1
|
Tamura AM, Stewart KA, Young JB, Wei NB, Cantor AJ, Sumerlin BS. Selective Depolymerization for Sculpting Polymethacrylate Molecular Weight Distributions. J Am Chem Soc 2025; 147:5220-5227. [PMID: 39879111 DOI: 10.1021/jacs.4c15553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Chain-end reactivation of polymethacrylates generated by reversible-deactivation radical polymerization (RDRP) has emerged as a powerful tool for triggering depolymerization at significantly milder temperatures than those traditionally employed. In this study, we demonstrate how the facile depolymerization of poly(butyl methacrylate) (PBMA) can be leveraged to selectively skew the molecular weight distribution (MWD) and predictably alter the viscoelastic properties of blended PBMA mixtures. By mixing polymers with thermally active chain ends with polymers of different molecular weights and inactive chain ends, the MWD of the blends can be skewed to be high or low by selective depolymerization. This approach leads to the counterintuitive principle of the "destructive strengthening" of a material. Finally, we demonstrate, as a proof of concept, the encryption of information within polymer mixtures by linking Morse code with the MWDs before and after selective depolymerization, allowing for the encoding of data within blends of synthetic macromolecules.
Collapse
Affiliation(s)
- Ariana M Tamura
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kevin A Stewart
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - James B Young
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Nathan B Wei
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Alexander J Cantor
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Tejuosho T, Kollipara S, Patankar S, Sampath J. Dynamics of Polymer Chains in Disperse Melts: Insights from Coarse-Grained Molecular Dynamics Simulations. J Phys Chem B 2024; 128:11846-11854. [PMID: 39539105 DOI: 10.1021/acs.jpcb.4c05610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Synthetic polymers have a distribution of chain lengths which can be characterized by dispersity, Đ. Their macroscopic properties are influenced by chain mobility in the melt, and controlling Đ can significantly impact these properties. In this work, we present a detailed study of the static and dynamic behavior of fully flexible polymer chains that follow the Schulz-Zimm molecular weight distribution up to Đ = 2.0 using coarse-grained molecular dynamics simulations. We analyze the behavior of test chains with molecular weights that are equal to, above, or below the molecular weight (Mw) of the melt. Static analysis shows that the conformation of these test chains remains unaffected by the heterogeneity of the surrounding chains. To study the dynamics, we computed the mean-squared displacement of test chains in melts of the same Mw and different dispersities. The mobility of test chains with N > Mw steadily increases with dispersity, due to the shorter chains contributing to early onset of disentanglement of the long chains. However, the dynamics of test chains of length N < Mw is nonmonotonic with respect to dispersity; this behavior arises from a trade-off between the increased mobility of shorter chains and the corresponding slowdown caused by the presence of longer chains. We examine the dynamic structure factor and find a weakening of tube confinement, with the effects becoming less pronounced with increasing dispersity and Mw. These findings provide insights into the rich dynamic heterogeneity of disperse polymer melts.
Collapse
Affiliation(s)
- Taofeek Tejuosho
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Sohil Kollipara
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Sumant Patankar
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Janani Sampath
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
3
|
Shimizu T, Whitfield R, Jones GR, Raji IO, Konkolewicz D, Truong NP, Anastasaki A. Controlling primary chain dispersity in network polymers: elucidating the effect of dispersity on degradation. Chem Sci 2023; 14:13419-13428. [PMID: 38033899 PMCID: PMC10685271 DOI: 10.1039/d3sc05203f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Although dispersity has been demonstrated to be instrumental in determining many polymer properties, current synthetic strategies predominantly focus on tailoring the dispersity of linear polymers. In contrast, controlling the primary chain dispersity in network polymers is much more challenging, in part due to the complex nature of the reactions, which has limited the exploration of properties and applications. Here, a one-step method to prepare networks with precisely tuned primary chain dispersity is presented. By using an acid-switchable chain transfer agent and a degradable crosslinker in PET-RAFT polymerization, the in situ crosslinking of the propagating polymer chains was achieved in a quantitative manner. The incorporation of a degradable crosslinker, not only enables the accurate quantification of the various primary chain dispersities, post-synthesis, but also allows the investigation and comparison of their respective degradation profiles. Notably, the highest dispersity networks resulted in a 40% increase in degradation time when compared to their lower dispersity analogues, demonstrating that primary chain dispersity has a substantial impact on the network degradation rate. Our experimental findings were further supported by simulations, which emphasized the importance of higher molecular weight polymer chains, found within the high dispersity materials, in extending the lifetime of the network. This methodology presents a new and promising avenue to precisely tune primary chain dispersity within networks and demonstrates that polymer dispersity is an important parameter to consider when designing degradable materials.
