1
|
Thümmler JF, Binder WH. Compartmentalised single-chain nanoparticles and their function. Chem Commun (Camb) 2024; 60:14332-14345. [PMID: 39575550 DOI: 10.1039/d4cc04387a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Single-chain nanoparticles (SCNPs) are generated by intramolecular collapse and crosslinking of single polymer chains, thus conceptually resembling the structures of folded proteins. Their chemical flexibility and ability to form compartmentalised nanostructures sized ∼1 nm make them perfect candidates for numerous applications, such as in catalysis and drug delivery. In this review we discuss principles for the design, synthesis and analysis of SCNPs, with a focus on their compartmentalised structures, highlighting our own previous work. As such compartments offer the potential to generate a specific nanoenvironment e.g. for the covalent and non-covalent encapsulation of catalysts or drugs, they represent a novel, exciting, and expanding research area. Starting from the architectural and chemical design of the starting copolymers by controlling their amphiphilic profile, the embedding of blocks-, or secondary-structure-mimetic arrangements, we discuss design principles to form internal compartments inside the SCNPs. While the generation of compartments inside SCNPs is straightforward, their analysis is still challenging and often demands special techniques. We finally discuss applications of SCNPs, also linked to the compartment formation, predicting a bright future for these special nanoobjects.
Collapse
Affiliation(s)
- Justus F Thümmler
- Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120, Halle (Saale), Germany.
| | - Wolfgang H Binder
- Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120, Halle (Saale), Germany.
| |
Collapse
|
2
|
Sathyan A, Archontakis E, Spiering AJH, Albertazzi L, Palmans ARA. Effect of Particle Heterogeneity in Catalytic Copper-Containing Single-Chain Polymeric Nanoparticles Revealed by Single-Particle Kinetics. Molecules 2024; 29:1850. [PMID: 38675670 PMCID: PMC11054931 DOI: 10.3390/molecules29081850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Single-chain polymeric nanoparticles (SCPNs) have been extensively explored as a synthetic alternative to enzymes for catalytic applications. However, the inherent structural heterogeneity of SCPNs, arising from the dispersity of the polymer backbone and stochastic incorporation of different monomers as well as catalytic moieties, is expected to lead to variations in catalytic activity between individual particles. To understand the effect of structural heterogeneities on the catalytic performance of SCPNs, techniques are required that permit researchers to directly monitor SCPN activity at the single-polymer level. In this study, we introduce the use of single-molecule fluorescence microscopy to study the kinetics of Cu(I)-containing SCPNs towards depropargylation reactions. We developed Cu(I)-containing SCPNs that exhibit fast kinetics towards depropargylation and Cu-catalyzed azide-alkyne click reactions, making them suitable for single-particle kinetic studies. SCPNs were then immobilized on the surface of glass coverslips and the catalytic reactions were monitored at a single-particle level using total internal reflection fluorescence (TIRF) microscopy. Our studies revealed the interparticle turnover dispersity for Cu(I)-catalyzed depropargylations. In the future, our approach can be extended to different polymer designs which can give insights into the intrinsic heterogeneity of SCPN catalysis and can further aid in the rational development of SCPN-based catalysts.
Collapse
Affiliation(s)
- Anjana Sathyan
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (A.S.); (A.J.H.S.)
| | - Emmanouil Archontakis
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (E.A.); (L.A.)
| | - A. J. H. Spiering
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (A.S.); (A.J.H.S.)
