1
|
Mastella P, Todaro B, Luin S. Nanogels: Recent Advances in Synthesis and Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1300. [PMID: 39120405 PMCID: PMC11314474 DOI: 10.3390/nano14151300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
In the context of advanced nanomaterials research, nanogels (NGs) have recently gained broad attention for their versatility and promising biomedical applications. To date, a significant number of NGs have been developed to meet the growing demands in various fields of biomedical research. Summarizing preparation methods, physicochemical and biological properties, and recent applications of NGs may be useful to help explore new directions for their development. This article presents a comprehensive overview of the latest NG synthesis methodologies, highlighting advances in formulation with different types of hydrophilic or amphiphilic polymers. It also underlines recent biomedical applications of NGs in drug delivery and imaging, with a short section dedicated to biosafety considerations of these innovative nanomaterials. In conclusion, this article summarizes recent innovations in NG synthesis and their numerous applications, highlighting their considerable potential in the biomedical field.
Collapse
Affiliation(s)
- Pasquale Mastella
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Fondazione Pisana per la Scienza ONLUS, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme, PI, Italy
| | - Biagio Todaro
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium;
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST Laboratory, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
2
|
Garg A, Shah K, Chauhan CS, Agrawal R. Ingenious nanoscale medication delivery system: Nanogel. J Drug Deliv Sci Technol 2024; 92:105289. [DOI: 10.1016/j.jddst.2023.105289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Fuciños C, Rodríguez-Sanz A, García-Caamaño E, Gerbino E, Torrado A, Gómez-Zavaglia A, Rúa ML. Microfluidics potential for developing food-grade microstructures through emulsification processes and their application. Food Res Int 2023; 172:113086. [PMID: 37689862 DOI: 10.1016/j.foodres.2023.113086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 09/11/2023]
Abstract
The food sector continues to face challenges in developing techniques to increase the bioavailability of bioactive chemicals. Utilising microstructures capable of encapsulating diverse compounds has been proposed as a technological solution for their transport both in food and into the gastrointestinal tract. The present review discusses the primary elements that influence the emulsification process in microfluidic systems to form different microstructures for food applications. In microfluidic systems, reactions occur within small reaction channels (1-1000 μm), using small amounts of samples and reactants, ca. 102-103 times less than conventional assays. This geometry provides several advantages for emulsion and encapsulating structure production, like less waste generation, lower cost and gentle assays. Also, from a food application perspective, it allows the decrease in particle dispersion, resulting in a highly repeatable and efficient synthesis method that also improves the palatability of the food products into which the encapsulates are incorporated. However, it also entails some particular requirements. It is important to obtain a low Reynolds number (Re < approx. 250) for greater precision in droplet formation. Also, microfluidics requires fluid viscosity typically between 0.3 and 1400 mPa s at 20 °C. So, it is a challenge to find food-grade fluids that can operate at the micro-scale of these systems. Microfluidic systems can be used to synthesise different food-grade microstructures: microemulsions, solid lipid microparticles, microgels, or self-assembled structures like liposomes, niosomes, or polymersomes. Besides, microfluidics is particularly useful for accurately encapsulating bacterial cells to control their delivery and release on the action site. However, despite the significant advancement in these systems' development over the past several years, developing and implementing these systems on an industrial scale remains challenging for the food industry.
Collapse
Affiliation(s)
- Clara Fuciños
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain.
| | - Andrea Rodríguez-Sanz
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| | - Esther García-Caamaño
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| | - Esteban Gerbino
- Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata) RA-1900, Argentina
| | - Ana Torrado
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| | - Andrea Gómez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata) RA-1900, Argentina.
| | - María L Rúa
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| |
Collapse
|
4
|
Amir S, Arathi A, Reshma S, Mohanan PV. Microfluidic devices for the detection of disease-specific proteins and other macromolecules, disease modelling and drug development: A review. Int J Biol Macromol 2023; 235:123784. [PMID: 36822284 DOI: 10.1016/j.ijbiomac.2023.123784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Microfluidics is a revolutionary technology that has promising applications in the biomedical field.Integrating microfluidic technology with the traditional assays unravels the innumerable possibilities for translational biomedical research. Microfluidics has the potential to build up a novel platform for diagnosis and therapy through precise manipulation of fluids and enhanced throughput functions. The developments in microfluidics-based devices for diagnostics have evolved in the last decade and have been established for their rapid, effective, accurate and economic advantages. The efficiency and sensitivity of such devices to detect disease-specific macromolecules like proteins and nucleic acids have made crucial impacts in disease diagnosis. The disease modelling using microfluidic systems provides a more prominent replication of the in vivo microenvironment and can be a better alternative for the existing disease models. These models can replicate critical microphysiology like the dynamic microenvironment, cellular interactions, and biophysical and biochemical cues. Microfluidics also provides a promising system for high throughput drug screening and delivery applications. However, microfluidics-based diagnostics still encounter related challenges in the reliability, real-time monitoring and reproducibility that circumvents this technology from being impacted in the healthcare industry. This review highlights the recent microfluidics developments for modelling and diagnosing common diseases, including cancer, neurological, cardiovascular, respiratory and autoimmune disorders, and its applications in drug development.
Collapse
Affiliation(s)
- S Amir
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - A Arathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - S Reshma
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India.
| |
Collapse
|
5
|
Production of nanostructured systems: Main and innovative techniques. Drug Discov Today 2023; 28:103454. [PMID: 36402265 DOI: 10.1016/j.drudis.2022.103454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/24/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
In the constant search for the development of more-specific and more-selective drugs, especially with regard to the challenge of encapsulating hydrophilic molecules, polymer nanotechnologies are remarkable for their biocompatible and biodegradable properties. The most-used nanoencapsulation methods consist of emulsification procedures, where emulsified droplets of a given polymer and drug solidify into nanoparticles after solvent extraction from the polymeric phase. This review introduces conventional emulsification methods but also highlights new emulsification technologies such as microfluidics, membrane emulsification and other techniques, including spray drying, inkjet printing and electrospraying.
Collapse
|
6
|
Li B, Ma X, Cheng J, Tian T, Guo J, Wang Y, Pang L. Droplets microfluidics platform-A tool for single cell research. Front Bioeng Biotechnol 2023; 11:1121870. [PMID: 37152651 PMCID: PMC10154550 DOI: 10.3389/fbioe.2023.1121870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Cells are the most basic structural and functional units of living organisms. Studies of cell growth, differentiation, apoptosis, and cell-cell interactions can help scientists understand the mysteries of living systems. However, there is considerable heterogeneity among cells. Great differences between individuals can be found even within the same cell cluster. Cell heterogeneity can only be clearly expressed and distinguished at the level of single cells. The development of droplet microfluidics technology opens up a new chapter for single-cell analysis. Microfluidic chips can produce many nanoscale monodisperse droplets, which can be used as small isolated micro-laboratories for various high-throughput, precise single-cell analyses. Moreover, gel droplets with good biocompatibility can be used in single-cell cultures and coupled with biomolecules for various downstream analyses of cellular metabolites. The droplets are also maneuverable; through physical and chemical forces, droplets can be divided, fused, and sorted to realize single-cell screening and other related studies. This review describes the channel design, droplet generation, and control technology of droplet microfluidics and gives a detailed overview of the application of droplet microfluidics in single-cell culture, single-cell screening, single-cell detection, and other aspects. Moreover, we provide a recent review of the application of droplet microfluidics in tumor single-cell immunoassays, describe in detail the advantages of microfluidics in tumor research, and predict the development of droplet microfluidics at the single-cell level.
