1
|
Ghosal K, Bhattacharyya SK, Mishra V, Zuilhof H. Click Chemistry for Biofunctional Polymers: From Observing to Steering Cell Behavior. Chem Rev 2024; 124:13216-13300. [PMID: 39621547 PMCID: PMC11638903 DOI: 10.1021/acs.chemrev.4c00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Click chemistry has become one of the most powerful construction tools in the field of organic chemistry, materials science, and polymer science, as it offers hassle-free platforms for the high-yielding synthesis of novel materials and easy functionalization strategies. The absence of harsh reaction conditions or complicated workup procedures allowed the rapid development of novel biofunctional polymeric materials, such as biopolymers, tailor-made polymer surfaces, stimulus-responsive polymers, etc. In this review, we discuss various types of click reactions─including azide-alkyne cycloadditions, nucleophilic and radical thiol click reactions, a range of cycloadditions (Diels-Alder, tetrazole, nitrile oxide, etc.), sulfur fluoride exchange (SuFEx) click reaction, and oxime-hydrazone click reactions─and their use for the formation and study of biofunctional polymers. Following that, we discuss state-of-the-art biological applications of "click"-biofunctionalized polymers, including both passive applications (e.g., biosensing and bioimaging) and "active" ones that aim to direct changes in biosystems, e.g., for drug delivery, antiviral action, and tissue engineering. In conclusion, we have outlined future directions and existing challenges of click-based polymers for medicinal chemistry and clinical applications.
Collapse
Affiliation(s)
- Krishanu Ghosal
- Research
& Development Laboratory, Shalimar Paints
Limited, Nashik, Maharashtra 422403, India
| | | | - Vivek Mishra
- Amity
Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201313, India
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, Netherlands
- College
of Biological and Chemical Sciences, Jiaxing
University, Jiaxing 314001, China
| |
Collapse
|
2
|
Singh G, Majeed A, Singh R, George N, Singh G, Gupta S, Singh H, Kaur G, Singh J. CuAAC ensembled 1,2,3-triazole linked nanogels for targeted drug delivery: a review. RSC Adv 2023; 13:2912-2936. [PMID: 36756399 PMCID: PMC9847229 DOI: 10.1039/d2ra05592a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Copper(i) catalyzed alkyne azide cycloaddition (CuAAC), the quintessential example of 'click chemistry', provides an adaptable and adequate platform for the synthesis of nanogels for sustained drug release at targeted sites because of their better biocompatibility. The coupling of drugs, carried out via various synthetic routes including CuAAC, into long-chain polymeric forms like nanogels has exhibited considerable assurance in therapeutic advancements and intracellular drug delivery due to the progression of water solubility, evacuation of precocious drug release, and improved upthrust of the pharmacokinetics of the nanogels, thereby rendering them as better and efficient drug carriers. The inefficiency of drug transmission to the target areas due to the resistance of complex biological barriers in vivo is a major hurdle that impedes the therapeutic translation of nanogels. This review compiles the data of nanogels synthesized specifically via CuAAC 'click' methodology, as scaffolds for targeted drug delivery and their assimilation into nanomedicine. In addition, it elaborates the ability of CuAAC to graft specific moieties and conjugating biomolecules like proteins and growth factors, onto orthogonally functionalized polymer chains with various chemical groups resulting in nanogels that are not only more appealing but also more effective at delivering drugs, thereby enhancing their site-specific target approach and initiating selective therapies.
Collapse
Affiliation(s)
- Gurleen Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara 144411 Punjab India
| | - Ather Majeed
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara 144411 Punjab India
| | - Riddima Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara 144411 Punjab India
| | - Nancy George
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara 144411 Punjab India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab UniversityChandigarh 160014India
| | - Sofia Gupta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab UniversityChandigarh 160014India
| | - Harminder Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara 144411 Punjab India
| | - Gurpreet Kaur
- Department of Chemistry, Gujranwala Guru Nanak Khalsa College Civil Lines Ludhiana 141001 Punjab India
| | - Jandeep Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara 144411 Punjab India
| |
Collapse
|
3
|
Tian J, Zhang W. Synthesis, self-assembly and applications of functional polymers based on porphyrins. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.05.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Wang Y, Guo L, Dong S, Cui J, Hao J. Microgels in biomaterials and nanomedicines. Adv Colloid Interface Sci 2019; 266:1-20. [PMID: 30776711 DOI: 10.1016/j.cis.2019.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 11/28/2022]
Abstract
Microgels are colloidal particles with crosslinked polymer networks and dimensions ranging from tens of nanometers to micrometers. Specifically, smart microgels are fascinating capable of responding to biological signals in vivo or remote triggers and making the possible for applications in biomaterials and biomedicines. Therefore, how to fundamentally design microgels is an urgent problem to be solved. In this review, we put forward our important fundamental opinions on how to devise the intelligent microgels for cancer therapy, biosensing and biological lubrication. We focus on the design ideas instead of specific implementation process by employing reverse synthesis analysis to programme the microgels at the original stage. Moreover, special insights will be, for the first time, as far as we know, dedicated to the particles completely composed of DNA or proteins into microgel systems. These are discussed in detail in this review. We expect to give readers a broad overview of the design criteria and practical methodologies of microgels according to the application fields, as well as to propel the further developments of highly interesting concepts and materials.
