/j.ijbiomac.2022.07.168] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022]
Abstract
Gelatin's versatile functionalization offers prospects of facile and effective crosslinking as well as combining with other materials (e.g., metal nanoparticles, carbonaceous, minerals, and polymeric materials exhibiting desired functional properties) to form hybrid materials of improved thermo-mechanical, physio-chemical and biological characteristics. Gelatin-based hydrogels (GHs) and (nano)composite hydrogels possess unique functional features that make them appropriate for a wide range of environmental, technical, and biomedical applications. The properties of GHs could be balanced by optimizing the hydrogel design. The current review explores the various crosslinking techniques of GHs, their properties, composite types, and ultimately their end-use applications. GH's ability to absorb a large volume of water within the gel network via hydrogen bonding is frequently used for water retention (e.g., agricultural additives), and absorbency towards targeted chemicals from the environment (e.g., as wound dressings for absorbing exudates and in water treatment for absorbing pollutants). GH's controllable porosity makes its way to be used to restrict access to chemicals entrapped within the gel phase (e.g., cell encapsulation), regulate the release of encapsulated cargoes within the GH (e.g., drug delivery, agrochemicals release). GH's soft mechanics closely resembling biological tissues, make its use in tissue engineering to deliver suitable mechanical signals to neighboring cells. This review discussed the GHs as potential materials for the creation of biosensors, drug delivery systems, antimicrobials, modified electrodes, water adsorbents, fertilizers and packaging systems, among many others. The future research outlooks are also highlighted.
Collapse
|
12
|
Yang SW, Chen YJ, Chen CJ, Liu JT, Yang CY, Tsai JH, Lu HE, Chen SY, Chang SJ. High-Density Horizontal Stacking of Chondrocytes via the Synergy of Biocompatible Magnetic Gelatin Nanocarriers and Internal Magnetic Navigation for Enhancing Cartilage Repair. Polymers (Basel) 2022; 14:809. [PMID: 35215722 PMCID: PMC8963011 DOI: 10.3390/polym14040809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a globally occurring articular cartilage degeneration disease that adversely affects both the physical and mental well-being of the patient, including limited mobility. One major pathological characteristic of OA is primarily related to articular cartilage defects resulting from abrasion and catabolic and proinflammatory mediators in OA joints. Although cell therapy has hitherto been regarded as a promising treatment for OA, the therapeutic effects did not meet expectations due to the outflow of implanted cells. Here, we aimed to explore the repair effect of magnetized chondrocytes using magnetic amphiphilic-gelatin nanocarrier (MAGNC) to enhance cellular anchored efficiency and cellular magnetic guidance (MG) toward the superficial zone of damaged cartilage. The results of in vitro experiments showed that magnetized chondrocytes could be rapidly guided along the magnetic force line to form cellular amassment. Furthermore, the Arg-Gly-Asp (RGD) motif of gelatin in MAGNC could integrate the interaction among cells to form cellular stacking. In addition, MAGNCs upregulated the gene expression of collagen II (Col II), aggrecan, and downregulated that of collagen I (Col I) to reduce cell dedifferentiation. In animal models, the magnetized chondrocytes can be guided into the superficial zone with the interaction between the internal magnetic field and MAGNC to form cellular stacking. In vivo results showed that the intensity of N-sulfated-glycosaminoglycans (sGAG) and Col II in the group of magnetized cells with magnetic guiding was higher than that in the other groups. Furthermore, smooth closure of OA cartilage defects was observed in the superficial zone after 8 weeks of implantation. The study revealed the significant potential of MAGNC in promoting the high-density stacking of chondrocytes into the cartilage surface and retaining the biological functions of implanted chondrocytes for OA cartilage repair.