Collapse
Affiliation(s)
- Takanori Shimizu
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
- Science & Innovation Center, Mitsubishi Chemical Corporation 1000 Kamoshida-cho, Aoba-ku Yokohama-shi Kanagawa 227-8502 Japan
| | - Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
| | - Glen R Jones
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
| | - Ibrahim O Raji
- Department of Chemistry and Biochemistry, Miami University 651 E High St Oxford OH 45056 USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University 651 E High St Oxford OH 45056 USA
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
| |
Collapse
|
4
|
Conrad JC, Robertson ML. Shaping the Structure and Response of Surface-Grafted Polymer Brushes via the Molecular Weight Distribution. JACS AU 2023; 3:333-343. [PMID: 36873679 PMCID: PMC9975839 DOI: 10.1021/jacsau.2c00638] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 05/31/2023]
Abstract
Breadth in the molecular weight distribution is an inherent feature of synthetic polymer systems. While in the past this was typically considered as an unavoidable consequence of polymer synthesis, multiple recent studies have shown that tailoring the molecular weight distribution can alter the properties of polymer brushes grafted to surfaces. In this Perspective, we describe recent advances in synthetic methods to control the molecular weight distribution of surface-grafted polymers and highlight studies that reveal how shaping this distribution can generate novel or enhanced functionality in these materials.
Collapse
Affiliation(s)
- Jacinta C. Conrad
- William A. Brookshire Department
of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Megan L. Robertson
- William A. Brookshire Department
of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
5
|
Antonopoulou MN, Whitfield R, Truong NP, Anastasaki A. Controlling polymer dispersity using switchable RAFT agents: Unravelling the effect of the organic content and degree of polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Rosenbloom SI, Hsu JH, Fors BP. Controlling the shape of the molecular weight distribution for tailored tensile and rheological properties in thermoplastics and thermoplastic elastomers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Jesse H. Hsu
- Department of Chemistry and Chemical Biology Cornell University Ithaca New York USA
| | - Brett P. Fors
- Department of Chemistry and Chemical Biology Cornell University Ithaca New York USA
| |
Collapse
|
7
|
Tu W, Maksym PE, Kaminski K, Chat K, Adrjanowicz K. Free-radical polymerization of 2-hydroxyethyl methacrylate (HEMA) supported by the high electric field. Polym Chem 2022. [DOI: 10.1039/d2py00320a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In macromolecular science, tunning basic polymer parameters, like molecular weight (Mn) or molecular weight distribution (dispersity, Đ), is an active research topic. Many prominent synthetic protocols concerning chemical modification of...
Collapse
|
8
|
Hakobyan K, Xu J, Müllner M. The challenges of controlling polymer synthesis at the molecular and macromolecular level. Polym Chem 2022. [DOI: 10.1039/d1py01581h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this Perspective, we outline advances and challenges in controlling the structure of polymers at various size regimes in the context of structural features such as molecular weight distribution, end groups, architecture, composition and sequence.
Collapse
Affiliation(s)
- Karen Hakobyan
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Buckinx A, Rubens M, Cameron NR, Bakkali-Hassani C, Sokolova A, Junkers T. The effects of molecular weight dispersity on block copolymer self-assembly. Polym Chem 2022. [DOI: 10.1039/d2py00318j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of dispersity in the molecular weight distributions in the core forming block for block copolymer (BCP) self-assembly is analyzed via an automated flow synthesis approach. Polystyrenes with increasing...
Collapse
|
10
|
Concurrent control over sequence and dispersity in multiblock copolymers. Nat Chem 2021; 14:304-312. [PMID: 34845344 DOI: 10.1038/s41557-021-00818-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/21/2021] [Indexed: 12/30/2022]
Abstract
Controlling monomer sequence and dispersity in synthetic macromolecules is a major goal in polymer science as both parameters determine materials' properties and functions. However, synthetic approaches that can simultaneously control both sequence and dispersity remain experimentally unattainable. Here we report a simple, one pot and rapid synthesis of sequence-controlled multiblocks with on-demand control over dispersity while maintaining a high livingness, and good agreement between theoretical and experimental molecular weights and quantitative yields. Key to our approach is the regulation in the activity of the chain transfer agent during a controlled radical polymerization that enables the preparation of multiblocks with gradually ascending (Ɖ = 1.16 → 1.60), descending (Ɖ = 1.66 → 1.22), alternating low and high dispersity values (Ɖ = 1.17 → 1.61 → 1.24 → 1.70 → 1.26) or any combination thereof. We further demonstrate the potential of our methodology through the synthesis of highly ordered pentablock, octablock and decablock copolymers, which yield multiblocks with concurrent control over both sequence and dispersity.