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (E.A.); (L.A.)
| | - Anja R. A. Palmans
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (A.S.); (A.J.H.S.)
| |
Collapse
|
3
|
Wijker S, Deng L, Eisenreich F, Voets IK, Palmans ARA. En Route to Stabilized Compact Conformations of Single-Chain Polymeric Nanoparticles in Complex Media. Macromolecules 2022; 55:6220-6230. [PMID: 35910311 PMCID: PMC9330768 DOI: 10.1021/acs.macromol.2c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/27/2022] [Indexed: 11/28/2022]
Abstract
Precise control over the folding pathways of polypeptides using a combination of noncovalent and covalent interactions has evolved into a wide range of functional proteins with a perfectly defined 3D conformation. Inspired hereby, we develop a series of amphiphilic copolymers designed to form compact, stable, and structured single-chain polymeric nanoparticles (SCPNs) of defined size, even in competitive conditions. The SCPNs are formed through a combination of noncovalent interactions (hydrophobic and hydrogen-bonding interactions) and covalent intramolecular cross-linking using a light-induced [2 + 2] cycloaddition. By comparing different self-assembly pathways of the nanoparticles, we show that, like for proteins in nature, the order of events matters. When covalent cross-links are formed prior to the folding via hydrophobic and supramolecular interactions, larger particles with less structured interiors are formed. In contrast, when the copolymers first fold via hydrophobic and hydrogen-bonding interactions into compact conformations, followed by covalent cross-links, good control over the size of the SCPNs and microstructure of the hydrophobic interior is achieved. Such a structured SCPN can stabilize the solvatochromic dye benzene-1,3,5-tricarboxamide-Nile Red via molecular recognition for short periods of time in complex media, while showing slow exchange dynamics with the surrounding complex media at longer time scales. The SCPNs show good biocompatibility with cells and can carry cargo into the lysosomal compartments of the cells. Our study highlights the importance of control over the folding pathway in the design of stable SCPNs, which is an important step forward in their application as noncovalent drug or catalyst carriers in biological settings.
Collapse
Affiliation(s)
- Stefan Wijker
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and Organic
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Linlin Deng
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and Organic
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Fabian Eisenreich
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and Organic
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ilja K. Voets
- Laboratory
of Self-Organizing Soft Matter, Department of Chemical Engineering
and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anja R. A. Palmans
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and Organic
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
4
|
Abbas M, Lipiński WP, Nakashima KK, Huck WTS, Spruijt E. A short peptide synthon for liquid-liquid phase separation. Nat Chem 2021; 13:1046-1054. [PMID: 34645986 DOI: 10.1038/s41557-021-00788-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/13/2021] [Indexed: 11/09/2022]
Abstract
Liquid-liquid phase separation of disordered proteins has emerged as a ubiquitous route to membraneless compartments in living cells, and similar coacervates may have played a role when the first cells formed. However, existing coacervates are typically made of multiple macromolecular components, and designing short peptide analogues capable of self-coacervation has proven difficult. Here we present a short peptide synthon for phase separation, made of only two dipeptide stickers linked via a flexible, hydrophilic spacer. These small-molecule compounds self-coacervate into micrometre-sized liquid droplets at sub-millimolar concentrations, which retain up to 75 wt% water. The design is general and we derive guidelines for the required sticker hydrophobicity and spacer polarity. To illustrate their potential as protocells, we create a disulfide-linked derivative that undergoes reversible compartmentalization controlled by redox chemistry. The resulting coacervates sequester and melt nucleic acids, and act as microreactors that catalyse two different anabolic reactions yielding molecules of increasing complexity. This provides a stepping stone for new coacervate-based protocells made of single peptide species.
