1
|
Traeger A, Leiske MN. The Whole Is Greater than the Sum of Its Parts - Challenges and Perspectives in Polyelectrolytes. Biomacromolecules 2025; 26:5-32. [PMID: 39661745 PMCID: PMC11733940 DOI: 10.1021/acs.biomac.4c01061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Polyelectrolytes offer unique properties for biological applications due to their charged nature and high water solubility. Here, the challenges in their synthesis and characterization techniques are reviewed, emphasizing that their strong interactions with the surrounding media and counterions must be considered when working with this interesting class of materials. Their potential in complexation for gene delivery, their unique stealth and anti-fouling properties, and their more specific interactions with amino acid transporters for cancer therapy are highlighted. The underlying mechanisms responsible for their biological efficacy, including the proton sponge effect for endosomal release and their interactions with cellular membranes, are addressed. For polyelectrolytes with a high level of usage, an overview is given of their historical context. This Perspective outlines the potential of polyelectrolytes for innovative applications in the field of biomedicine. Considering the physicochemical characteristics of this class of materials, this work strives to elucidate the distinctive properties and applications of polyelectrolytes.
Collapse
Affiliation(s)
- Anja Traeger
- Institute
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center
for Soft Matter (JCSM), Friedrich Schiller
University Jena, 07743 Jena, Germany
| | - Meike N. Leiske
- Macromolecular
Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
- Bavarian
Polymer Institute, 95447 Bayreuth, Germany
| |
Collapse
|
2
|
Hülsmann J, Lindemann H, Wegener J, Kühne M, Godmann M, Koschella A, Coldewey SM, Heinze T, Heinzel T. Dually Modified Cellulose as a Non-Viral Vector for the Delivery and Uptake of HDAC3 siRNA. Pharmaceutics 2023; 15:2659. [PMID: 38140000 PMCID: PMC10747125 DOI: 10.3390/pharmaceutics15122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
RNA interference can be applied to different target genes for treating a variety of diseases, but an appropriate delivery system is necessary to ensure the transport of intact siRNAs to the site of action. In this study, cellulose was dually modified to create a non-viral vector for HDAC3 short interfering RNA (siRNA) transfer into cells. A guanidinium group introduced positive charges into the cellulose to allow complexation of negatively charged genetic material. Furthermore, a biotin group fixed by a polyethylene glycol (PEG) spacer was attached to the polymer to allow, if required, the binding of targeting ligands. The resulting polyplexes with HDAC3 siRNA had a size below 200 nm and a positive zeta potential of up to 15 mV. For N/P ratio 2 and higher, the polymer could efficiently complex siRNA. Nanoparticles, based on this dually modified derivative, revealed a low cytotoxicity. Only minor effects on the endothelial barrier integrity and a transfection efficiency in HEK293 cells higher than Lipofectamine 2000TM were found. The uptake and release of the polyplexes were confirmed by immunofluorescence imaging. This study indicates that the modified biopolymer is an auspicious biocompatible non-viral vector with biotin as a promising moiety.
Collapse
Affiliation(s)
- Juliana Hülsmann
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany; (J.H.); (M.K.); (M.G.)
| | - Henry Lindemann
- Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; (H.L.); (A.K.); (T.H.)
| | - Jamila Wegener
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (J.W.); (S.M.C.)
- Septomics Research Center, Jena University Hospital, Albert-Einstein-Straße 10, 07745 Jena, Germany
| | - Marie Kühne
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany; (J.H.); (M.K.); (M.G.)
| | - Maren Godmann
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany; (J.H.); (M.K.); (M.G.)
| | - Andreas Koschella
- Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; (H.L.); (A.K.); (T.H.)
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (J.W.); (S.M.C.)