Collapse
Affiliation(s)
- Shan-Wei Yang
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung City 813414, Taiwan;
| | - Yong-Ji Chen
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 813414, Taiwan; (Y.-J.C.); (C.-Y.Y.); (J.-H.T.)
| | - Ching-Jung Chen
- School of Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Jen-Tsai Liu
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Chin-Yi Yang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 813414, Taiwan; (Y.-J.C.); (C.-Y.Y.); (J.-H.T.)
| | - Jen-Hao Tsai
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 813414, Taiwan; (Y.-J.C.); (C.-Y.Y.); (J.-H.T.)
| | - Huai-En Lu
- Food Industry Research and Development Institute, Hsinchu 300193, Taiwan
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu City 300093, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung City 406040, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City 813414, Taiwan
| | - Shwu-Jen Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 813414, Taiwan; (Y.-J.C.); (C.-Y.Y.); (J.-H.T.)
| |
Collapse
|
13
|
Ahmad A, Ansari MM, AlAsmari AF, Ali N, Maqbool MT, Raza SS, Khan R. Dose dependent safety implications and acute intravenous toxicity of aminocellulose-grafted-polycaprolactone coated gelatin nanoparticles in mice. Int J Biol Macromol 2021; 192:1150-1159. [PMID: 34653441 DOI: 10.1016/j.ijbiomac.2021.10.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
Polymeric nanoparticles (NPs) are the most widely researched nanoformulations and gained broad acceptance in nanotherapeutics for targeted drug delivery and theranostics. However, lack of regulations, guidelines, harmonized standards, and limitations with their employability in clinical circumstances necessitates an in-depth understanding of their toxicology. Here, we examined the in-vivo toxicity of core-shell polymeric NPs made up of gelatin core coated with an outer layer of aminocellulose-grafted polycaprolactone (PCL-AC) synthesized for drug delivery purposes in inflammatory disorders. Nanoparticles were administered intravenously in Swiss albino mice, in multiple dosing (10, 25, and 50 mg/kg body weight) and outcomes of serum biochemistry analysis and histopathology evaluation exhibited that the highest 50 mg/kg administration of NPs altered biochemistry and histopathology aspects of vital organs, while doses of 10 and 25 mg/kg were safe and biocompatible. Further, mast cell (toluidine blue) staining confirmed that administration of the highest dose enhanced mast cell infiltration in tissues of vital organs, while lower doses did not exhibit any of these alterations. Therefore, the results of the present study establish that the NPs disposal in-vivo culminates into alterations in organ structure and function consequences such that lower doses are quite biocompatible and do not demonstrate any structural or functional toxicity while some toxicological effects start appearing at the highest dose.
Collapse
Affiliation(s)
- Anas Ahmad
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab Pin 140306, India
| | - Md Meraj Ansari
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab Pin 140306, India
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Mir Tahir Maqbool
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Sarfarazganj, Lucknow 226003, Uttar Pradesh, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab Pin 140306, India.
| |
Collapse
|
14
|
Tramontano C, Miranda B, Chianese G, De Stefano L, Forestiere C, Pirozzi M, Rea I. Design of Gelatin-Capped Plasmonic-Diatomite Nanoparticles with Enhanced Galunisertib Loading Capacity for Drug Delivery Applications. Int J Mol Sci 2021; 22:10755. [PMID: 34639096 PMCID: PMC8509241 DOI: 10.3390/ijms221910755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
Inorganic diatomite nanoparticles (DNPs) have gained increasing interest as drug delivery systems due to their porous structure, long half-life, thermal and chemical stability. Gold nanoparticles (AuNPs) provide DNPs with intriguing optical features that can be engineered and optimized for sensing and drug delivery applications. In this work, we combine DNPs with gelatin stabilized AuNPs for the development of an optical platform for Galunisertib delivery. To improve the DNP loading capacity, the hybrid platform is capped with gelatin shells of increasing thicknesses. Here, for the first time, full optical modeling of the hybrid system is proposed to monitor both the gelatin generation, degradation, and consequent Galunisertib release by simple spectroscopic measurements. Indeed, the shell thickness is optically estimated as a function of the polymer concentration by exploiting the localized surface plasmon resonance shifts of AuNPs. We simultaneously prove the enhancement of the drug loading capacity of DNPs and that the theoretical modeling represents an efficient predictive tool to design polymer-coated nanocarriers.
Collapse
Affiliation(s)
- Chiara Tramontano
- Institute of Applied Sciences and Intelligent Systems—Unit of Naples, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (C.T.); (B.M.); (G.C.); (I.R.)
- Department of Pharmacy, Università Degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Bruno Miranda
- Institute of Applied Sciences and Intelligent Systems—Unit of Naples, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (C.T.); (B.M.); (G.C.); (I.R.)
- Department of Electrical Engineering and Information Technology, Università Degli Studi di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy;
| | - Giovanna Chianese
- Institute of Applied Sciences and Intelligent Systems—Unit of Naples, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (C.T.); (B.M.); (G.C.); (I.R.)