Collapse
Affiliation(s)
- Manzar Abbas
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Wojciech P Lipiński
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Karina K Nakashima
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Nghiem TL, Coban D, Tjaberings S, Gröschel AH. Recent Advances in the Synthesis and Application of Polymer Compartments for Catalysis. Polymers (Basel) 2020; 12:E2190. [PMID: 32987965 PMCID: PMC7600123 DOI: 10.3390/polym12102190] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022] Open
Abstract
Catalysis is one of the most important processes in nature, science, and technology, that enables the energy efficient synthesis of essential organic compounds, pharmaceutically active substances, and molecular energy sources. In nature, catalytic reactions typically occur in aqueous environments involving multiple catalytic sites. To prevent the deactivation of catalysts in water or avoid unwanted cross-reactions, catalysts are often site-isolated in nanopockets or separately stored in compartments. These concepts have inspired the design of a range of synthetic nanoreactors that allow otherwise unfeasible catalytic reactions in aqueous environments. Since the field of nanoreactors is evolving rapidly, we here summarize-from a personal perspective-prominent and recent examples for polymer nanoreactors with emphasis on their synthesis and their ability to catalyze reactions in dispersion. Examples comprise the incorporation of catalytic sites into hydrophobic nanodomains of single chain polymer nanoparticles, molecular polymer nanoparticles, and block copolymer micelles and vesicles. We focus on catalytic reactions mediated by transition metal and organocatalysts, and the separate storage of multiple catalysts for one-pot cascade reactions. Efforts devoted to the field of nanoreactors are relevant for catalytic chemistry and nanotechnology, as well as the synthesis of pharmaceutical and natural compounds. Optimized nanoreactors will aid in the development of more potent catalytic systems for green and fast reaction sequences contributing to sustainable chemistry by reducing waste of solvents, reagents, and energy.
Collapse
Affiliation(s)
| | | | | | - André H. Gröschel
- Physical Chemistry and Centre for Soft Nanoscience (SoN), University of Münster, 48149 Münster, Germany; (T.-L.N.); (D.C.); (S.T.)
| |
Collapse
|
6
|
Tang Y, Wang Q, Wu L, Liu K, Wang W, Shen Y, Xue Y, Dai S. L-proline functionalized pH-responsive copolymers as supported organocatalysts for asymmetric aldol reaction in water. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Liu CH, Dugas LD, Bowman JI, Chidanguro T, Storey RF, Simon YC. Forcing single-chain nanoparticle collapse through hydrophobic solvent interactions in comb copolymers. Polym Chem 2020. [DOI: 10.1039/c9py01235d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate that we can tune the chain collapse of comb copolymers into single-chain nanoparticles upon UV irradiation through solvency control.
Collapse
Affiliation(s)
- Cheyenne H. Liu
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Logan D. Dugas
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Jared I. Bowman
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Tamuka Chidanguro
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Robson F. Storey
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Yoan C. Simon
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| |
Collapse
|
8
|
Liu Q, Ju Y, Zhao H. Bioassemblies Fabricated by Coassembly of Protein Molecules and Monotethered Single-Chain Polymeric Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13705-13712. [PMID: 30351955 DOI: 10.1021/acs.langmuir.8b02895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular nanoparticles have been used as building blocks in the synthesis of functional materials. The grand challenges in the synthesis of the functional materials are precise control of the structures and functionalities of the materials by using nanoparticles with different architectures and properties. Monotethered single-chain polymeric nanoparticles (SCPN) are a type of nanosized asymmetric particles formed by intramolecular cross-linking of linear diblock copolymer chains. Monotethered SCPNs can be used as elemental building blocks for the fabrication of well-defined advanced structures. In this research, synthesis of biohybrid materials based on coassembly of bovine serum albumin (BSA) molecules and monotethered SCPNs is investigated. Due to the asymmetric structure of the SCPNs, positively charged SCPNs and negatively charged protein molecules coassemble into biohybrid vesicles with SCPNs on the layers and protein molecules in the walls. The self-assembled structures were analyzed by using dynamic light scattering, transmission electron microscopy, cryo-transmission electron microscopy, and atomic force microscopy. The average size of the biohybrid vesicles can be controlled by the molar ratio of SCPNs to BSA. The protein molecules in the biohybrid vesicles maintain most of the activities. This research paves a new way for the synthesis of functional biohybrid structures, and the materials can be used as protein carriers.