Collapse
Affiliation(s)
- Bixuan Li
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Xi Ma
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Jianghong Cheng
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Tian Tian
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Jiao Guo
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Yang Wang
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
- *Correspondence: Yang Wang,
| | - Long Pang
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| |
Collapse
|
7
|
Akimoto T, Yasuda K. Content Size-Dependent Alginate Microcapsule Formation Using Centrifugation to Eliminate Empty Microcapsules for On-Chip Imaging Cell Sorter Application. MICROMACHINES 2022; 14:72. [PMID: 36677133 PMCID: PMC9867324 DOI: 10.3390/mi14010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Alginate microcapsules are one of the attractive non-invasive platforms for handling individual cells and clusters, maintaining their isolation for further applications such as imaging cell sorter and single capsule qPCR. However, the conventional cell encapsulation techniques provide huge numbers of unnecessary empty homogeneous alginate microcapsules, which spend an excessive majority of the machine time on observations and analysis. Here, we developed a simple alginate cell encapsulation method to form content size-dependent alginate microcapsules to eliminate empty microcapsules using microcapillary centrifugation and filtration. Using this method, the formed calcium alginate microcapsules containing the HeLa cells were larger than 20m, and the other empty microcapsules were less than 3m under 4000 rpm centrifugation condition. We collected cell-containing alginate microcapsules by eliminating empty microcapsules from the microcapsule mixture with simple one-step filtration of a 20 m cell strainer. The electrical surface charge density and optical permeability of those cell-encapsulated alginate microcapsules were also evaluated. We found that the surface charge density of cell-encapsulated alginate microbeads is more than double that of cells, indicating that less voltage is required for electrical cell handling with thin alginate gel encapsulation of samples. The permeability of the alginate microcapsule was not improved by changing the reflective index of the medium buffer, such as adding alginate ester. However, the minimized thickness of the alginate gel envelope surrounding cells in the microcapsules did not degrade the detailed shapes of encapsulated cells. Those results confirmed the advantage of alginate encapsulation of cells with the centrifugation method as one of the desirable tools for imaging cell sorting applications.
Collapse
Affiliation(s)
- Toshinosuke Akimoto
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Kenji Yasuda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
8
|
Bariki SG, Movahedirad S. A flow map for core/shell microdroplet formation in the co-flow Microchannel using ternary phase-field numerical model. Sci Rep 2022; 12:22010. [PMID: 36539594 PMCID: PMC9768139 DOI: 10.1038/s41598-022-26648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Core/shell microdroplets formation with uniform size is investigated numerically in the co-flow microchannel. The interface and volume fraction contour between three immiscible fluids are captured using a ternary phase-field model. Previous research has shown that the effective parameters of microdroplet size are the physical properties and velocity of the three phases. By adjusting these variables, five main flow patterns are observed in numerical simulations. A core/shell dripping/slug regime is observed when the inertia of the continuous phase breaks the flow of the core and shell phases and makes a droplet. In the slug regime, the continuous phase has less inertia, and the droplets that form are surrounded by the channel walls, while in the dripping regime, the shell phase fluid is surrounded by the continuous phase. An increase in continuous-fluid or shell-fluid flow rate leads to dripping to a jetting transition. When three immiscible liquids flow continuously and parallel to one another without dispersing, this is known as laminar flow. In the tubing regime, the core phase flows continuously in the channel's central region, the shell phase flows in the annulus formed by the core phase's central region, and the continuous phase flows between the shell phase fluid and channel walls. In order to discriminate between the aforementioned flow patterns using Weber and Capillary numbers and establish regime transition criteria based on these two dimensionless variables, a flow regime map is provided. Finally, a correlation for shell thickness using shell-to-core phase velocity ratio and conducting 51 CFD simulations was proposed.
Collapse
Affiliation(s)
- Saeed Ghasemzade Bariki
- grid.411748.f0000 0001 0387 0587School of Chemical Engineering, Iran University of Science and Technology, Tehran, 16846-13114 Iran
| | - Salman Movahedirad
- grid.411748.f0000 0001 0387 0587School of Chemical Engineering, Iran University of Science and Technology, Tehran, 16846-13114 Iran
| |
Collapse
|
9
|
Rojek K, Ćwiklińska M, Kuczak J, Guzowski J. Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering. Chem Rev 2022; 122:16839-16909. [PMID: 36108106 PMCID: PMC9706502 DOI: 10.1021/acs.chemrev.1c00798] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review the most recent advances in the field, with particular focus on the formulation of cell-encapsulating microgels of small "dimensionalities": "0D" (particles), "1D" (fibers), "2D" (sheets), etc., and with nontrivial internal topologies, typically consisting of multiple compartments loaded with different types of cells and/or biopolymers. Such structures, which we refer to as topological hydrogels or topological microgels (examples including core-shell or Janus microbeads and microfibers, hollow or porous microstructures, or granular hydrogels) can be precisely tailored with high reproducibility and throughput by using microfluidics and used to provide controlled "initial conditions" for cell proliferation and maturation into functional tissue-like microstructures. Microfluidic methods of formulation of topological biomaterials have enabled significant progress in engineering of miniature tissues and organs, such as pancreas, liver, muscle, bone, heart, neural tissue, or vasculature, as well as in fabrication of tailored microenvironments for stem-cell expansion and differentiation, or in cancer modeling, including generation of vascularized tumors for personalized drug testing. We review the available microfluidic fabrication methods by exploiting various cross-linking mechanisms and various routes toward compartmentalization and critically discuss the available tissue-specific applications. Finally, we list the remaining challenges such as simplification of the microfluidic workflow for its widespread use in biomedical research, bench-to-bedside transition including production upscaling, further in vivo validation, generation of more precise organ-like models, as well as incorporation of induced pluripotent stem cells as a step toward clinical applications.
Collapse
Affiliation(s)
- Katarzyna
O. Rojek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Monika Ćwiklińska
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Julia Kuczak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
10
|
Gharib G, Bütün İ, Muganlı Z, Kozalak G, Namlı İ, Sarraf SS, Ahmadi VE, Toyran E, van Wijnen AJ, Koşar A. Biomedical Applications of Microfluidic Devices: A Review. BIOSENSORS 2022; 12:1023. [PMID: 36421141 PMCID: PMC9688231 DOI: 10.3390/bios12111023] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 05/26/2023]
Abstract
Both passive and active microfluidic chips are used in many biomedical and chemical applications to support fluid mixing, particle manipulations, and signal detection. Passive microfluidic devices are geometry-dependent, and their uses are rather limited. Active microfluidic devices include sensors or detectors that transduce chemical, biological, and physical changes into electrical or optical signals. Also, they are transduction devices that detect biological and chemical changes in biomedical applications, and they are highly versatile microfluidic tools for disease diagnosis and organ modeling. This review provides a comprehensive overview of the significant advances that have been made in the development of microfluidics devices. We will discuss the function of microfluidic devices as micromixers or as sorters of cells and substances (e.g., microfiltration, flow or displacement, and trapping). Microfluidic devices are fabricated using a range of techniques, including molding, etching, three-dimensional printing, and nanofabrication. Their broad utility lies in the detection of diagnostic biomarkers and organ-on-chip approaches that permit disease modeling in cancer, as well as uses in neurological, cardiovascular, hepatic, and pulmonary diseases. Biosensor applications allow for point-of-care testing, using assays based on enzymes, nanozymes, antibodies, or nucleic acids (DNA or RNA). An anticipated development in the field includes the optimization of techniques for the fabrication of microfluidic devices using biocompatible materials. These developments will increase biomedical versatility, reduce diagnostic costs, and accelerate diagnosis time of microfluidics technology.