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems—Unit of Naples, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (C.T.); (B.M.); (G.C.); (I.R.)
| | - Carlo Forestiere
- Department of Electrical Engineering and Information Technology, Università Degli Studi di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy;
| | - Marinella Pirozzi
- IEOS (Istituto per l’Endocrinologia e l’Oncologia Sperimentale) “G. Salvatore” Seconda Unità—CNR, Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems—Unit of Naples, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (C.T.); (B.M.); (G.C.); (I.R.)
| |
Collapse
|
15
|
Yang Z, Shen C, Zou Y, Wu D, Zhang H, Chen K. Application of Solution Blow Spinning for Rapid Fabrication of Gelatin/Nylon 66 Nanofibrous Film. Foods 2021; 10:2339. [PMID: 34681386 PMCID: PMC8534994 DOI: 10.3390/foods10102339] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Gelatin (GA) is a natural protein widely used in food packaging, but its fabricated fibrous film has the defects of a high tendency to swell and inferior mechanical properties. In this work, a novel spinning technique, solution blow spinning (SBS), was used for the rapid fabrication of nanofiber materials; meanwhile, nylon 66 (PA66) was used to improve the mechanical properties and the ability to resist dissolution of gelatin films. Morphology observations show that GA/PA66 composite films had nano-diameter from 172.3 to 322.1 nm. Fourier transform infrared spectroscopy and X-ray indicate that GA and PA66 had strong interaction by hydrogen bonding. Mechanical tests show the elongation at break of the composite film increased substantially from 7.98% to 30.36%, and the tensile strength of the composite film increased from 0.03 MPa up to 1.42 MPa, which indicate that the composite films had the highest mechanical strength. Water vapor permeability analysis shows lower water vapor permeability of 9.93 g mm/m2 h kPa, indicates that GA/PA66 film's water vapor barrier performance was improved. Solvent resistance analysis indicates that PA66 could effectively improve the ability of GA to resist dissolution. This work indicates that SBS has great promise for rapid preparation of nanofibrous film for food packaging, and PA66 can be applied to the modification of gelatin film.
Collapse
Affiliation(s)
- Zhichao Yang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (C.S.); (K.C.)
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chaoyi Shen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (C.S.); (K.C.)
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yucheng Zou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (H.Z.)
| | - Di Wu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (C.S.); (K.C.)
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (H.Z.)
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (C.S.); (K.C.)
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Enteric-coated gelatin nanoparticles mediated oral delivery of 5-aminosalicylic acid alleviates severity of DSS-induced ulcerative colitis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111582. [DOI: 10.1016/j.msec.2020.111582] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
|
17
|
Vijayan V, Sreekumar S, Singh F, Srivatsan KV, Lakra R, Sai KP, Kiran MS. Nanotized praseodymium oxide collagen 3-D pro-vasculogenic biomatrix for soft tissue engineering. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 33:102364. [PMID: 33515752 DOI: 10.1016/j.nano.2021.102364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
The current study explores development of highly vascularizable biomatrix scaffold containing rare-earth metal praseodymium oxide nanoadditives for angiogenic and soft tissue regenerative applications. The therapeutic potential of praseodymium oxide nanoparticles rendered excellent endothelial cell differentiation for inducing pro angiogenic microenvironment by eliciting VE-Cadherin expression in the biomatrix scaffold. The nanoparticles were incorporated into bio-macromolecule collagen which aided in stabilization of collagen by maintaining the structural integrity of collagen and showed less susceptibility towards protease enzymes, high cyto-compatibility and high hemo-compatibility. The scaffold provided 3-dimensional micro-environments for the proliferation of endothelial cells and fibroblast cells promoting the wound healing process in an orchestrated fashion. Biological signal modulatory property of rare earth metal is the unexplored domains that can essentially bring significant therapeutic advancement in engineering advanced biological materials. This study opens potential use of nano-scaled rare earth metals in biomaterial application for tissue regeneration by modulating the pro-angiogenesis and anti-proteolysis properties.