Collapse
|
11
|
Wang HS, Parkatzidis K, Harrisson S, Truong NP, Anastasaki A. Controlling dispersity in aqueous atom transfer radical polymerization: rapid and quantitative synthesis of one-pot block copolymers. Chem Sci 2021; 12:14376-14382. [PMID: 34880988 PMCID: PMC8580105 DOI: 10.1039/d1sc04241f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
The dispersity (Đ) of a polymer is a key parameter in material design, and variations in Đ can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control Đ operate exclusively in organic media and are limited by slow polymerization rates, moderate conversions, significant loss of initiator efficiency and lack of dispersity control in block copolymers. Here, we demonstrate a rapid and quantitative method to tailor Đ of both homo and block copolymers in aqueous atom transfer radical polymerization. By using excess ligand to regulate the dissociation of bromide ions from the copper deactivator complexes, a wide range of monomodal molecular weight distributions (1.08 < Đ < 1.60) can be obtained within 10 min while achieving very high monomer conversions (∼99%). Despite the high conversions and the broad molecular weight distributions, very high end-group fidelity is maintained as exemplified by the ability to synthesize in situ diblock copolymers with absolute control over the dispersity of either block (e.g. low Đ → high Đ, high Đ → high Đ, high Đ → low Đ). The potential of our approach is further highlighted by the synthesis of complex pentablock and decablock copolymers without any need for purification between the iterative block formation steps. Other benefits of our methodology include the possibility to control Đ without affecting the M n, the interesting mechanistic concept that sheds light onto aqueous polymerizations and the capability to operate in the presence of air.
Collapse
Affiliation(s)
- Hyun Suk Wang
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg 5 Zurich Switzerland
| | - Kostas Parkatzidis
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg 5 Zurich Switzerland
| | - Simon Harrisson
- LCPO, ENSCBP/CNRS/Université de Bordeaux, UMR5629 Pessac France
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg 5 Zurich Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg 5 Zurich Switzerland
| |
Collapse
|
12
|
Shimizu T, Truong NP, Whitfield R, Anastasaki A. Tuning Ligand Concentration in Cu(0)-RDRP: A Simple Approach to Control Polymer Dispersity. ACS POLYMERS AU 2021; 1:187-195. [PMID: 34901951 PMCID: PMC8662723 DOI: 10.1021/acspolymersau.1c00030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
Cu(0)-reversible deactivation radical polymerization (RDRP) is a versatile polymerization tool, providing rapid access to well-defined polymers while utilizing mild reaction conditions and low catalyst loadings. However, thus far, this method has not been applied to tailor dispersity, a key parameter that determines the physical properties and applications of polymeric materials. Here, we report a simple to perform method, whereby Cu(0)-RDRP can systematically control polymer dispersity (Đ = 1.07-1.72), while maintaining monomodal molecular weight distributions. By varying the ligand concentration, we could effectively regulate the rates of initiation and deactivation, resulting in polymers of various dispersities. Importantly, both low and high dispersity PMA possess high end-group fidelity, as evidenced by MALDI-ToF-MS, allowing for a range of block copolymers to be prepared with different dispersity configurations. The scope of our method can also be extended to include inexpensive ligands (i.e., PMDETA), which also facilitated the polymerization of lower propagation rate constant monomers (i.e., styrene) and the in situ synthesis of block copolymers. This work significantly expands the toolbox of RDRP methods for tailoring dispersity in polymeric materials.
Collapse
Affiliation(s)
- Takanori Shimizu
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland,Science
& Innovation Center, Mitsubishi Chemical
Corporation, 1000 Kamoshida-cho, Aoba-ku,
Yokohama-shi, Kanagawa 227-8502, Japan
| | - Nghia P. Truong
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Richard Whitfield
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland,
| | - Athina Anastasaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland,
| |
Collapse
|
13
|
Precise Control of Both Dispersity and Molecular Weight Distribution Shape by Polymer Blending. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Whitfield R, Truong NP, Anastasaki A. Precise Control of Both Dispersity and Molecular Weight Distribution Shape by Polymer Blending. Angew Chem Int Ed Engl 2021; 60:19383-19388. [PMID: 34133078 PMCID: PMC8456836 DOI: 10.1002/anie.202106729] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/30/2022]
Abstract
The breadth and the shape of molecular weight distributions can significantly influence fundamental polymer properties that are critical for various applications. However, current approaches require the extensive synthesis of multiple polymers, are limited in dispersity precision and are typically incapable of simultaneously controlling both the dispersity and the shape of molecular weight distributions. Here we report a simplified approach, whereby on mixing two polymers (one of high Đ and one of low Đ), any intermediate dispersity value can be obtained (e.g. from 1.08 to 1.84). Unrivalled precision is achieved, with dispersity values obtained to even the nearest 0.01 (e.g. 1.37→1.38→1.39→1.40→1.41→1.42→1.43→1.44→1.45), while maintaining fairly monomodal molecular weight distributions. This approach was also employed to control the shape of molecular weight distributions and to obtain diblock copolymers with high dispersity accuracy. The straightforward nature of our methodology alongside its compatibility with a wide range of polymerisation protocols (e.g. ATRP, RAFT), significantly expands the toolbox of tailored polymeric materials and makes them accessible to all researchers.