- Septomics Research Center, Jena University Hospital, Albert-Einstein-Straße 10, 07745 Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Thomas Heinze
- Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; (H.L.); (A.K.); (T.H.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Thorsten Heinzel
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany; (J.H.); (M.K.); (M.G.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
3
|
Guanidinium-functionalized Block Copolyelectrolyte Micelleplexes for Safe and Efficient siRNA Delivery. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Ruan W, Jiao M, Xu S, Ismail M, Xie X, An Y, Guo H, Qian R, Shi B, Zheng M. Brain-targeted CRISPR/Cas9 nanomedicine for effective glioblastoma therapy. J Control Release 2022; 351:739-751. [PMID: 36174804 DOI: 10.1016/j.jconrel.2022.09.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022]
Abstract
CRISPR/Cas9 gene-editing technology shows great potential for treating a variety of diseases, such as glioblastoma multiforme (GBM). However, CRISPR components suffer from inherent delivery challenges, such as poor in vivo stability of Cas9 protein and gRNA, low blood-brain barrier (BBB) permeability and non-specific tissue or cell targeting. These defects have limited the application of Cas9/gRNA ribonucleoprotein (RNP) complexes for GBM therapy. Here, we developed a brain-targeted CRISPR/Cas9 based nanomedicine by fabricating an angiopep-2 decorated, guanidinium and fluorine functionalized polymeric nanoparticle with loading Cas9/gRNA RNP for the treatment of GBM. The guanidinium and fluorine domains of our polymeric nanoparticles were both capable of interacting with Cas9/gRNA RNP to stabilize it in blood circulation, without impairing its activity. Moreover, by leveraging angiopep-2 peptide functionality, the RNP nanoparticles efficiently crossed the BBB and accumulated in brain tumors. In U87MG cells, we achieved approximately 32% gene knockout and 67% protein reduction in the targeted proto-oncogene polo-like kinase 1 (PLK1). This was sufficient to suppress tumor growth and significantly improved the median survival time of mice bearing orthotopic glioblastoma to 40 days, while inducing negligible side or off-target effects. These results suggest that the developed brain-targeted CRISPR/Cas9 based nanomedicine shows promise for effective human glioblastoma gene therapy.
Collapse
Affiliation(s)
- Weimin Ruan
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mingzhu Jiao
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan Chemical Technician College, Kaifeng, Henan 475002, China
| | - Sen Xu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Muhammad Ismail
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xuan Xie
- Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Yang An
- Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Haixing Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Rongjun Qian
- Department of Neurosurgery, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Meng Zheng
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
5
|
Schmitt S, Nuhn L, Barz M, Butt HJ, Koynov K. Shining Light on Polymeric Drug Nanocarriers with Fluorescence Correlation Spectroscopy. Macromol Rapid Commun 2022; 43:e2100892. [PMID: 35174569 DOI: 10.1002/marc.202100892] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Indexed: 11/07/2022]
Abstract
The use of nanoparticles as carriers is an extremely promising way for administration of therapeutic agents, such as drug molecules, proteins and nucleic acids. Such nanocarriers (NCs) can increase the solubility of hydrophobic compounds, protect their cargo from the environment, and if properly functionalized, deliver it to specific target cells and tissues. Polymer-based NCs are especially promising, because they offer high degree of versatility and tunability. However, in order to get a full advantage of this therapeutic approach and develop efficient delivery systems, a careful characterization of the NCs is needed. This Feature Article highlights the fluorescence correlation spectroscopy (FCS) technique as a powerful and versatile tool for NCs characterization at all stages of the drug delivery process. In particular, FCS can monitor and quantify the size of the NCs and the drug loading efficiency after preparation, the NCs stability and possible interactions with, e.g., plasma proteins in the blood stream and the kinetic of drug release in the cytoplasm of the target cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sascha Schmitt
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Matthias Barz
- Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| |
Collapse
|
6
|
Hausig F, Sobotta FH, Richter F, Harz DO, Traeger A, Brendel JC. Correlation between Protonation of Tailor-Made Polypiperazines and Endosomal Escape for Cytosolic Protein Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35233-35247. [PMID: 34283557 DOI: 10.1021/acsami.1c00829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Responsive polymers, which become protonated at decreasing pH, are considered a milestone in the development of synthetic cell entry vectors. Exact correlations between their properties and their ability to escape the endosome, however, often remain elusive due to hydrophobic interactions or limitations in the design of water-soluble materials with suitable basicity. Here, we present a series of well-defined, hydrophilic polypiperazines, where systematic variation of the amino moiety facilitates an unprecedented fine-tuning of the basicity or pKa value within the physiologically relevant range (pH 6-7.4). Coincubation of HEK 293T cells with various probes, including small fluorophores or functioning proteins, revealed a rapid increase of endosomal release for polymers with pKa values above 6.5 or 7 in serum-free or serum-containing media, respectively. Similarly, cytotoxic effects became severe at increased pKa values (>7). Although the window for effective transport appears narrow, the discovered correlations offer a principal guideline for the design of effective polymers for endosomal escape.