Collapse
Affiliation(s)
- Ghazaleh Gharib
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - İsmail Bütün
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Zülâl Muganlı
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Gül Kozalak
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - İlayda Namlı
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | | | | | - Erçil Toyran
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Ali Koşar
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Turkish Academy of Sciences (TÜBA), Çankaya, Ankara 06700, Turkey
| |
Collapse
|
11
|
Gélébart P, Cuenot S, Sinquin C, Halgand B, Sourice S, Le Visage C, Guicheux J, Colliec-Jouault S, Zykwinska A. Microgels based on Infernan, a glycosaminoglycan-mimetic bacterial exopolysaccharide, as BMP-2 delivery systems. Carbohydr Polym 2022; 284:119191. [DOI: 10.1016/j.carbpol.2022.119191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
|
12
|
Hayaei Tehrani RS, Hajari MA, Ghorbaninejad Z, Esfandiari F. Droplet microfluidic devices for organized stem cell differentiation into germ cells: capabilities and challenges. Biophys Rev 2021; 13:1245-1271. [PMID: 35059040 PMCID: PMC8724463 DOI: 10.1007/s12551-021-00907-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022] Open
Abstract
Demystifying the mechanisms that underlie germline development and gamete production is critical for expanding advanced therapies for infertile couples who cannot benefit from current infertility treatments. However, the low number of germ cells, particularly in the early stages of development, represents a serious challenge in obtaining sufficient materials required for research purposes. In this regard, pluripotent stem cells (PSCs) have provided an opportunity for producing an unlimited source of germ cells in vitro. Achieving this ambition is highly dependent on accurate stem cell niche reconstitution which is achievable through applying advanced cell engineering approaches. Recently, hydrogel microparticles (HMPs), as either microcarriers or microcapsules, have shown promising potential in providing an excellent 3-dimensional (3D) biomimetic microenvironment alongside the systematic bioactive agent delivery. In this review, recent studies of utilizing various HMP-based cell engineering strategies for appropriate niche reconstitution and efficient in vitro differentiation are highlighted with a special focus on the capabilities of droplet-based microfluidic (DBM) technology. We believe that a deep understanding of the current limitations and potentials of the DBM systems in integration with stem cell biology provides a bright future for germ cell research. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12551-021-00907-5.
Collapse
Affiliation(s)
- Reyhaneh Sadat Hayaei Tehrani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Mohammad Amin Hajari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zeynab Ghorbaninejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| |
Collapse
|
13
|
Zhang C, Grossier R, Candoni N, Veesler S. Preparation of alginate hydrogel microparticles by gelation introducing cross-linkers using droplet-based microfluidics: a review of methods. Biomater Res 2021; 25:41. [PMID: 34819171 PMCID: PMC8611912 DOI: 10.1186/s40824-021-00243-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/06/2021] [Indexed: 11/30/2022] Open
Abstract
This review examines the preparation of alginate hydrogel microparticles by using droplet-based microfluidics, a technique widely employed for its ease of use and excellent control of physicochemical properties, with narrow size distribution. The gelation of alginate is realized "on-chip" and/or "off-chip", depending on where cross-linkers are introduced. Various strategies are described and compared. Microparticle properties such as size, shape, concentration, stability and mechanical properties are discussed. Finally, we consider future perspectives for the preparation of hydrogel microparticles and their potential applications.
Collapse
Affiliation(s)
- Cheng Zhang
- CNRS, Aix-Marseille Université, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, F-13288, Marseille Cedex 09, France
| | - Romain Grossier
- CNRS, Aix-Marseille Université, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, F-13288, Marseille Cedex 09, France
| | - Nadine Candoni
- CNRS, Aix-Marseille Université, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, F-13288, Marseille Cedex 09, France
| | - Stéphane Veesler
- CNRS, Aix-Marseille Université, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, F-13288, Marseille Cedex 09, France.
| |
Collapse
|
14
|
Abstract
Nanogels have high tunability and stability while being able to sense and respond to external stimuli by showing changes in the gel volume, water content, colloidal stability, mechanical strength, and other physical/chemical properties. In this article, advances in the preparation of nanogels will be reviewed. The application potential of nanogels in drug delivery will also be highlighted. It is the objective of this article to present a snapshot of the recent knowledge of nanogel preparation and application for future research in drug delivery.
Collapse
Affiliation(s)
- Cuixia Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding, China
| | | | - Wing-Fu Lai
- School of Education, University of Bristol, Bristol, UK.,Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| |
Collapse
|
15
|
Schroen K, Berton-Carabin C, Renard D, Marquis M, Boire A, Cochereau R, Amine C, Marze S. Droplet Microfluidics for Food and Nutrition Applications. MICROMACHINES 2021; 12:863. [PMID: 34442486 PMCID: PMC8400250 DOI: 10.3390/mi12080863] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/05/2023]
Abstract
Droplet microfluidics revolutionizes the way experiments and analyses are conducted in many fields of science, based on decades of basic research. Applied sciences are also impacted, opening new perspectives on how we look at complex matter. In particular, food and nutritional sciences still have many research questions unsolved, and conventional laboratory methods are not always suitable to answer them. In this review, we present how microfluidics have been used in these fields to produce and investigate various droplet-based systems, namely simple and double emulsions, microgels, microparticles, and microcapsules with food-grade compositions. We show that droplet microfluidic devices enable unprecedented control over their production and properties, and can be integrated in lab-on-chip platforms for in situ and time-resolved analyses. This approach is illustrated for on-chip measurements of droplet interfacial properties, droplet-droplet coalescence, phase behavior of biopolymer mixtures, and reaction kinetics related to food digestion and nutrient absorption. As a perspective, we present promising developments in the adjacent fields of biochemistry and microbiology, as well as advanced microfluidics-analytical instrument coupling, all of which could be applied to solve research questions at the interface of food and nutritional sciences.
Collapse
Affiliation(s)
- Karin Schroen
- Food Process and Engineering Group, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (K.S.); (C.B.-C.)
| | - Claire Berton-Carabin
- Food Process and Engineering Group, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (K.S.); (C.B.-C.)
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Denis Renard
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | | | - Adeline Boire
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Rémy Cochereau
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Chloé Amine
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Sébastien Marze
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| |
Collapse
|
16
|
Jolvis Pou KR, Raghavan V, Packirisamy M. Applications of microfluidic technology in food sector: A bibliometric analysis. COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT 2021. [DOI: 10.1080/09737766.2021.1989989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- K. R. Jolvis Pou
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue Montreal, Quebec, H9X 3V9, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue Montreal, Quebec, H9X 3V9, Canada
| | - Muthukumaran Packirisamy
- Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| |
Collapse
|
17
|
Crosslinking Strategies for the Microfluidic Production of Microgels. Molecules 2021; 26:molecules26123752. [PMID: 34202959 PMCID: PMC8234156 DOI: 10.3390/molecules26123752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023] Open
Abstract
This article provides a systematic review of the crosslinking strategies used to produce microgel particles in microfluidic chips. Various ionic crosslinking methods for the gelation of charged polymers are discussed, including external gelation via crosslinkers dissolved or dispersed in the oil phase; internal gelation methods using crosslinkers added to the dispersed phase in their non-active forms, such as chelating agents, photo-acid generators, sparingly soluble or slowly hydrolyzing compounds, and methods involving competitive ligand exchange; rapid mixing of polymer and crosslinking streams; and merging polymer and crosslinker droplets. Covalent crosslinking methods using enzymatic oxidation of modified biopolymers, photo-polymerization of crosslinkable monomers or polymers, and thiol-ene “click” reactions are also discussed, as well as methods based on the sol−gel transitions of stimuli responsive polymers triggered by pH or temperature change. In addition to homogeneous microgel particles, the production of structurally heterogeneous particles such as composite hydrogel particles entrapping droplet interface bilayers, core−shell particles, organoids, and Janus particles are also discussed. Microfluidics offers the ability to precisely tune the chemical composition, size, shape, surface morphology, and internal structure of microgels by bringing multiple fluid streams in contact in a highly controlled fashion using versatile channel geometries and flow configurations, and allowing for controlled crosslinking.