Collapse
Affiliation(s)
- Qi Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Yuanyuan Ju
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry , Nankai University , Tianjin 300071 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071 , China
| |
Collapse
|
9
|
Liu K, Ye L, Wang Y, Du G, Jiang L. A Pseudopeptide Polymer Micelle Used for Asymmetric Catalysis of the Aldol Reaction in Water. Polymers (Basel) 2018; 10:E1004. [PMID: 30960929 PMCID: PMC6403597 DOI: 10.3390/polym10091004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 11/25/2022] Open
Abstract
Micelles assembled from amphiphilic molecules have proved to be ideal scaffolds to construct artificial catalysts mimicking enzymatic catalytic behavior. In this paper, we describe the synthesis of amphiphilic poly(2-oxazoline) derivatives with l-prolinamide units in the side chain and their application in asymmetric aldol reactions. Upon dissolution in water, the pseudopeptide polymers self-assembled into particles with different sizes, relying on the copolymer composition and distribution of hydrophilic/hydrophobic segments in the polymer chain. A preliminary study has demonstrated that the catalytic activity of these polymeric organocatalysts are strongly dependent on the aggregated architecture. The micelle-type assemblies can act as nanoreactors to efficiently promote the direct aldolisation of cyclohexanone with aromatic aldehydes in aqueous media, affording anti-aldol products in excellent yields (88⁻99%) and higher stereoselectivities (90/10 dr, 86% ee) compared to their nonmicellar systems under identical conditions.
Collapse
Affiliation(s)
- Keyuan Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Long Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yao Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ganhong Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Liming Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
10
|
Chen J, Wang J, Bai Y, Li K, Garcia ES, Ferguson AL, Zimmerman SC. Enzyme-like Click Catalysis by a Copper-Containing Single-Chain Nanoparticle. J Am Chem Soc 2018; 140:13695-13702. [DOI: 10.1021/jacs.8b06875] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Junfeng Chen
- Department of Chemistry, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Jiang Wang
- Department of Physics, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Yugang Bai
- Department of Chemistry, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Ke Li
- Department of Chemistry, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Edzna S. Garcia
- Department of Chemistry, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Andrew L. Ferguson
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Steven C. Zimmerman
- Department of Chemistry, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Kröger APP, Paulusse JMJ. Single-chain polymer nanoparticles in controlled drug delivery and targeted imaging. J Control Release 2018; 286:326-347. [PMID: 30077737 DOI: 10.1016/j.jconrel.2018.07.041] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/27/2018] [Indexed: 12/26/2022]
Abstract
As a relatively new class of materials, single-chain polymer nanoparticles (SCNPs) just entered the field of (biomedical) applications, with recent advances in polymer science enabling the formation of bio-inspired nanosized architectures. Exclusive intramolecular collapse of individual polymer chains results in individual nanoparticles. With sizes an order of magnitude smaller than conventional polymer nanoparticles, SCNPs are in the size regime of many proteins and viruses (1-20 nm). Multifaceted syntheses and design strategies give access to a wide set of highly modular SCNP materials. This review describes how SCNPs have been rendered water-soluble and highlights ongoing research efforts towards biocompatible SCNPs with tunable properties for controlled drug delivery, targeted imaging and protein mimicry.
Collapse
Affiliation(s)
- A Pia P Kröger
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jos M J Paulusse
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
12
|
Xin BT, van Tol BDM, Ovaa H, Geurink PP. Native chemical ligation at methionine bioisostere norleucine allows for N-terminal chemical protein ligation. Org Biomol Chem 2018; 16:6306-6315. [DOI: 10.1039/c8ob01627e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
γ-Thionorleucine is synthesized and used for N-terminal chemical protein modification by native chemical ligation–desulfurization to prepare linear diubiquitin.