Collapse
Affiliation(s)
- Franziska Hausig
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Fabian H Sobotta
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Friederike Richter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Dominic O Harz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
7
|
Cokca C, Zartner L, Tabujew I, Fischer D, Peneva K. Incorporation of Indole Significantly Improves the Transfection Efficiency of Guanidinium‐Containing Poly(Methacrylamide)s. Macromol Rapid Commun 2020; 41:e1900668. [DOI: 10.1002/marc.201900668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/03/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Ceren Cokca
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena Lessingstraße 8 07743 Jena Germany
| | - Leon Zartner
- Institute of Pharmacy, Pharmaceutical Technology and BiopharmacyFriedrich Schiller University Jena Lessingstraße 8 07743 Jena Germany
| | - Ilja Tabujew
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena Lessingstraße 8 07743 Jena Germany
| | - Dagmar Fischer
- Institute of Pharmacy, Pharmaceutical Technology and BiopharmacyFriedrich Schiller University Jena Lessingstraße 8 07743 Jena Germany
- Jena Center of Soft MatterFriedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena Lessingstraße 8 07743 Jena Germany
- Jena Center of Soft MatterFriedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
8
|
Dendrimers in gene delivery. PHARMACEUTICAL APPLICATIONS OF DENDRIMERS 2020. [DOI: 10.1016/b978-0-12-814527-2.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Tabujew I, Willig M, Leber N, Freidel C, Negwer I, Koynov K, Helm M, Landfester K, Zentel R, Peneva K, Mailänder V. Overcoming the barrier of CD8 +T cells: Two types of nano-sized carriers for siRNA transport. Acta Biomater 2019; 100:338-351. [PMID: 31586726 DOI: 10.1016/j.actbio.2019.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022]
Abstract
Bioengineering immune cells via gene therapy offers treatment opportunities for currently fatal viral infections. Also cell therapeutics offer most recently a breakthrough technology to combat cancer. These primary human cells, however, are sensitive to toxic influences, which make the utilization of optimized physical transfection techniques necessary. The otherwise commonly applied delivery agents such as LipofectamineⓇ or strongly cationic polymer structures are not only unsuitable for in vivo experiments, but are also highly toxic to immune cells. This study aimed to improve the design of polymeric carrier systems for small interfering RNA, which would allow efficient internalization into CD8+T-cells without affecting their viability and thereby removing the current limitations in the field. Here, two new carrier systems for small interfering RNA were tested. One is a cationic diblock copolymer, in which less than 10% of the monomers were modified with triphenylphosphonium cations. This moiety is lipophilic, promotes uptake and it is mostly known for its mitotropic properties. Furthermore, cationic nanohydrogel particles were synthesized in exceedingly small sizes (Rh < 14 nm). After full physicochemical characterization of the two carriers, extensive cytotoxicity studies were performed and the concentration dependent uptake into CD8+T-cells was tested in correlation to incubation time and protein content of the surrounding medium. Both carriers facilitated efficient complexation of siRNA as well as significant internalization into primary human cells in less than three hours of incubation. In addition, neither of the delivery systems reduced cell viability making them good candidates to transport siRNA into CD8+T-cells efficiently. STATEMENT OF SIGNIFICANCE: This study provides insights into the design of polymeric delivery agents as the method of choice for overcoming the limitations of cell manipulation. Until now, CD8+T-cells, which have become a treatment tool for currently fatal diseases, have not yet been made accessible for gene silencing by polymeric siRNA carrier systems. Choosing appropriate modification approaches for two chemically different polymer structures, we were, in both cases, able to achieve significant uptake in these cells even at low concentrations and without inducing cytotoxicity. These results remove current limitations and pave the way for bioengineering via gene therapy.