Collapse
Affiliation(s)
- Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Luxuan Guo
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China.
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China.
| |
Collapse
|
5
|
Dai Y, Chen X, Zhang X. Recent Developments in the Area of Click-Crosslinked Nanocarriers for Drug Delivery. Macromol Rapid Commun 2019; 40:e1800541. [PMID: 30417477 DOI: 10.1002/marc.201800541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/11/2018] [Indexed: 01/06/2025]
Abstract
Click-crosslinking has been widely used for the fabrication of nanocarriers in recent years. Crosslinking can enhance the stability of nanocarriers that have served as an emerging platform for drug delivery to achieve cancer diagnosis and therapy. In crosslinking methods, click reactions have attracted increasing attention owing to their high reaction specificity and physiologically stable products. These reports on click-crosslinked nanocarriers are divided into four sections (nanogels, nanoparticles, micelles, and capsules) according to the types of nanocarriers. Click-crosslinked nanocarriers enhance the solubility of hydrophobic drugs and improve the efficacy of drug delivery owing to their good stability. Stimuli-responsive and targeted strategies can be introduced into click-crosslinked nanocarriers to enhance drug accumulation in tumors.
Collapse
Affiliation(s)
- Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
6
|
Chambre L, Saw WS, Ekineker G, Kiew LV, Chong WY, Lee HB, Chung LY, Bretonnière Y, Dumoulin F, Sanyal A. Surfactant-Free Direct Access to Porphyrin-Cross-Linked Nanogels for Photodynamic and Photothermal Therapy. Bioconjug Chem 2018; 29:4149-4159. [DOI: 10.1021/acs.bioconjchem.8b00787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Laura Chambre
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | | | - Gülçin Ekineker
- Department of Chemistry, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | | | | | | | | | - Yann Bretonnière
- Univ Lyon, ENS de Lyon,
CNRS UMR 5182, Université Lyon I, Laboratoire de Chimie, F-69342 Lyon, France
| | - Fabienne Dumoulin
- Department of Chemistry, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| |
Collapse
|
7
|
Macchione MA, Biglione C, Strumia M. Design, Synthesis and Architectures of Hybrid Nanomaterials for Therapy and Diagnosis Applications. Polymers (Basel) 2018; 10:E527. [PMID: 30966561 PMCID: PMC6415435 DOI: 10.3390/polym10050527] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Abstract
Hybrid nanomaterials based on inorganic nanoparticles and polymers are highly interesting structures since they combine synergistically the advantageous physical-chemical properties of both inorganic and polymeric components, providing superior functionality to the final material. These unique properties motivate the intensive study of these materials from a multidisciplinary view with the aim of finding novel applications in technological and biomedical fields. Choosing a specific synthetic methodology that allows for control over the surface composition and its architecture, enables not only the examination of the structure/property relationships, but, more importantly, the design of more efficient nanodevices for therapy and diagnosis in nanomedicine. The current review categorizes hybrid nanomaterials into three types of architectures: core-brush, hybrid nanogels, and core-shell. We focus on the analysis of the synthetic approaches that lead to the formation of each type of architecture. Furthermore, most recent advances in therapy and diagnosis applications and some inherent challenges of these materials are herein reviewed.
Collapse
Affiliation(s)
- Micaela A Macchione
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre esq. Av. Medina Allende, Córdoba X5000HUA, Argentina.
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET. Av. Velez Sárfield 1611, Córdoba X5000HUA, Argentina.
| | - Catalina Biglione
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | - Miriam Strumia
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre esq. Av. Medina Allende, Córdoba X5000HUA, Argentina.