Collapse
Affiliation(s)
- Bo-Tao Xin
- Oncode Institute and Department of Cell and Chemical Biology
- Leiden University Medical Center
- 2333 ZC Leiden
- The Netherlands
| | - Bianca D. M. van Tol
- Oncode Institute and Department of Cell and Chemical Biology
- Leiden University Medical Center
- 2333 ZC Leiden
- The Netherlands
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical Biology
- Leiden University Medical Center
- 2333 ZC Leiden
- The Netherlands
| | - Paul P. Geurink
- Oncode Institute and Department of Cell and Chemical Biology
- Leiden University Medical Center
- 2333 ZC Leiden
- The Netherlands
| |
Collapse
|
13
|
Ślęczkowski ML, Meijer EW, Palmans ARA. Cooperative Folding of Linear Poly(dimethyl siloxane)s via Supramolecular Interactions. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700566] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/22/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Marcin L. Ślęczkowski
- Laboratory of Macromolecular and Organic Chemistry; Institute for Complex Molecular Systems; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - E. W. Meijer
- Laboratory of Macromolecular and Organic Chemistry; Institute for Complex Molecular Systems; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Anja R. A. Palmans
- Laboratory of Macromolecular and Organic Chemistry; Institute for Complex Molecular Systems; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
14
|
Rubio-Cervilla J, González E, Pomposo JA. Advances in Single-Chain Nanoparticles for Catalysis Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E341. [PMID: 29065489 PMCID: PMC5666506 DOI: 10.3390/nano7100341] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 01/08/2023]
Abstract
Enzymes are the most efficient catalysts known for working in an aqueous environment near room temperature. The folding of individual polymer chains to functional single-chain nanoparticles (SCNPs) offers many opportunities for the development of artificial enzyme-mimic catalysts showing both high catalytic activity and specificity. In this review, we highlight recent results obtained in the use of SCNPs as bioinspired, highly-efficient nanoreactors (3-30 nm) for the synthesis of a variety of nanomaterials (inorganic nanoparticles, quantum dots, carbon nanodots), polymers, and chemical compounds, as well as nanocontainers for CO₂ capture and release.
Collapse
Affiliation(s)
- Jon Rubio-Cervilla
- Centro de Física de Materiales (CSIC, UPV/EHU)-MPC, Materials Physics Center, Paseo Manuel de Lardizabal 5, E-20018 San Sebastian, Spain.
| | - Edurne González
- Centro de Física de Materiales (CSIC, UPV/EHU)-MPC, Materials Physics Center, Paseo Manuel de Lardizabal 5, E-20018 San Sebastian, Spain.
| | - José A Pomposo
- Centro de Física de Materiales (CSIC, UPV/EHU)-MPC, Materials Physics Center, Paseo Manuel de Lardizabal 5, E-20018 San Sebastian, Spain.
- Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, E-20080 San Sebastian, Spain.
- IKERBASQUE-Basque Foundation for Science, María Díaz de Haro 3, E-48013 Bilbao, Spain.
| |
Collapse
|
15
|
Pomposo JA, Rubio-Cervilla J, Moreno AJ, Lo Verso F, Bacova P, Arbe A, Colmenero J. Folding Single Chains to Single-Chain Nanoparticles via Reversible Interactions: What Size Reduction Can One Expect? Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02427] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- José A. Pomposo
- Centro de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Departamento
de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, E-20800 San Sebastián, Spain
- IKERBASQUE - Basque
Foundation for Science, María
Díaz de Haro 3, E-48013 Bilbao, Spain
| | - Jon Rubio-Cervilla
- Centro de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Departamento
de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, E-20800 San Sebastián, Spain
| | - Angel J. Moreno
- Centro de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Donostia International
Physics Center (DIPC), Paseo Manuel
de Lardizabal 4, E-20018 San Sebastián, Spain
| | - Federica Lo Verso
- Donostia International
Physics Center (DIPC), Paseo Manuel
de Lardizabal 4, E-20018 San Sebastián, Spain
| | - Petra Bacova
- Centro de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Arantxa Arbe
- Centro de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Juan Colmenero
- Centro de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Departamento
de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, E-20800 San Sebastián, Spain
- Donostia International
Physics Center (DIPC), Paseo Manuel
de Lardizabal 4, E-20018 San Sebastián, Spain
| |
Collapse
|
16
|
Catalysis Inside Folded Single Macromolecules in Water. EFFECTS OF NANOCONfiNEMENT ON CATALYSIS 2017. [DOI: 10.1007/978-3-319-50207-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K. Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chem Rev 2016; 116:13752-13990. [PMID: 27754649 DOI: 10.1021/acs.chemrev.6b00354] [Citation(s) in RCA: 1314] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this review, we describe the recent advances in supramolecular helical assemblies formed from chiral and achiral small molecules, oligomers (foldamers), and helical and nonhelical polymers from the viewpoints of their formations with unique chiral phenomena, such as amplification of chirality during the dynamic helically assembled processes, properties, and specific functionalities, some of which have not been observed in or achieved by biological systems. In addition, a brief historical overview of the helical assemblies of small molecules and remarkable progress in the synthesis of single-stranded and multistranded helical foldamers and polymers, their properties, structures, and functions, mainly since 2009, will also be described.