Collapse
|
10
|
Tabujew I, Heidari M, Freidel C, Helm M, Tebbe L, Wolfrum U, Nagel-Wolfrum K, Koynov K, Biehl P, Schacher FH, Potestio R, Peneva K. Tackling the Limitations of Copolymeric Small Interfering RNA Delivery Agents by a Combined Experimental–Computational Approach. Biomacromolecules 2019; 20:4389-4406. [DOI: 10.1021/acs.biomac.9b01061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ilja Tabujew
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Maziar Heidari
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Christoph Freidel
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Lars Tebbe
- Institute of Zoology, Johannes Gutenberg University Mainz, Muellerweg 6, 55099 Mainz, Germany
| | - Uwe Wolfrum
- Institute of Zoology, Johannes Gutenberg University Mainz, Muellerweg 6, 55099 Mainz, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Zoology, Johannes Gutenberg University Mainz, Muellerweg 6, 55099 Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Philip Biehl
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Raffaello Potestio
- Physics Department, University of Trento, Via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento, Italy
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| |
Collapse
|
11
|
Tabujew I, Cokca C, Zartner L, Schubert US, Nischang I, Fischer D, Peneva K. The influence of gradient and statistical arrangements of guanidinium or primary amine groups in poly(methacrylate) copolymers on their DNA binding affinity. J Mater Chem B 2019; 7:5920-5929. [DOI: 10.1039/c9tb01269a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Herein, we report the first gradient guanidinium containing cationic copolymers and investigate their binding ability to plasmid DNA (pDNA).
Collapse
Affiliation(s)
- Ilja Tabujew
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Ceren Cokca
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Leon Zartner
- Institute of Pharmacy
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Ulrich S. Schubert
- Jena Center of Soft Matter
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
| | - Ivo Nischang
- Jena Center of Soft Matter
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
| | - Dagmar Fischer
- Institute of Pharmacy
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center of Soft Matter
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center of Soft Matter
| |
Collapse
|
12
|
Jiang L, Zhou S, Zhang X, Wu W, Jiang X. Dendrimer-based nanoparticles in cancer chemotherapy and gene therapy. SCIENCE CHINA MATERIALS 2018; 61:1404-1419. [DOI: 10.1007/s40843-018-9242-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/05/2018] [Indexed: 01/06/2025]
|
13
|
Parsons KH, Mondal MH, McCormick CL, Flynt AS. Guanidinium-Functionalized Interpolyelectrolyte Complexes Enabling RNAi in Resistant Insect Pests. Biomacromolecules 2018; 19:1111-1117. [PMID: 29446934 PMCID: PMC5894059 DOI: 10.1021/acs.biomac.7b01717] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RNAi-based technologies are ideal for pest control as they can provide species specificity and spare nontarget organisms. However, in some pests biological barriers prevent use of RNAi, and therefore broad application. In this study we tested the ability of a synthetic cationic polymer, poly-[ N-(3-guanidinopropyl)methacrylamide] (pGPMA), that mimics arginine-rich cell penetrating peptides to trigger RNAi in an insensitive animal- Spodoptera frugiperda. Polymer-dsRNA interpolyelectrolyte complexes (IPECs) were found to be efficiently taken up by cells, and to drive highly efficient gene knockdown. These IPECs could also trigger target gene knockdown and moderate larval mortality when fed to S. frugiperda larvae. This effect was sequence specific, which is consistent with the low toxicity we found to be associated with this polymer. A method for oral delivery of dsRNA is critical to development of RNAi-based insecticides. Thus, this technology has the potential to make RNAi-based pest control useful for targeting numerous species and facilitate use of RNAi in pest management practices.
Collapse
Affiliation(s)
- Keith H Parsons
- Department of Polymer Science and Engineering , The University of Southern Mississippi , Hattiesburg , Mississippi 39406 , United States
| | - Mosharrof H Mondal
- Department of Biological Sciences , The University of Southern Mississippi , Hattiesburg , Mississippi 39406 , United States
| | - Charles L McCormick
- Department of Polymer Science and Engineering , The University of Southern Mississippi , Hattiesburg , Mississippi 39406 , United States.,Department of Chemistry and Biochemistry , The University of Southern Mississippi , Hattiesburg , Mississippi 39406 , United States
| | - Alex S Flynt
- Department of Biological Sciences , The University of Southern Mississippi , Hattiesburg , Mississippi 39406 , United States
| |
Collapse
|
14
|
Bala R, Swami A, Tabujew I, Peneva K, Wangoo N, Sharma RK. Ultra-sensitive detection of malathion using quantum dots-polymer based fluorescence aptasensor. Biosens Bioelectron 2017; 104:45-49. [PMID: 29306032 DOI: 10.1016/j.bios.2017.12.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/12/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
Abstract
A novel detection platform with high malathion specificity has been developed, which operates based on the signal response in the fluorescence of CdTe@CdS quantum dots (QDs). The designed nanoprobe comprises of QDs, poly(N-(3-guanidinopropyl)methacrylamide) homopolymer (PGPMA) and malathion specific aptamer. The interaction of aptamer with malathion results in switching off of the fluorescence signal of the probe due to the availability of the cationic polymer, which causes quenching of the QDs. However, in the absence of malathion, the polymer interacts with the aptamer, via electrostatic interactions thereby rendering the fluorescence of QDs unaffected. The assay exhibited excellent sensitivity towards malathion with a detection limit of 4pM. A logarithmic correlation was observed in a wide range of malathion concentrations from 0.01nm to 1μM, facilitating the potential of proposed assay in the quantitative determination of the analyte of interest. The selectivity of the designed probe was confirmed in the presence of various pesticides, commonly employed in agricultural fields.