Collapse
Affiliation(s)
- Vinu Vijayan
- Biological Materials Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India; University of Madras, Chennai, Tamil Nadu, India
| | - Sreelekshmi Sreekumar
- Biological Materials Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India; Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India
| | - Fathe Singh
- Biological Materials Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India; Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India
| | - Kunnavakkam Vinjimur Srivatsan
- Biological Materials Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India
| | - Rachita Lakra
- Biological Materials Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India
| | - Korrapati Purna Sai
- Biological Materials Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India; Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India
| | - Manikantan Syamala Kiran
- Biological Materials Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India; University of Madras, Chennai, Tamil Nadu, India; Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India.
| |
Collapse
|
18
|
El-Sayed N, Korotchenko E, Scheiblhofer S, Weiss R, Schneider M. Functionalized multifunctional nanovaccine for targeting dendritic cells and modulation of immune response. Int J Pharm 2021; 593:120123. [DOI: 10.1016/j.ijpharm.2020.120123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
|
19
|
Design of Polymeric and Biocompatible Delivery Systems by Dissolving Mesoporous Silica Templates. Int J Mol Sci 2020; 21:ijms21249573. [PMID: 33339139 PMCID: PMC7765674 DOI: 10.3390/ijms21249573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 01/13/2023] Open
Abstract
There are many nanoencapsulation systems available today. Among all these, mesoporous silica particles (MSPs) have received great attention in the last few years. Their large surface-to-volume ratio, biocompatibility, and versatility allow the encapsulation of a wide variety of drugs inside their pores. However, their chemical instability in biological fluids is a handicap to program the precise release of the therapeutic compounds. Taking advantage of the dissolving capacity of silica, in this study, we generate hollow capsules using MSPs as transitory sacrificial templates. We show how, upon MSP coating with different polyelectrolytes or proteins, fully customized hollow shells can be produced. These capsules are biocompatible, flexible, and biodegradable, and can be decorated with nanoparticles or carbon nanotubes to endow the systems with supplementary intrinsic properties. We also fill the capsules with a fluorescent dye to demonstrate intracellular compound release. Finally, we document how fluorescent polymeric capsules are engulfed by cells, releasing their encapsulated agent during the first 96 h. In summary, here, we describe how to assemble a highly versatile encapsulation structure based on silica mesoporous cores that are completely removed from the final polymeric capsule system. These drug encapsulation systems are highly customizable and have great versatility as they can be made using silica cores of different sizes and multiple coatings. This provides capsules with unique programmable attributes that are fully customizable according to the specific needs of each disease or target tissue for the development of nanocarriers in personalized medicine.
Collapse
|
20
|
Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review. Int J Biol Macromol 2020; 165:3088-3105. [DOI: 10.1016/j.ijbiomac.2020.10.104] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023]
|
21
|
Protein and Peptide Nanocluster Vaccines. Curr Top Microbiol Immunol 2020. [PMID: 33165870 DOI: 10.1007/82_2020_228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Recombinant protein- and peptide-based vaccines can deliver large amounts of specific antigens for tailored immune responses. One class of these are protein and peptide nanoclusters (PNCs), which are made entirely from the crosslinked antigen. PNCs leverage the inherent immunogenicity of nanoparticulate antigens while minimizing the use of excipients normally used to create them. In this chapter, we discuss PNC fabrication methods, immunostimulatory properties of nanoclusters observed in vitro and in vivo, and protective benefits of PNC vaccines against influenza and cancer mouse models. We conclude with an outlook on future studies of PNCs and PNC design strategies, as well as their use in future vaccine formulations.
Collapse
|
22
|
Pho QH, Losic D, Ostrikov K(K, Tran NN, Hessel V. Perspectives on plasma-assisted synthesis of N-doped nanoparticles as nanopesticides for pest control in crops. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00069h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Green plasma-based technology production of N-doped NPs for a new agri-tech revolution in pest control.
Collapse
Affiliation(s)
- Quoc Hue Pho
- School of Chemical Engineering and Advanced Materials
- The University of Adelaide
- Adelaide
- Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials
- The University of Adelaide
- Adelaide
- Australia
- The ARC Graphene Research Hub
| | - Kostya (Ken) Ostrikov
- School of Chemistry, Physics, and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia
| | - Nam Nghiep Tran
- School of Chemical Engineering and Advanced Materials
- The University of Adelaide
- Adelaide
- Australia
- School of Chemical Engineering
| | - Volker Hessel
- School of Chemical Engineering and Advanced Materials
- The University of Adelaide
- Adelaide
- Australia
- School of Engineering
| |
Collapse
|