Collapse
Affiliation(s)
- Eiji Yashima
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Naoki Ousaka
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Daisuke Taura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Kouhei Shimomura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Tomoyuki Ikai
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
18
|
Latorre-Sánchez A, Pomposo JA. Recent bioinspired applications of single-chain nanoparticles. POLYM INT 2016. [DOI: 10.1002/pi.5078] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alejandro Latorre-Sánchez
- Centro de Física de Materiales (CSIC, UPV/EHU) − Materials Physics Centre; Paseo Manuel de Lardizabal 5 E-20018 San Sebastián Spain
- Departamento de Física de Materiales; Universidad del País Vasco (UPV/EHU); Apartado 1072 E-20800 San Sebastián Spain
| | - José A Pomposo
- Centro de Física de Materiales (CSIC, UPV/EHU) − Materials Physics Centre; Paseo Manuel de Lardizabal 5 E-20018 San Sebastián Spain
- Departamento de Física de Materiales; Universidad del País Vasco (UPV/EHU); Apartado 1072 E-20800 San Sebastián Spain
- IKERBASQUE − Basque Foundation for Science; María Díaz de Haro 3 E48013 Bilbao Spain
| |
Collapse
|
19
|
Altintas O, Barner-Kowollik C. Single-Chain Folding of Synthetic Polymers: A Critical Update. Macromol Rapid Commun 2015; 37:29-46. [DOI: 10.1002/marc.201500547] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/04/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Ozcan Altintas
- Preparative Macromolecular Chemistry; Institut für Technische Chemie und Polymerchemie; Karlsruhe Institute of Technology (KIT); Engesserstr. 18 76128 Karlsruhe Germany
- Institut für Biologische Grenzflächen; Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christopher Barner-Kowollik
- Preparative Macromolecular Chemistry; Institut für Technische Chemie und Polymerchemie; Karlsruhe Institute of Technology (KIT); Engesserstr. 18 76128 Karlsruhe Germany
- Institut für Biologische Grenzflächen; Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
20
|
Mavila S, Eivgi O, Berkovich I, Lemcoff NG. Intramolecular Cross-Linking Methodologies for the Synthesis of Polymer Nanoparticles. Chem Rev 2015; 116:878-961. [DOI: 10.1021/acs.chemrev.5b00290] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sudheendran Mavila
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva-84105, Israel
| | - Or Eivgi
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva-84105, Israel
| | - Inbal Berkovich
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva-84105, Israel
| | - N. Gabriel Lemcoff
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva-84105, Israel
| |
Collapse
|
21
|
ter Huurne GM, Gillissen MAJ, Palmans ARA, Voets IK, Meijer EW. The Coil-to-Globule Transition of Single-Chain Polymeric Nanoparticles with a Chiral Internal Secondary Structure. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00604] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gijs M. ter Huurne
- Institute for Complex Molecular Systems, Laboratory of
Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Martijn A. J. Gillissen
- Institute for Complex Molecular Systems, Laboratory of
Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anja R. A. Palmans
- Institute for Complex Molecular Systems, Laboratory of
Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ilja K. Voets
- Institute for Complex Molecular Systems, Laboratory of
Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - E. W. Meijer
- Institute for Complex Molecular Systems, Laboratory of
Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
22
|
Huerta E, van Genabeek B, Lamers BAG, Koenigs MME, Meijer EW, Palmans ARA. Triggering activity of catalytic rod-like supramolecular polymers. Chemistry 2015; 21:3682-90. [PMID: 25614098 DOI: 10.1002/chem.201405410] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Indexed: 11/10/2022]
Abstract
Supramolecular polymers based on benzene-1,3,5-tricarboxamides (BTAs) functionalized with an L- or D-proline moiety display high catalytic activity towards aldol reactions in water. High turnover frequencies (TOF) of up to 27×10(-4) s(-1) and excellent stereoselectivities (up to 96% de, up to 99% ee) were observed. In addition, the catalyst could be reused and remained active at catalyst loadings and substrate concentrations as low as 0.1 mol % and 50 mM, respectively. A temperature-induced conformational change in the supramolecular polymer triggers the high activity of the catalyst. The supramolecular polymer's helical sense in combination with the configuration of the proline (L- or D-) is responsible for the observed selectivity.