Collapse
Affiliation(s)
- Rajni Bala
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector 14, Chandigarh 160014, India
| | - Anuradha Swami
- Department of Applied Sciences, University Institute of Engineering and Technology (U.I.E.T.), Panjab University, Sector-25, Chandigarh 160014, India
| | - Ilja Tabujew
- Institute of Organic Chemistry and Macromolecular Chemistry, Jena Center of Soft Matter, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry, Jena Center of Soft Matter, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering and Technology (U.I.E.T.), Panjab University, Sector-25, Chandigarh 160014, India.
| | - Rohit K Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector 14, Chandigarh 160014, India.
| |
Collapse
|
15
|
Tan Z, Dhande YK, Reineke TM. Cell Penetrating Polymers Containing Guanidinium Trigger Apoptosis in Human Hepatocellular Carcinoma Cells unless Conjugated to a Targeting N-Acetyl-Galactosamine Block. Bioconjug Chem 2017; 28:2985-2997. [DOI: 10.1021/acs.bioconjchem.7b00598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Zhe Tan
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Yogesh K. Dhande
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Wang F, Sun W, Li L, Li L, Liu Y, Zhang ZR, Huang Y. Charge-Reversible Multifunctional HPMA Copolymers for Mitochondrial Targeting. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27563-27574. [PMID: 28762267 DOI: 10.1021/acsami.7b09693] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mitochondrial-oriented delivery of anticancer drugs has been considered as a promising strategy to improve the antitumor efficiency of chemotherapeutics. However, the physiological and biological barriers from the injection site to the final mitochondrial action site remain great challenges. Herein, a novel mitochondrial-targeted multifunctional nanocomplex based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers (MPC) is designed to enhance drug accumulation in mitochondria. MPC possesses various functions such as extracellular pH response, superior cellular uptake, lysosomal escape, and mitochondrial targeting. In detail, MPC was formed by two oppositely charged HPMA copolymers, that is, positively charged mitochondrial-targeting guanidine group-modified copolymers and charge-reversible 2,3-dimethylmaleic anhydride (DMA)-modified copolymers (P-DMA). It was validated that MPC could remain stable in the blood circulation (pH 7.4) but could be cleaved to expose the positive charge of the guanidine group immediately in response to the mild acidity of tumor tissues (pH 6.5). The gradual exposure of positively charged guanidine will simultaneously facilitate endocytosis, endosomal/lysosomal escape, and mitochondrial targeting. The in vitro experiments showed that compared with copolymers without guanidine modification, the cellular uptake and mitochondrial-targeting ability of MPC in the simulated tumor environment (MPC@pH6.5) separately increased 4.3- and 23.8-fold, respectively. The in vivo experiments were processed on B16F10 tumor-bearing C57 mice, and MPC showed the highest accumulation in the tumor site and a peak tumor inhibition rate of 82.9%. In conclusion, multifunctional mitochondrial-targeting HPMA copolymers provide a novel and versatile approach for cancer therapy.