Collapse
|
18
|
Ahmed H, Stokke BT. Fabrication of monodisperse alginate microgel beads by microfluidic picoinjection: a chelate free approach. LAB ON A CHIP 2021; 21:2232-2243. [PMID: 33903873 DOI: 10.1039/d1lc00111f] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Micron-sized alginate hydrogel beads are extensively employed as an encapsulation medium for biochemical and biomedical applications. Here we report on the microfluidic assisted fabrication of calcium alginate (Ca-alginate) beads by on-chip picoinjection of aqueous calcium chloride (CaCl2) in emulsified aqueous sodium alginate (Na-alginate) droplets or by picoinjection of Na-alginate solution in emulsified aqueous CaCl2 droplets. There is no added chelator to reduce the Ca activity in either of the two strategies. The two fabrication strategies are implemented using a flow-focusing and picoinjection modules in a single PDMS chip. Aqueous alginate solution was emulsified and infused with CaCl2 solution as the squeezed droplet pass the picoinjection channel; consequently, monodisperse, spherical, and structurally homogeneous Ca-alginate beads were obtained. Monodisperse alginate microgel populations with a mean diameter in the range of 8 to 28 μm and standard deviation less than 1 μm were successfully generated using microfluidic channels with various dimensions and controlling the flow parameters. Monodisperse but also non-spherical particles with diameters 6 to 15 μm were also fabricated when picoinjecting Na-alginate solution in emulsified aqueous CaCl2 droplets. The Ca-alginate microbeads fabricated with tailormade size in the range from sub-cellular and upwards were in both strategies realized without any use of chelators or change in pH conditions, which is considered a significant advantage for further exploitation as encapsulation process for improved enzymatic activity and cell viability.
Collapse
Affiliation(s)
- Husnain Ahmed
- Biophysics and Medical Technology, Dept. of Physics, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Bjørn Torger Stokke
- Biophysics and Medical Technology, Dept. of Physics, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
19
|
Oevreeide IH, Szydlak R, Luty M, Ahmed H, Prot V, Skallerud BH, Zemła J, Lekka M, Stokke BT. On the Determination of Mechanical Properties of Aqueous Microgels-Towards High-Throughput Characterization. Gels 2021; 7:64. [PMID: 34072792 PMCID: PMC8261632 DOI: 10.3390/gels7020064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Aqueous microgels are distinct entities of soft matter with mechanical signatures that can be different from their macroscopic counterparts due to confinement effects in the preparation, inherently made to consist of more than one domain (Janus particles) or further processing by coating and change in the extent of crosslinking of the core. Motivated by the importance of the mechanical properties of such microgels from a fundamental point, but also related to numerous applications, we provide a perspective on the experimental strategies currently available and emerging tools being explored. Albeit all techniques in principle exploit enforcing stress and observing strain, the realization differs from directly, as, e.g., by atomic force microscope, to less evident in a fluid field combined with imaging by a high-speed camera in high-throughput strategies. Moreover, the accompanying analysis strategies also reflect such differences, and the level of detail that would be preferred for a comprehensive understanding of the microgel mechanical properties are not always implemented. Overall, the perspective is that current technologies have the capacity to provide detailed, nanoscopic mechanical characterization of microgels over an extended size range, to the high-throughput approaches providing distributions over the mechanical signatures, a feature not readily accessible by atomic force microscopy and micropipette aspiration.
Collapse
Affiliation(s)
- Ingrid Haga Oevreeide
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (I.H.O.); (H.A.)
| | - Renata Szydlak
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (R.S.); (M.L.); (J.Z.)
| | - Marcin Luty
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (R.S.); (M.L.); (J.Z.)
| | - Husnain Ahmed
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (I.H.O.); (H.A.)
| | - Victorien Prot
- Biomechanics, Department of Structural Engineering, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (V.P.); (B.H.S.)
| | - Bjørn Helge Skallerud
- Biomechanics, Department of Structural Engineering, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (V.P.); (B.H.S.)
| | - Joanna Zemła
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (R.S.); (M.L.); (J.Z.)
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (R.S.); (M.L.); (J.Z.)
| | - Bjørn Torger Stokke
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (I.H.O.); (H.A.)
| |
Collapse
|
20
|
Joshi DJ, Chitre NM, Bansal A, Murnane KS, D’Souza MJ. Formulation and Characterization of Microcapsules Encapsulating PC12 Cells as a Prospective Treatment Approach for Parkinson's Disease. AAPS PharmSciTech 2021; 22:149. [PMID: 33961149 DOI: 10.1208/s12249-021-02007-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 01/02/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurological disorder, associated with decreased dopamine levels in the brain. The goal of this study was to assess the potential of a regenerative medicine-based cell therapy approach to increase dopamine levels. In this study, we used rat adrenal pheochromocytoma (PC12) cells that can produce, store, and secrete dopamine. These cells were microencapsulated in the selectively permeable polymer membrane to protect them from immune responses. For fabrication of the microcapsules, we used a modified Buchi spray dryer B-190 that allows for fast manufacturing of microcapsules and is industrially scalable. Size optimization of the microcapsules was performed by systematically varying key parameters of the spraying device. The short- and long-term stabilities of the microcapsules were assessed. In the in vitro study, the cells were found viable for a period of 30 days. Selective permeability of the microcapsules was confirmed via dopamine release assay and micro BCA protein assay. We found that the microcapsules were permeable to the small molecules including dopamine and were impermeable to the large molecules like BSA. Thus, they can provide the protection to the encapsulated cells from the immune cells. Griess's assay confirmed the non-immunogenicity of the microcapsules. These results demonstrate the effective fabrication of microcapsules encapsulating cells using an industrially scalable device. The microcapsules were stable, and the cells were viable inside the microcapsules and were found to release dopamine. Thus, these microcapsules have the potential to serve as the alternative or complementary treatment approach for PD.
Collapse
|
21
|
Sharratt WN, Lopez CG, Sarkis M, Tyagi G, O’Connell R, Rogers SE, Cabral JT. Ionotropic Gelation Fronts in Sodium Carboxymethyl Cellulose for Hydrogel Particle Formation. Gels 2021; 7:44. [PMID: 33921260 PMCID: PMC8167666 DOI: 10.3390/gels7020044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Hydrogel microparticles (HMPs) find numerous practical applications, ranging from drug delivery to tissue engineering. Designing HMPs from the molecular to macroscopic scales is required to exploit their full potential as functional materials. Here, we explore the gelation of sodium carboxymethyl cellulose (NaCMC), a model anionic polyelectrolyte, with Fe3+ cations in water. Gelation front kinetics are first established using 1D microfluidic experiments, and effective diffusive coefficients are found to increase with Fe3+ concentration and decrease with NaCMC concentrations. We use Fourier Transform Infrared Spectroscopy (FTIR) to elucidate the Fe3+-NaCMC gelation mechanism and small angle neutron scattering (SANS) to spatio-temporally resolve the solution-to-network structure during front propagation. We find that the polyelectrolyte chain cross-section remains largely unperturbed by gelation and identify three hierarchical structural features at larger length scales. Equipped with the understanding of gelation mechanism and kinetics, using microfluidics, we illustrate the fabrication of range of HMP particles with prescribed morphologies.
Collapse
Affiliation(s)
- William N. Sharratt
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; (M.S.); (G.T.); (R.O.)
| | - Carlos G. Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany;
| | - Miriam Sarkis
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; (M.S.); (G.T.); (R.O.)
| | - Gunjan Tyagi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; (M.S.); (G.T.); (R.O.)
| | - Róisín O’Connell
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; (M.S.); (G.T.); (R.O.)
| | - Sarah E. Rogers
- ISIS, Rutherford Appleton Laboratory, Harwell, Didcot OX11 0QX, UK;
| | - João T. Cabral
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; (M.S.); (G.T.); (R.O.)
| |
Collapse
|
22
|
Puertas-Bartolomé M, Mora-Boza A, García-Fernández L. Emerging Biofabrication Techniques: A Review on Natural Polymers for Biomedical Applications. Polymers (Basel) 2021; 13:1209. [PMID: 33918049 PMCID: PMC8069319 DOI: 10.3390/polym13081209] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/21/2022] Open
Abstract
Natural polymers have been widely used for biomedical applications in recent decades. They offer the advantages of resembling the extracellular matrix of native tissues and retaining biochemical cues and properties necessary to enhance their biocompatibility, so they usually improve the cellular attachment and behavior and avoid immunological reactions. Moreover, they offer a rapid degradability through natural enzymatic or chemical processes. However, natural polymers present poor mechanical strength, which frequently makes the manipulation processes difficult. Recent advances in biofabrication, 3D printing, microfluidics, and cell-electrospinning allow the manufacturing of complex natural polymer matrixes with biophysical and structural properties similar to those of the extracellular matrix. In addition, these techniques offer the possibility of incorporating different cell lines into the fabrication process, a revolutionary strategy broadly explored in recent years to produce cell-laden scaffolds that can better mimic the properties of functional tissues. In this review, the use of 3D printing, microfluidics, and electrospinning approaches has been extensively investigated for the biofabrication of naturally derived polymer scaffolds with encapsulated cells intended for biomedical applications (e.g., cell therapies, bone and dental grafts, cardiovascular or musculoskeletal tissue regeneration, and wound healing).