Collapse
Affiliation(s)
- Richard Whitfield
- Laboratory of Polymeric MaterialsDepartment of MaterialsETH ZurichVladimir-Prelog-Weg 58093ZurichSwitzerland
| | - Nghia P. Truong
- Laboratory of Polymeric MaterialsDepartment of MaterialsETH ZurichVladimir-Prelog-Weg 58093ZurichSwitzerland
| | - Athina Anastasaki
- Laboratory of Polymeric MaterialsDepartment of MaterialsETH ZurichVladimir-Prelog-Weg 58093ZurichSwitzerland
| |
Collapse
|
15
|
Rolland M, Lohmann V, Whitfield R, Truong NP, Anastasaki A. Understanding dispersity control in
photo‐
atom transfer radical polymerization: Effect of degree of polymerization and kinetic evaluation. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manon Rolland
- Laboratory of Polymeric Materials, Department of Materials ETH Zürich Zürich Switzerland
| | - Victoria Lohmann
- Laboratory of Polymeric Materials, Department of Materials ETH Zürich Zürich Switzerland
| | - Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials ETH Zürich Zürich Switzerland
| | - Nghia P. Truong
- Laboratory of Polymeric Materials, Department of Materials ETH Zürich Zürich Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials ETH Zürich Zürich Switzerland
| |
Collapse
|
16
|
Whitfield R, Parkatzidis K, Bradford KG, Truong NP, Konkolewicz D, Anastasaki A. Low ppm CuBr-Triggered Atom Transfer Radical Polymerization under Mild Conditions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| | - Kostas Parkatzidis
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| | - Kate G.E. Bradford
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Nghia P. Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| |
Collapse
|
17
|
Bernat R, Maksym P, Tarnacka M, Szelwicka A, Bielas R, Wojtyniak M, Balin K, Hachuła B, Chrobok A, Paluch M, Kamiński K. Hard confinement systems as effective nanoreactors for in situ photo-RAFT: towards control over molecular weight distribution and morphology. Polym Chem 2021. [DOI: 10.1039/d0py01651a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein an alternative strategy to tune polymer dispersity and morphology was developed for photoiniferter-mediated RAFT giving well-defined ionic and non-ionic nanomaterials.
Collapse
|
18
|
Parkatzidis K, Rolland M, Truong NP, Anastasaki A. Tailoring polymer dispersity by mixing ATRP initiators. Polym Chem 2021. [DOI: 10.1039/d1py01044a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Herein we present a simple batch method to control polymer dispersity using a mixture of two ATRP initiators with different reactivities.
Collapse
Affiliation(s)
- Kostas Parkatzidis
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Manon Rolland
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Nghia P. Truong
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Athina Anastasaki
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
19
|
Rosenbloom SI, Sifri RJ, Fors BP. Achieving molecular weight distribution shape control and broad dispersities using RAFT polymerizations. Polym Chem 2021. [DOI: 10.1039/d1py00399b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metered additions of chain transfer agents are used to control molecular weight distribution (MWD) features in reversible addition-fragmentation chain-transfer polymerizations, giving polymers with tailored MWD shapes and dispersities as high as 6.2.
Collapse
Affiliation(s)
- Stephanie I. Rosenbloom
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Renee J. Sifri
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Brett P. Fors
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
20
|
Verstraete K, Zaquen N, Junkers T. Flash-synthesis of low dispersity PPV via anionic polymerization in continuous flow reactors and block copolymer synthesis. Polym Chem 2020. [DOI: 10.1039/d0py01245a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Low dispersity poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)]-1,4-phenylenevinylene (MDMO-PPV) with well-defined end-groups is made available by performing the anionic polymerization in a continuous tubular reactor under flash chemistry conditions.
Collapse
Affiliation(s)
- Kirsten Verstraete
- Polymer Reaction Design group
- Hasselt University – Institute for Materials Research
- B-3590 Diepenbeek
- Belgium
| | - Neomy Zaquen
- Polymer Reaction Design group
- Hasselt University – Institute for Materials Research
- B-3590 Diepenbeek
- Belgium
| | - Tanja Junkers
- Polymer Reaction Design group
- Hasselt University – Institute for Materials Research
- B-3590 Diepenbeek
- Belgium
- School of Chemistry
| |
Collapse
|