Collapse
Affiliation(s)
- Fengling Wang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Wei Sun
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Lian Li
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Lijia Li
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Yuanyuan Liu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| |
Collapse
|
17
|
Liu C, Deng Q, Fang G, Dang M, Wang S. Capillary electrochromatography immunoassay for alpha-fetoprotein based on poly(guanidinium ionic liquid) monolithic material. Anal Biochem 2017; 530:50-56. [DOI: 10.1016/j.ab.2017.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/22/2017] [Accepted: 04/24/2017] [Indexed: 11/29/2022]
|
18
|
deRonde BM, Posey ND, Otter R, Minter LM, Tew GN. Optimal Hydrophobicity in Ring-Opening Metathesis Polymerization-Based Protein Mimics Required for siRNA Internalization. Biomacromolecules 2016; 17:1969-77. [PMID: 27103189 PMCID: PMC4964964 DOI: 10.1021/acs.biomac.6b00138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Exploring the role of polymer structure for the internalization of biologically relevant cargo, specifically siRNA, is of critical importance to the development of improved delivery reagents. Herein, we report guanidinium-rich protein transduction domain mimics (PTDMs) based on a ring-opening metathesis polymerization scaffold containing tunable hydrophobic moieties that promote siRNA internalization. Structure-activity relationships using Jurkat T cells and HeLa cells were explored to determine how the length of the hydrophobic block and the hydrophobic side chain compositions of these PTDMs impacted siRNA internalization. To explore the hydrophobic block length, two different series of diblock copolymers were synthesized: one series with symmetric block lengths and one with asymmetric block lengths. At similar cationic block lengths, asymmetric and symmetric PTDMs promoted siRNA internalization in the same percentages of the cell population regardless of the hydrophobic block length; however, with 20 repeat units of cationic charge, the asymmetric block length had greater siRNA internalization, highlighting the nontrivial relationships between hydrophobicity and overall cationic charge. To further probe how the hydrophobic side chains impacted siRNA internalization, an additional series of asymmetric PTDMs was synthesized that featured a fixed hydrophobic block length of five repeat units that contained either dimethyl (dMe), methyl phenyl (MePh), or diphenyl (dPh) side chains and varied cationic block lengths. This series was further expanded to incorporate hydrophobic blocks consisting of diethyl (dEt), diisobutyl (diBu), and dicyclohexyl (dCy) based repeat units to better define the hydrophobic window for which our PTDMs had optimal activity. High-performance liquid chromatography retention times quantified the relative hydrophobicities of the noncationic building blocks. PTDMs containing the MePh, diBu, and dPh hydrophobic blocks were shown to have superior siRNA internalization capabilities compared to their more and less hydrophobic counterparts, demonstrating a critical window of relative hydrophobicity for optimal internalization. This better understanding of how hydrophobicity impacts PTDM-induced internalization efficiencies will help guide the development of future delivery reagents.
Collapse
Affiliation(s)
- Brittany M. deRonde
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003
| | - Nicholas D. Posey
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003
| | - Ronja Otter
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003
| | - Lisa M. Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003
| | - Gregory N. Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
19
|
Mitra S, Kandambeth S, Biswal BP, Khayum M A, Choudhury CK, Mehta M, Kaur G, Banerjee S, Prabhune A, Verma S, Roy S, Kharul UK, Banerjee R. Self-Exfoliated Guanidinium-Based Ionic Covalent Organic Nanosheets (iCONs). J Am Chem Soc 2016; 138:2823-8. [PMID: 26866697 DOI: 10.1021/jacs.5b13533] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covalent organic nanosheets (CONs) have emerged as functional two-dimensional materials for versatile applications. Although π-π stacking between layers, hydrolytic instability, possible restacking prevents their exfoliation on to few thin layered CONs from crystalline porous polymers. We anticipated rational designing of a structure by intrinsic ionic linker could be the solution to produce self-exfoliated CONs without external stimuli. In an attempt to address this issue, we have synthesized three self-exfoliated guanidinium halide based ionic covalent organic nanosheets (iCONs) with antimicrobial property. Self-exfoliation phenomenon has been supported by molecular dynamics (MD) simulation as well. Intrinsic ionic guanidinium unit plays the pivotal role for both self-exfoliation and antibacterial property against both Gram-positive and Gram-negative bacteria. Using such iCONs, we have devised a mixed matrix membrane which could be useful for antimicrobial coatings with plausible medical benefits.