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Saarland University, 66123 Saarbrücken, Germany
| | - Ana Mora-Boza
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, 2310 IBB Building, Atlanta, GA 30332-0363, USA
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Luis García-Fernández
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| |
Collapse
|
23
|
Lee D, Greer SE, Kuss MA, An Y, Dudley AT. 3D printed alginate bead generator for high-throughput cell culture. Biomed Microdevices 2021; 23:22. [PMID: 33821331 DOI: 10.1007/s10544-021-00561-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 01/02/2023]
Abstract
Alginate hydrogel beads are a common platform for generating 3D cell cultures in biomedical research. Simple methods for bead generation using a manual pipettor or syringe are low-throughput and produce beads showing high variability in size and shape. To address these challenges, we designed a 3D printed bead generator that uses an airflow to cleave beads from a stream of hydrogel solution. The performance of the proposed alginate bead generator was evaluated by changing the volume flow rates of alginate (QAlg) and air (QA), the diameter of device nozzle (d) and the concentration of alginate gel solution (C). We identified that the diameter of beads (D = 0.9 -2.8 mm) can be precisely controlled by changing QA and d. Also the bead generation frequency (f) can be tuned by changing QAlg. Finally, we demonstrated that viability and biological function (pericellular matrix deposition) of chondrocytes were not adversely affected by high f using this bead generator. Because 3D printing is becoming a more accessible technique, our unique design will allow greater access to average biomedical research laboratories, STEM education and industries in cost- and time-effective manner.
Collapse
Affiliation(s)
- Donghee Lee
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sydney E Greer
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mitchell A Kuss
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yang An
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Andrew T Dudley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
24
|
Martins M, Silva KCG, Ávila PF, Sato ACK, Goldbeck R. Xylo-oligosaccharide microparticles with synbiotic potential obtained from enzymatic hydrolysis of sugarcane straw. Food Res Int 2021; 140:109827. [PMID: 33648164 DOI: 10.1016/j.foodres.2020.109827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/01/2020] [Accepted: 10/04/2020] [Indexed: 01/22/2023]
Abstract
Synbiotic formulations and microencapsulation techniques have been explored in food industries to guarantee the viability of probiotic organisms; playing an important role in microbiota balance. Microparticles of alginate, gelatin and xylo-oligosaccharides (XOS) were produced by external gelation with the purpose of enhancing the survival rate of the probiotic L. acidophilus. XOS was obtained through enzymatic hydrolysis of xylan extracted from sugarcane straw, achieving more than 70% conversion and used for microparticle preparation. Microparticles containing 3% XOS provided greater cell protection during exposure to the gastrointestinal tract and during refrigerated storage; keeping 97.86 ± 0.44% of viability during 28 days of storage and enabling 87.50 ± 0.02% survival after digestive simulation. However, particles without XOS showed 84.49 ± 0.59% of viability after storage and 68.45 ± 0.03% after digestion assay. These results lead to promising applications in synbiotic and functional food formulations comprised of components requiring extended shelf-life, protection from gastrointestinal conditions and gradual bioactive delivery.
Collapse
Affiliation(s)
- Manoela Martins
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Karen Cristina Guedes Silva
- Process Engineering Laboratory, School of Food Engineering, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Patrícia Félix Ávila
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Ana Carla Kawazoe Sato
- Process Engineering Laboratory, School of Food Engineering, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
25
|
Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds. PLoS One 2021; 16:e0245206. [PMID: 33534849 PMCID: PMC7857642 DOI: 10.1371/journal.pone.0245206] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022] Open
Abstract
This paper reports a novel, negligible-cost and open-source process for the rapid prototyping of complex microfluidic devices in polydimethylsiloxane (PDMS) using 3D-printed interconnecting microchannel scaffolds. These single-extrusion scaffolds are designed with interconnecting ends and used to quickly configure complex microfluidic systems before being embedded in PDMS to produce an imprint of the microfluidic configuration. The scaffolds are printed using common Material Extrusion (MEX) 3D printers and the limits, cost & reliability of the process are evaluated. The limits of standard MEX 3D-printing with off-the-shelf printer modifications is shown to achieve a minimum channel cross-section of 100×100 μm. The paper also lays out a protocol for the rapid fabrication of low-cost microfluidic channel moulds from the thermoplastic 3D-printed scaffolds, allowing the manufacture of customisable microfluidic systems without specialist equipment. The morphology of the resulting PDMS microchannels fabricated with the method are characterised and, when applied directly to glass, without plasma surface treatment, are shown to efficiently operate within the typical working pressures of commercial microfluidic devices. The technique is further validated through the demonstration of 2 common microfluidic devices; a fluid-mixer demonstrating the effective interconnecting scaffold design, and a microsphere droplet generator. The minimal cost of manufacture means that a 5000-piece physical library of mix-and-match channel scaffolds (100 μm scale) can be printed for ~$0.50 and made available to researchers and educators who lack access to appropriate technology. This simple yet innovative approach dramatically lowers the threshold for research and education into microfluidics and will make possible the rapid prototyping of point-of-care lab-on-a-chip diagnostic technology that is truly affordable the world over.
Collapse
|
26
|
Tomeh MA, Zhao X. Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems. Mol Pharm 2020; 17:4421-4434. [PMID: 33213144 DOI: 10.1021/acs.molpharmaceut.0c00913] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug delivery systems (DDSs) have great potential for improving the treatment of several diseases, especially microbial infections and cancers. However, the formulation procedures of DDSs remain challenging, especially at the nanoscale. Reducing batch-to-batch variation and enhancing production rate are some of the essential requirements for accelerating the translation of DDSs from a small scale to an industrial level. Microfluidic technologies have emerged as an alternative to the conventional bench methods to address these issues. By providing precise control over the fluid flows and rapid mixing, microfluidic systems can be used to fabricate and engineer different types of DDSs with specific properties for efficient delivery of a wide range of drugs and genetic materials. This review discusses the principles of controlled rapid mixing that have been employed in different microfluidic strategies for producing DDSs. Moreover, the impact of the microfluidic device design and parameters on the type and properties of DDS formulations was assessed, and recent applications in drug and gene delivery were also considered.
Collapse
Affiliation(s)
- Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom.,School of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|
27
|
Shao F, Yu L, Zhang Y, An C, Zhang H, Zhang Y, Xiong Y, Wang H. Microfluidic Encapsulation of Single Cells by Alginate Microgels Using a Trigger-Gellified Strategy. Front Bioeng Biotechnol 2020; 8:583065. [PMID: 33154965 PMCID: PMC7591722 DOI: 10.3389/fbioe.2020.583065] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Microfluidics-based alginate microgels have shown great potential to encapsulate cells in a high-throughput and controllable manner. However, cell viability and biological functions are substantially compromised due to the harsh conditions for gelation, which remains a major challenge for cell encapsulation. Herein, we presented an efficient and biocompatible method by on-chip triggered gelation to generate microfluidic alginate microgels for single-cell encapsulation. Two calcium complexes of calcium–ethylenediaminetetraacetic acid (Ca-EDTA) and calcium–nitrilotriacetic (Ca-NTA) as crosslinkers for triggered gelation of alginate were compared and investigated for feasible application. By triggered release of Ca2+ ions from the calcium complex via adding acetic acid in the oil phase, the alginate precursor in the aqueous droplets can be crosslinked to form alginate microgels. Although using Ca-EDTA and Ca-NTA both achieved on-chip gelation, Ca-NTA led to significantly higher cell viability since the dissociation of Ca2+ ions from Ca-NTA can be obtained using less concentration of acid compared to Ca-EDTA. We further demonstrated the functionality of encapsulated mesenchymal stem cells (MSCs) in alginate microgels prepared using Ca-NTA, as evidenced by the osteogenesis of encapsulated MSCs upon inductive culture. In summary, our study provided a biocompatible strategy to prepare alginate microgels for single-cell encapsulation which can be further used for applications in tissue engineering and cell therapies.