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET. Av. Velez Sárfield 1611, Córdoba X5000HUA, Argentina.
| |
Collapse
|
8
|
|
9
|
Li K, Zhou C, Liu S, Yao F, Fu G, Xu L. Preparation of mechanically-tough and thermo-responsive polyurethane-poly(ethylene glycol) hydrogels. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Hiroto S, Miyake Y, Shinokubo H. Synthesis and Functionalization of Porphyrins through Organometallic Methodologies. Chem Rev 2016; 117:2910-3043. [PMID: 27709907 DOI: 10.1021/acs.chemrev.6b00427] [Citation(s) in RCA: 305] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review focuses on the postfunctionalization of porphyrins and related compounds through catalytic and stoichiometric organometallic methodologies. The employment of organometallic reactions has become common in porphyrin synthesis. Palladium-catalyzed cross-coupling reactions are now standard techniques for constructing carbon-carbon bonds in porphyrin synthesis. In addition, iridium- or palladium-catalyzed direct C-H functionalization of porphyrins is emerging as an efficient way to install various substituents onto porphyrins. Furthermore, the copper-mediated Huisgen cycloaddition reaction has become a frequent strategy to incorporate porphyrin units into functional molecules. The use of these organometallic techniques, along with the traditional porphyrin synthesis, now allows chemists to construct a wide range of highly elaborated and complex porphyrin architectures.
Collapse
Affiliation(s)
- Satoru Hiroto
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University , Nagoya 464-8603, Japan
| | - Yoshihiro Miyake
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University , Nagoya 464-8603, Japan
| | - Hiroshi Shinokubo
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University , Nagoya 464-8603, Japan
| |
Collapse
|
11
|
Molecular structure and properties of click hydrogels with controlled dangling end defect. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/polb.24028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
|
13
|
Chan M, Almutairi A. Nanogels as imaging agents for modalities spanning the electromagnetic spectrum. MATERIALS HORIZONS 2016; 3:21-40. [PMID: 27398218 PMCID: PMC4906372 DOI: 10.1039/c5mh00161g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/25/2015] [Indexed: 05/05/2023]
Abstract
In the past few decades, advances in imaging equipment and protocols have expanded the role of imaging in in vivo diagnosis and disease management, especially in cancer. Traditional imaging agents have rapid clearance and low specificity for disease detection. To improve accuracy in disease identification, localization and assessment, novel nanomaterials are frequently explored as imaging agents to achieve high detection specificity and sensitivity. A promising material for this purpose are hydrogel nanoparticles, whose high hydrophilicity, biocompatibility, and tunable size in the nanometer range make them ideal for imaging. These nanogels (10 to 200 nm) can circumvent uptake by the reticuloendothelial system, allowing longer circulation times than small molecules. In addition, their size/surface properties can be further tailored to optimize their pharmacokinetics for imaging of a particular disease. Herein, we provide a comprehensive review of nanogels as imaging agents in various modalities with sources of signal spanning the electromagnetic spectrum, including MRI, NIR, UV-vis, and PET. Many materials and formulation methods will be reviewed to highlight the versatility of nanogels as imaging agents.
Collapse
Affiliation(s)
- Minnie Chan
- Department of Chemistry and Biochemistry , University of California , San Diego , La Jolla , CA 92093-0600 , USA
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences , KACST-UCSD Center of Excellence in Nanomedicine , Laboratory of Bioresponsive Materials , University of California , 9500 Gilman Dr., 0600 , PSB 2270 , La Jolla , San Diego , CA 92093-0600 , USA . ; Tel: +1 (858) 246 0871
| |
Collapse
|
14
|
|
15
|
Ladomenou K, Nikolaou V, Charalambidis G, Coutsolelos AG. “Click”-reaction: An alternative tool for new architectures of porphyrin based derivatives. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Abstract
Soft fluorescent nanomaterials have attracted recent attention as imaging agents for biological applications, because they provide the advantages of good biocompatibility, high brightness, and easy biofunctionalization. Here, we provide a survey of recent developments in fluorescent soft nano-sized biological imaging agents. Various soft fluorescent nanoparticles (NPs) (including dye-doped polymer NPs, semiconducting polymer NPs, small-molecule organic NPs, nanogels, micelles, vesicles, and biomaterial-based NPs) are summarized from the perspectives of preparation methods, structure, optical properties, and surface functionalization. Based on both optical and functional properties of the nano-sized imaging agents, their applications are then reviewed in terms of in vitro imaging, in vivo imaging, and cellular-process imaging, by means of specific or nonspecific targeting.
Collapse
Affiliation(s)
- Hong-Shang Peng
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
17
|
Three-dimensional molecular geometry of PEG hydrogels by an “expansion-contraction” method through Monte Carlo simulations. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-015-1620-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Ma K, Xu Y, An Z. Templateless synthesis of polyacrylamide-based Nanogels via RAFT dispersion polymerization. Macromol Rapid Commun 2015; 36:566-70. [PMID: 25684634 DOI: 10.1002/marc.201400730] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/22/2015] [Indexed: 11/08/2022]
Abstract
This paper reports on the synthesis of well-defined polyacrylamide-based nanogels via reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization, highlighting a templateless route for the efficient synthesis of nanogels based on water-soluble polymers. RAFT dispersion polymerization of acrylamide in co-nonsolvents of water-tert-butanol mixtures by chain extension from poly(dimethylacrylamide) shows well-controlled polymerization process, uniform nanogel size, and excellent colloidal stability. The versatility of this approach is further demonstrated by introducing a hydrophobic co-monomer (butyl acrylate) without disturbing the dispersion polymerization process.