Collapse
Affiliation(s)
| | - Sharath Kandambeth
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110020, India
| | - Bishnu P Biswal
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110020, India
| | - Abdul Khayum M
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110020, India
| | - Chandan K Choudhury
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110020, India
| | - Mihir Mehta
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110020, India
| | - Gagandeep Kaur
- Department of Chemistry, Indian Institute of Technology , Kanpur 208016, India
| | - Subhrashis Banerjee
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110020, India
| | - Asmita Prabhune
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110020, India
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology , Kanpur 208016, India
| | | | - Ulhas K Kharul
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110020, India
| | - Rahul Banerjee
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110020, India
| |
Collapse
|
20
|
Cao Z, Gordiichuk PI, Loos K, Sudhölter EJR, de Smet LCPM. The effect of guanidinium functionalization on the structural properties and anion affinity of polyelectrolyte multilayers. SOFT MATTER 2016; 12:1496-505. [PMID: 26658499 DOI: 10.1039/c5sm01655j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Poly(allylamine hydrochloride) (PAH) is chemically functionalized with guanidinium (Gu) moieties in water at room temperature. The resulting PAH-Gu is used to prepare polyelectrolyte multilayers (PEMs) with poly(sodium 4-styrene sulfonate) (PSS) via layer-by-layer deposition. The polyelectrolyte (PE) adsorption processes are monitored real-time by optical reflectometry and a quartz crystal microbalance with dissipation monitoring (QCM-D). Compared to the reference PSS/PAH PEMs, the PSS/PAH-Gu PEMs show a lower amount of deposited PE materials, lower wet thickness, higher stability under alkaline conditions and higher rigidity. These differences are rationalized by the additional Gu-SO3(-) interactions, also affecting the conformation of the PE chains in the PEM. The interactions between the PEMs and various sodium salts (NaCl, NaNO3, Na2SO4 and NaH2PO4) are also monitored using QCM-D. From the changes in the frequency, dissipation responses and supportive Reflection Absorption Infrared Spectroscopy it is concluded that Gu-functionalized PEMs absorb more H2PO4(-) compared to the Gu-free reference PEMs. This can be understood by strong interactions between Gu and H2PO4(-), the differences in the anion hydration energy and the anion valency. It is anticipated that compounds like the presented Gu-functionalized PE may facilitate the further development of H2PO4(-) sensors and ion separation/recovery systems.
Collapse
Affiliation(s)
- Zheng Cao
- Organic Materials and Interfaces, Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands.
| | | | | | | | | |
Collapse
|
21
|
Liu C, Deng Q, Fang G, Huang X, Wang S, He J. A Novel Poly(ionic liquid) Interface-Free Two-Dimensional Monolithic Material for the Separation of Multiple Types of Glycoproteins. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20430-20437. [PMID: 26317402 DOI: 10.1021/acsami.5b07668] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Currently, many types of affinity materials have been developed for the enrichment of glycoproteins potentially considered to be clinical biomarkers; however, they can not effectively distinguish between different glycoproteins and thus lack the functionality that may be the key to the diagnosis of specific diseases. In the present work, a novel interface-free 2D monolithic material has been developed for the separation of multiple types of glycoproteins, in which boronate-functionalized graphene acts as preconcentration segment and poly(guanidinium ionic liquid) acts as separation segment. The resultant 2D material was characterized by X-ray photoelectron spectroscopy, elemental analysis, and electroosmotic flow analysis to demonstrate successful modification at each step. The performance of this 2D material was evaluated by capillary electrochromatography and allowed the successful online concentration and separation of five standard glycoproteins. The high separation efficiency can be largely attributed to the good orthogonality of boronate-functionalized graphene monolith and poly(guanidinium ionic liquid) monolith.