Collapse
Affiliation(s)
- Fei Shao
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lei Yu
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yang Zhang
- Laboratory of Regenerative Biomaterials, Department of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chuanfeng An
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Haoyue Zhang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yujie Zhang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yi Xiong
- Laboratory of Regenerative Biomaterials, Department of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Huanan Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
28
|
Lu H, Tang SY, Yun G, Li H, Zhang Y, Qiao R, Li W. Modular and Integrated Systems for Nanoparticle and Microparticle Synthesis-A Review. BIOSENSORS 2020; 10:E165. [PMID: 33153122 PMCID: PMC7693962 DOI: 10.3390/bios10110165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/22/2023]
Abstract
Nanoparticles (NPs) and microparticles (MPs) have been widely used in different areas of research such as materials science, energy, and biotechnology. On-demand synthesis of NPs and MPs with desired chemical and physical properties is essential for different applications. However, most of the conventional methods for producing NPs/MPs require bulky and expensive equipment, which occupies large space and generally need complex operation with dedicated expertise and labour. These limitations hinder inexperienced researchers to harness the advantages of NPs and MPs in their fields of research. When problems individual researchers accumulate, the overall interdisciplinary innovations for unleashing a wider range of directions are undermined. In recent years, modular and integrated systems are developed for resolving the ongoing dilemma. In this review, we focus on the development of modular and integrated systems that assist the production of NPs and MPs. We categorise these systems into two major groups: systems for the synthesis of (1) NPs and (2) MPs; systems for producing NPs are further divided into two sections based on top-down and bottom-up approaches. The mechanisms of each synthesis method are explained, and the properties of produced NPs/MPs are compared. Finally, we discuss existing challenges and outline the potentials for the development of modular and integrated systems.
Collapse
Affiliation(s)
- Hongda Lu
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; (H.L.); (G.Y.)
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Guolin Yun
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; (H.L.); (G.Y.)
| | - Haiyue Li
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA;
| | - Yuxin Zhang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Weihua Li
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| |
Collapse
|
29
|
Santos TP, Costa ALR, Michelon M, Costa LP, Cunha RL. Development of a microfluidic route for the formation of gellan-based microgels incorporating jabuticaba (Myrciaria cauliflora) extract. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109884] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Zhao Q, Cui H, Wang Y, Du X. Microfluidic Platforms toward Rational Material Fabrication for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903798. [PMID: 31650698 DOI: 10.1002/smll.201903798] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Indexed: 05/16/2023]
Abstract
The emergence of micro/nanomaterials in recent decades has brought promising alternative approaches in various biomedicine-related fields such as pharmaceutics, diagnostics, and therapeutics. These micro/nanomaterials for specific biomedical applications shall possess tailored properties and functionalities that are closely correlated to their geometries, structures, and compositions, therefore placing extremely high demands for manufacturing techniques. Owing to the superior capabilities in manipulating fluids and droplets at microscale, microfluidics has offered robust and versatile platform technologies enabling rational design and fabrication of micro/nanomaterials with precisely controlled geometries, structures and compositions in high throughput manners, making them excellent candidates for a variety of biomedical applications. This review briefly summarizes the progress of microfluidics in the fabrication of various micro/nanomaterials ranging from 0D (particles), 1D (fibers) to 2D/3D (film and bulk materials) materials with controllable geometries, structures, and compositions. The applications of these microfluidic-based materials in the fields of diagnostics, drug delivery, organs-on-chips, tissue engineering, and stimuli-responsive biodevices are introduced. Finally, an outlook is discussed on the future direction of microfluidic platforms for generating materials with superior properties and on-demand functionalities. The integration of new materials and techniques with microfluidics will pave new avenues for preparing advanced micro/nanomaterials with enhanced performance for biomedical applications.
Collapse
Affiliation(s)
- Qilong Zhao
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China
| | - Huanqing Cui
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China
| | - Yunlong Wang
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China
| | - Xuemin Du
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China
| |
Collapse
|
31
|
Choi YH, Lee SS, Lee DM, Jeong HS, Kim SH. Composite Microgels Created by Complexation between Polyvinyl Alcohol and Graphene Oxide in Compressed Double-Emulsion Drops. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903812. [PMID: 31515955 DOI: 10.1002/smll.201903812] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/21/2019] [Indexed: 05/22/2023]
Abstract
Microgels, microparticles made of hydrogels, show fast diffusion kinetics and high reconfigurability while maintaining the advantages of hydrogels, being useful for various applications. Here, presented is a new microfluidic strategy for producing polymer-graphene oxide (GO) composite microgels without chemical cues or a temperature swing for gelation. As a main component of microgels, polymers that are able to form hydrogen bonds, such as polyvinyl alcohol (PVA), are used. In the mixture of PVA and GO, GO is tethered by PVA through hydrogen bonding. When the mixture is rapidly concentrated in the core of double-emulsion drops by osmotic-pressure-driven water pumping, PVA-tethered GO sheets form a nematic phase with a planar alignment. In addition, the GO sheets are linked by additional hydrogen bonds, leading to a sol-gel transition. Therefore, the PVA-GO composite remains undissolved when it is directly exposed to water by oil-shell rupture. These composite microgels can be also produced using poly(ethylene oxide) or poly(acrylic acid), instead of PVA. In addition, the microgels can be functionalized by incorporating other polymers in the presence of the hydrogel-forming polymers. It is shown that the multicomponent microgels made from a mixture of polyacrylamide, PVA, and GO show an excellent adsorption capacity for impurities.
Collapse
Affiliation(s)
- Ye Hun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang Seok Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju-gun, Jeollabuk-do, 55324, Republic of Korea
| | - Dong-Myeong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju-gun, Jeollabuk-do, 55324, Republic of Korea
| | - Hyeon Su Jeong
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju-gun, Jeollabuk-do, 55324, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
32
|
A microfluidic method generating monodispersed microparticles with controllable sizes and mechanical properties. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Zhang L, Chen Q, Ma Y, Sun J. Microfluidic Methods for Fabrication and Engineering of Nanoparticle Drug Delivery Systems. ACS APPLIED BIO MATERIALS 2019; 3:107-120. [DOI: 10.1021/acsabm.9b00853] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lu Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qinghua Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Yao Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100149, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
34
|
Protein Microgels from Amyloid Fibril Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:223-263. [PMID: 31713201 DOI: 10.1007/978-981-13-9791-2_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Nanofibrillar forms of amyloidogenic proteins were initially discovered in the context of protein misfolding and disease but have more recently been found at the origin of key biological functionality in many naturally occurring functional materials, such as adhesives and biofilm coatings. Their physiological roles in nature reflect their great strength and stability, which has led to the exploration of their use as the basis of artificial protein-based functional materials. Particularly for biomedical applications, they represent attractive building blocks for the development of, for instance, drug carrier agents due to their inherent biocompatibility and biodegradability. Furthermore, the propensity of proteins to self-assemble into amyloid fibrils can be exploited under microconfinement, afforded by droplet microfluidic techniques. This approach allows the generation of multi-scale functional microgels that can host biological additives and can be designed to incorporate additional functionality, such as to aid targeted drug delivery.