Collapse
Affiliation(s)
- Kai Ma
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China; Department of Chemistry, Shanghai University, Shanghai, 200444, China
| | | | | |
Collapse
|
19
|
Liu Y, Wang J, Huang D, Zhang J, Guo S, Hu R, Zhao Z, Qin A, Tang BZ. Synthesis of 1,5-regioregular polytriazoles by efficient NMe4OH-mediated azide–alkyne click polymerization. Polym Chem 2015. [DOI: 10.1039/c5py00186b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The efficient and regioselective NMe4OH-mediated aromatic azide and alkyne click polymerization to generate 1,5-regioregular polytriazoles was successfully established.
Collapse
Affiliation(s)
- Yong Liu
- Guangdong Innovative Research Team
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510 640
- China
| | - Jia Wang
- Guangdong Innovative Research Team
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510 640
- China
| | - Die Huang
- Guangdong Innovative Research Team
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510 640
- China
| | - Jie Zhang
- Guangdong Innovative Research Team
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510 640
- China
| | - Shang Guo
- Guangdong Innovative Research Team
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510 640
- China
| | - Ronrong Hu
- Guangdong Innovative Research Team
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510 640
- China
| | - Zujin Zhao
- Guangdong Innovative Research Team
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510 640
- China
| | - Anjun Qin
- Guangdong Innovative Research Team
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510 640
- China
| | - Ben Zhong Tang
- Guangdong Innovative Research Team
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510 640
- China
| |
Collapse
|
20
|
Jiang Y, Chen J, Deng C, Suuronen EJ, Zhong Z. Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials 2014; 35:4969-85. [PMID: 24674460 DOI: 10.1016/j.biomaterials.2014.03.001] [Citation(s) in RCA: 527] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/03/2014] [Indexed: 02/06/2023]
Abstract
Hydrogels, microgels and nanogels have emerged as versatile and viable platforms for sustained protein release, targeted drug delivery, and tissue engineering due to excellent biocompatibility, a microporous structure with tunable porosity and pore size, and dimensions spanning from human organs, cells to viruses. In the past decade, remarkable advances in hydrogels, microgels and nanogels have been achieved with click chemistry. It is a most promising strategy to prepare gels with varying dimensions owing to its high reactivity, superb selectivity, and mild reaction conditions. In particular, the recent development of copper-free click chemistry such as strain-promoted azide-alkyne cycloaddition, radical mediated thiol-ene chemistry, Diels-Alder reaction, tetrazole-alkene photo-click chemistry, and oxime reaction renders it possible to form hydrogels, microgels and nanogels without the use of potentially toxic catalysts or immunogenic enzymes that are commonly required. Notably, unlike other chemical approaches, click chemistry owing to its unique bioorthogonal feature does not interfere with encapsulated bioactives such as living cells, proteins and drugs and furthermore allows versatile preparation of micropatterned biomimetic hydrogels, functional microgels and nanogels. In this review, recent exciting developments in click hydrogels, microgels and nanogels, as well as their biomedical applications such as controlled protein and drug release, tissue engineering, and regenerative medicine are presented and discussed.
Collapse
Affiliation(s)
- Yanjiao Jiang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Jing Chen
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| | - Erik J Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa K1Y 4W7, Canada
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
21
|
Liu G, An Z. Frontiers in the design and synthesis of advanced nanogels for nanomedicine. Polym Chem 2014; 5:1559-1565. [DOI: 10.1039/c3py01502e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
22
|
Qian S, Zhou C, Xu L, Yao F, Cen L, Fu G. High strength biocompatible PEG single-network hydrogels. RSC Adv 2014. [DOI: 10.1039/c4ra01870b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A single-chain PEG hydrogel with extremely high strength was prepared via precise design and control over the molecular topology of the polymeric network.
Collapse
Affiliation(s)
- ShanShan Qian
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing, P.R. China
| | - Chao Zhou
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing, P.R. China
| | - LiQun Xu
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing, P.R. China
| | - Fang Yao
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing, P.R. China
| | - Lian Cen
- School of Chemical Engineering
- East China University of Science and Technology
- Shanghai, P.R. China
- National Tissue Engineering Center of China
- Shanghai, P.R. China
| | - GuoDong Fu
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing, P.R. China
| |
Collapse
|