Collapse
Affiliation(s)
- Cuicui Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Qiliang Deng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Guozhen Fang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Xuan Huang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Jinsong He
- Institute of Food Science and Technology, Yunnan Agricultural University , Yunnan 650201, China
| |
Collapse
|
22
|
deRonde BM, Torres JA, Minter LM, Tew GN. Development of Guanidinium-Rich Protein Mimics for Efficient siRNA Delivery into Human T Cells. Biomacromolecules 2015; 16:3172-9. [PMID: 26324222 DOI: 10.1021/acs.biomac.5b00795] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNA interference is gaining attention as a means to explore new molecular pathways and for its potential as a therapeutic; however, its application in immortal and primary T cells is limited due to challenges with efficient delivery in these cell types. Herein, we report the development of guanidinium-rich protein transduction domain mimics (PTDMs) based on a ring-opening metathesis polymerization scaffold that delivers siRNA into Jurkat T cells and human peripheral blood mononuclear cells (hPBMCs). Homopolymer and block copolymer PTDMs with varying numbers of guanidinium moieties were designed and tested to assess the effect cationic charge content and the addition of a segregated, hydrophobic block had on siRNA internalization and delivery. Internalization of fluorescently labeled siRNA into Jurkat T cells illustrates that the optimal cationic charge content, 40 charges per polymer, leads to higher efficiencies, with block copolymers outperforming their homopolymer counterparts. PTDMs also outperformed commercial reagents commonly used for siRNA delivery applications. Select PTDM candidates were further screened to assess the role the PTDM structure has on the delivery of biologically active siRNA into primary cells. Specifically, siRNA to hNOTCH1 was delivered to hPBMCs enabling 50-80% knockdown efficiencies, with longer PTDMs showing improved protein reduction. By evaluating the PTDM design parameters for siRNA delivery, more efficient PTDMs were discovered that improved delivery and gene (NOTCH) knockdown in T cells. Given the robust delivery of siRNA by these novel PTDMs, their development should aid in the exploration of T cell molecular pathways leading eventually to new therapeutics.
Collapse
Affiliation(s)
- Brittany M deRonde
- Department of Polymer Science and Engineering, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Joe A Torres
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States.,Molecular and Cellular Biology Program, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States.,Molecular and Cellular Biology Program, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States.,Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States.,Molecular and Cellular Biology Program, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
23
|
deRonde BM, Tew GN. Development of protein mimics for intracellular delivery. Biopolymers 2015; 104:265-80. [PMID: 25858701 PMCID: PMC4516575 DOI: 10.1002/bip.22658] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/19/2022]
Abstract
Designing delivery agents for therapeutics is an ongoing challenge. As treatments and desired cargoes become more complex, the need for improved delivery vehicles becomes critical. Excellent delivery vehicles must ensure the stability of the cargo, maintain the cargo's solubility, and promote efficient delivery and release. In order to address these issues, many research groups have looked to nature for design inspiration. Proteins, such as HIV-1 trans-activator of transcription (TAT) and Antennapedia homeodomain protein, are capable of crossing cellular membranes. However, due to the complexities of their structures, they are synthetically challenging to reproduce in the laboratory setting. Being able to incorporate the key features of these proteins that enable cell entry into simpler scaffolds opens up a wide range of opportunities for the development of new delivery reagents with improved performance. This review charts the development of protein mimics based on cell-penetrating peptides (CPPs) and how structure-activity relationships (SARs) with these molecules and their protein counterparts ultimately led to the use of polymeric scaffolds. These scaffolds deviate from the normal peptide backbone, allowing for simpler, synthetic procedures to make carriers and tune chemical compositions for application specific needs. Successful design of polymeric protein mimics would allow researchers to further understand the key features in proteins and peptides necessary for efficient delivery and to design the next generation of more efficient delivery reagents.
Collapse
Affiliation(s)
- Brittany M deRonde
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, 01003
| |
Collapse
|
24
|
Yang J, Zhang Q, Chang H, Cheng Y. Surface-Engineered Dendrimers in Gene Delivery. Chem Rev 2015; 115:5274-300. [PMID: 25944558 DOI: 10.1021/cr500542t] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiepin Yang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Qiang Zhang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Hong Chang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Yiyun Cheng
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
25
|
Vokatá T, Twomey M, Mendez E, Moon JH. Synthesis of biodegradable conjugated polymers with controlled backbone flexibility. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Tereza Vokatá
- Department of Chemistry & Biochemistry; Florida International University; 11200 SW 8th Street Miami Florida 33199
| | - Megan Twomey
- Department of Chemistry & Biochemistry; Florida International University; 11200 SW 8th Street Miami Florida 33199
| | - Eladio Mendez
- Department of Chemistry & Biochemistry; Florida International University; 11200 SW 8th Street Miami Florida 33199
| | - Joong Ho Moon
- Department of Chemistry & Biochemistry; Florida International University; 11200 SW 8th Street Miami Florida 33199
| |
Collapse
|
26
|
New Techniques to Assess In Vitro Release of siRNA from Nanoscale Polyplexes. Pharm Res 2014; 32:1957-74. [DOI: 10.1007/s11095-014-1589-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/24/2014] [Indexed: 12/29/2022]
|