Collapse
|
35
|
Minina ES, Sánchez PA, Likos CN, Kantorovich SS. Studying synthesis confinement effects on the internal structure of nanogels in computer simulations. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Rodionov IA, Abdullah N, Kaplan DL. Microporous drug-eluting large silk particles through cryo-granulation. ADVANCED ENGINEERING MATERIALS 2019; 21:1801242. [PMID: 31892840 PMCID: PMC6938394 DOI: 10.1002/adem.201801242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Indexed: 06/10/2023]
Abstract
A facile method for the preparation of large, microporous, drug-loaded particles is presented. High shear bollus injections of silk with cross-linker and drug colloids into super-cooled hexane were utilized to trigger phase separation of silk droplets, followed by immediate freezing at -60°C. A subsequent -20°C freeze-thaw of the frozen droplets resulted in self-assembly (crystallization) of the silk. The silk particles developed an internal interconnected microporous morphology with 0.1-10 µm in diameter pores. The silk particles ranged in diameter from 100 to 1,300 µm, with particle mean diameter and polydispersity controlled by the starting concentration of the cross-linking agent and silk, the rheology of the reaction mixture, and the injection pressure (80 - 300kPa). Cryogranulation provided a one-step process to produce microporous meso-scale silk particles with encapsulated drugs, such as doxorubicin chloride (DoxR), tobramycin sulfate (TS), kanamycin sulfate (KS) or gentamicin sulfate (GS). Almost 100% drug encapsulation efficiency was achieved in the process, and subsequent release profiles depended on the starting concentration of both the drug, silk, and pH of the elution medium. Kirby-Bauer tests and bioluminescent imaging confirmed the retention of anti-bacterial potency of the antibiotics pre-encapsulated in the cryo-particles, and macroparticles cytocompatibility towards human fibroblast and kidney cells.
Collapse
Affiliation(s)
- Ilya A. Rodionov
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Nadia Abdullah
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
37
|
Ren J, Li J, Li Y, Xiao P, Liu Y, Tsang CM, Tsao SW, Lau D, Chan KWY, Lam RHW. Elasticity-Modulated Microbeads for Classification of Floating Normal and Cancer Cells Using Confining Microchannels. ACS Biomater Sci Eng 2019; 5:3889-3898. [DOI: 10.1021/acsbiomaterials.8b01273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jifeng Ren
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Yongshu Li
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Peng Xiao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Yi Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Chi Man Tsang
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Sai Wah Tsao
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Denvid Lau
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Raymond H. W. Lam
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518057, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| |
Collapse
|
38
|
Mohamed MGA, Kheiri S, Islam S, Kumar H, Yang A, Kim K. An integrated microfluidic flow-focusing platform for on-chip fabrication and filtration of cell-laden microgels. LAB ON A CHIP 2019; 19:1621-1632. [PMID: 30896015 DOI: 10.1039/c9lc00073a] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We present the development of a stable continuous, and integrated microfluidic platform for the high-throughput fabrication of monodisperse cell-laden microgel droplets with high and maintained cellular viability. This is through combining onto one chip all the required processes from the droplet generation in a flow focusing microfluidic junction passing through on-chip photocrosslinking to the separation of the droplets from the continuous oil phase. To avoid cellular aggregation during the droplet generation process, cells were treated with bovine serum albumin (BSA) before mixing with gelatin methacrylate (GelMA). And, a magnetic mixer was applied to the GelMA prepolymer-cell suspension syringe to eliminate cell sedimentation. These approaches resulted in having a reasonable distribution of cells among monodisperse microdroplets. The microdroplets were irradiated with a 405 nm wavelength laser beam while passing through the crosslinking chamber of the microfluidic device. The produced microgels enter the filtration unit of the same device where they were gently separated from the oil phase into the washing buffer aqueous solution of Tween 80 using the filter microposts array. The viability of the encapsulated cells was around 85% at day 1 and was maintained throughout 5 days. Using this method of controlling cell encapsulation with on-chip crosslinking and oil filtration, highly efficient cell-laden microgel production is achieved. The presented integrated microfluidic platform can be a candidate for standard cell-encapsulation experiments and other tissue engineering applications.
Collapse
Affiliation(s)
- Mohamed G A Mohamed
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| | | | | | | | | | | |
Collapse
|
39
|
Feng Y, Lee Y. Microfluidic assembly of food-grade delivery systems: Toward functional delivery structure design. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Microfluidic Fabrication of Encoded Hydrogel Microparticles for Application in Multiplex Immunoassay. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3104-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Brugnoni M, Nickel AC, Kröger LC, Scotti A, Pich A, Leonhard K, Richtering W. Synthesis and structure of deuterated ultra-low cross-linked poly(N-isopropylacrylamide) microgels. Polym Chem 2019. [DOI: 10.1039/c8py01699b] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Partial deuteration of the N-isopropylacrylamide monomer reveals new insights into the self-cross-linking of polymer chains in ultra-low cross-linked microgels.
Collapse
Affiliation(s)
- Monia Brugnoni
- Institute of Physical Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - Anne C. Nickel
- Institute of Physical Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - Leif C. Kröger
- Chair of Technical Thermodynamics
- RWTH Aachen University
- 52062 Aachen
- Germany
| | - Andrea Scotti
- Institute of Physical Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - Andrij Pich
- Functional and Interactive Polymers
- Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - Kai Leonhard
- Chair of Technical Thermodynamics
- RWTH Aachen University
- 52062 Aachen
- Germany
| | - Walter Richtering
- Institute of Physical Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| |
Collapse
|
42
|
Chen R, Sun Z, Chen D. Droplet-based microfluidics for cell encapsulation and delivery. MICROFLUIDICS FOR PHARMACEUTICAL APPLICATIONS 2019:307-335. [DOI: 10.1016/b978-0-12-812659-2.00011-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
43
|
Sharratt WN, Brooker A, Robles ESJ, Cabral JT. Microfluidic solvent extraction of poly(vinyl alcohol) droplets: effect of polymer structure on particle and capsule formation. SOFT MATTER 2018; 14:4453-4463. [PMID: 29697110 DOI: 10.1039/c7sm02488f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We investigate the formation of poly(vinyl alcohol) microparticles by the selective extraction of aqueous polymer solution droplets, templated by microfluidics and subsequently immersed in a non-solvent bath. The role of polymer molecular mass (18-105 kg mol-1), degree of hydrolysis (88-99%) and thus solubility, and initial solution concentration (0.01-10% w/w) are quantified. Monodisperse droplets with radii ranging from 50 to 500 μm were produced at a flow-focusing junction with carrier phase hexadecane and extracted into ethyl acetate. Solvent exchange and extraction result in droplet shrinkage, demixing, coarsening and phase-inversion, yielding polymer microparticles with well-defined dimensions and internal microstructure. Polymer concentration, varied from below the overlap concentration c* to above the concentrated crossover c**, as estimated by viscosity measurements, was found to have the largest impact on the final particle size and extraction timescale, while polymer mass and hydrolysis played a secondary role. These results are consistent with the observation that the average polymer concentration upon solidification greatly exceeds c**, and that the internal microparticle porosity is largely unchanged. However, reducing the initial polymer concentration to well below c* (approximately 100×) and increasing droplet size yields thin-walled (100's of nm) capsules which controllably crumple upon extraction. The symmetry of the process can be readily broken by imposing extraction conditions at an impermeable surface, yielding large, buckled, cavity morphologies. Based on these results, we establish robust design criteria for polymer capsules and particles, demonstrated here for poly(vinyl alcohol), with well-defined shape, dimensions and internal microstructure.
Collapse
Affiliation(s)
- W N Sharratt
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
44
|
Bonat Celli G, Abbaspourrad A. Tailoring Delivery System Functionality Using Microfluidics. Annu Rev Food Sci Technol 2018; 9:481-501. [DOI: 10.1146/annurev-food-030117-012545] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Jeyhani M, Mak SY, Sammut S, Shum HC, Hwang DK, Tsai SSH. Controlled Electrospray Generation of Nonspherical Alginate Microparticles. Chemphyschem 2018; 19:2113-2118. [PMID: 29228474 DOI: 10.1002/cphc.201701094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 11/10/2022]
Abstract
Electrospraying is a technique used to generate microparticles in a high throughput manner. For biomedical applications, a biocompatible electrosprayed material is often desirable. Using polymers, such as alginate hydrogels, makes it possible to create biocompatible and biodegradable microparticles that can be used for cell encapsulation, to be employed as drug carriers, and for use in 3D cell culturing. Evidence in the literature suggests that the morphology of the biocompatible microparticles is relevant in controlling the dynamics of the microparticles in drug delivery and 3D cell culturing applications. Yet, most electrospray-based techniques only form spherical microparticles, and there is currently no widely adopted technique for producing nonspherical microparticles at a high throughput. Here, we demonstrate the generation of nonspherical biocompatible alginate microparticles by electrospraying, and control the shape of the microparticles by varying experimental parameters such as chemical concentration and the distance between the electrospray tip and the particle-solidification bath. Importantly, we show that these changes to the experimental setup enable the synthesis of different shaped particles, and the systematic change in parameters, such as chemical concentration, result in monotonic changes to the particle aspect ratio. We expect that these results will find utility in many biomedical applications that require biocompatible microparticles of specific shapes.
Collapse
Affiliation(s)
- Morteza Jeyhani
- Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 30 Bond St., Toronto, ON, M5B 1W8, Canada.,Institute for Biomedical Engineering, Science, and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, 209 Victoria St., Toronto, ON, M5B 1T8, Canada
| | - Sze Yi Mak
- Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, People's Republic of China.,Department of Mechanical Engineering, University of Hong Kong, Pokfulam, Hong Kong
| | - Stephen Sammut
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 30 Bond St., Toronto, ON, M5B 1W8, Canada.,Institute for Biomedical Engineering, Science, and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, 209 Victoria St., Toronto, ON, M5B 1T8, Canada.,Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada
| | - Ho Cheung Shum
- Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, People's Republic of China.,Department of Mechanical Engineering, University of Hong Kong, Pokfulam, Hong Kong
| | - Dae Kun Hwang
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 30 Bond St., Toronto, ON, M5B 1W8, Canada.,Institute for Biomedical Engineering, Science, and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, 209 Victoria St., Toronto, ON, M5B 1T8, Canada.,Department of Chemical Engineering, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada
| | - Scott S H Tsai
- Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 30 Bond St., Toronto, ON, M5B 1W8, Canada.,Institute for Biomedical Engineering, Science, and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, 209 Victoria St., Toronto, ON, M5B 1T8, Canada
| |
Collapse
|
46
|
Wang J, Huang X, Zhao P, Wang X, Tian Y, Chen C, Wang J, Li Y, Wan W, Tian H, Xu M, Wang C, Wang L. On-Chip Facile Preparation of Monodisperse Resorcinol Formaldehyde (RF) Resin Microspheres. MICROMACHINES 2018; 9:E24. [PMID: 30393300 PMCID: PMC6187545 DOI: 10.3390/mi9010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/26/2017] [Accepted: 01/08/2018] [Indexed: 11/25/2022]
Abstract
Monodisperse resorcinol formaldehyde resin (RF) microspheres are an important polymeric material because of their rich surface functional group and uniform structural characteristics and have been increasingly applied as an electrode material, catalyst support, absorbent, and carbon microsphere precursor. The polymerization conditions, such as the gelation/solidification temperature and the residence time, can largely influence the physical properties and the formation of the 3D polymeric network of the RF microspheres as well as the carbon microspheres. However, few studies have reported on the complexity of the gelation and solidification processes of resol. In this work, we developed a new RF microsphere preparation device that contains three units: a droplet generation unit, a curing unit, and a collection unit. In this system, we controlled the gelation and solidification processes of the resol and observed its curing behavior, which helped us to uncover the curing mechanism of resol. Finally, we obtained the optimized polymerization parameters, obtaining uniform RF microspheres with a variation coefficient of 4.94%. The prepared porous RF microspheres presented a high absorption ability, reaching ~90% at 10 min. Thus, our method demonstrated the practicality of on-chip monodisperse microspheres synthesis. The product was useful in drug delivery and adsorbing large poisonous molecules.
Collapse
Affiliation(s)
- Jianmei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Xiaowen Huang
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Pei Zhao
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Xueying Wang
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Ye Tian
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Chengmin Chen
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Jianchun Wang
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Yan Li
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Wei Wan
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Hanmei Tian
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Min Xu
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Chengyang Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Liqiu Wang
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
47
|
Yamada M, Seki M. Multiphase Microfluidic Processes to Produce Alginate-Based Microparticles and Fibers. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2018. [DOI: 10.1252/jcej.17we328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University
| | - Minoru Seki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University
| |
Collapse
|
48
|
Martins E, Poncelet D, Rodrigues RC, Renard D. Oil encapsulation techniques using alginate as encapsulating agent: applications and drawbacks. J Microencapsul 2017; 34:754-771. [DOI: 10.1080/02652048.2017.1403495] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Denis Poncelet
- Process Engineering for Environment and Food Laboratory, ONIRIS, Nantes, France
| | | | - Denis Renard
- INRA UR 1268 Biopolymères Interactions Assemblages, France, Nantes
| |
Collapse
|
49
|
Lin D, Li P, Lin J, Shu B, Wang W, Zhang Q, Yang N, Liu D, Xu B. Orthogonal Screening of Anticancer Drugs Using an Open-Access Microfluidic Tissue Array System. Anal Chem 2017; 89:11976-11984. [PMID: 29053257 DOI: 10.1021/acs.analchem.7b02021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Screening for potential drug combinations presents significant challenges to the current microfluidic cell culture systems, due to the requirement of flexibility in liquid handling. To overcome this limitation, we present here an open-access microfluidic tissue array system specifically designed for drug combination screening. The microfluidic chip features a key structure in which a nanoporous membrane is sandwiched by a cell culture chamber array layer and a corresponding media reservoir array layer. The microfluidic approach takes advantage of the characteristics of the nanoporous membrane: on one side, this membrane permits the flow of air but not liquid, thus acting as a flow-stop valve to enable automatic cell distribution; on the other side, it allows diffusion-based media exchange and thus mimics the endothelial layer. In synergy with a liquid-transferring platform, the open-access microfluidic system enables complex multistep operations involving long-term cell culture, medium exchange, multistep drug treatment, and cell-viability testing. By using the microfluidic protocol, a 10 × 10 tissue array was constructed in 90 s, followed by schedule-dependent drug testing. Morphological and immunohistochemical assays indicated that the resultant tumor tissue was faithful to that in vivo. Drug-testing assays showed that the incorporation of the nanoporous membrane further decreased killing efficacy of the anticancer agents, indicating its function as an endothelial layer. Robustness of the microfluidic system was demonstrated by implementing a three-factor, three-level orthogonal screening of anticancer drug combinations, with which 67% of the testing (9 vs. 27) was saved. Experimental results demonstrated that the microfluidic tissue system presented herein is flexible and easy-to-use, thus providing an ideal tool for performing complex multistep cell assays with high efficiencies.
Collapse
Affiliation(s)
- Dongguo Lin
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University , Guangzhou 510180, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of South China University of Technology , Guangzhou 510180, China.,Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province , Guangzhou 510180, China
| | - Peiwen Li
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University , Guangzhou 510180, China
| | - Jinqiong Lin
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University , Guangzhou 510180, China
| | - Bowen Shu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University , Guangzhou 510180, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of South China University of Technology , Guangzhou 510180, China.,Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province , Guangzhou 510180, China
| | - Weixin Wang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University , Guangzhou 510180, China
| | - Qiong Zhang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University , Guangzhou 510180, China
| | - Na Yang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University , Guangzhou 510180, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of South China University of Technology , Guangzhou 510180, China.,Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province , Guangzhou 510180, China
| | - Dayu Liu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University , Guangzhou 510180, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of South China University of Technology , Guangzhou 510180, China.,Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province , Guangzhou 510180, China
| | - Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University , Guangzhou 510180, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of South China University of Technology , Guangzhou 510180, China.,Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province , Guangzhou 510180, China
| |
Collapse
|
50
|
|