Collapse
Affiliation(s)
- Elisa Huerta
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (The Netherlands)
| | | | | | | | | | | |
Collapse
|
23
|
Li X, Yang B, Jia X, Chen M, Hu Z. Temperature-responsive hairy particle-supported proline for direct asymmetric aldol reaction in water. RSC Adv 2015. [DOI: 10.1039/c5ra16393e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this paper, three kinds of hairy particles with different brush structures were prepared and evaluated as chiral catalysts in the direct asymmetric aldol reaction.
Collapse
Affiliation(s)
- Xinjuan Li
- School of Chemistry and Chemical Engineering
- The Key Laboratory of Green Chemical Media and Reactions
- State Education Ministry of China
- Henan Normal University
- Xinxiang 453007
| | - Beilei Yang
- School of Chemistry and Chemical Engineering
- The Key Laboratory of Green Chemical Media and Reactions
- State Education Ministry of China
- Henan Normal University
- Xinxiang 453007
| | - Xianbin Jia
- School of Chemistry and Chemical Engineering
- The Key Laboratory of Green Chemical Media and Reactions
- State Education Ministry of China
- Henan Normal University
- Xinxiang 453007
| | - Maoqin Chen
- School of Chemistry and Chemical Engineering
- The Key Laboratory of Green Chemical Media and Reactions
- State Education Ministry of China
- Henan Normal University
- Xinxiang 453007
| | - Zhiguo Hu
- School of Chemistry and Chemical Engineering
- The Key Laboratory of Green Chemical Media and Reactions
- State Education Ministry of China
- Henan Normal University
- Xinxiang 453007
| |
Collapse
|
24
|
Neumann LN, Baker MB, Leenders CMA, Voets IK, Lafleur RPM, Palmans ARA, Meijer EW. Supramolecular polymers for organocatalysis in water. Org Biomol Chem 2015; 13:7711-9. [DOI: 10.1039/c5ob00937e] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An l-proline-functionalised benzene-1,3,5-tricarboxamide derivative self-assembles in water into well-defined, one-dimensional, helical, supramolecular polymers that efficiently catalyse aldol reactions.
Collapse
Affiliation(s)
- Laura N. Neumann
- Laboratory for Macromolecular and Organic Chemistry
- Institute for Complex Molecular Sciences
- 5600 MB Eindhoven
- The Netherlands
| | - Matthew B. Baker
- Laboratory for Macromolecular and Organic Chemistry
- Institute for Complex Molecular Sciences
- 5600 MB Eindhoven
- The Netherlands
| | - Christianus M. A. Leenders
- Laboratory for Macromolecular and Organic Chemistry
- Institute for Complex Molecular Sciences
- 5600 MB Eindhoven
- The Netherlands
| | - Ilja K. Voets
- Laboratory for Macromolecular and Organic Chemistry
- Institute for Complex Molecular Sciences
- 5600 MB Eindhoven
- The Netherlands
| | - René P. M. Lafleur
- Laboratory for Macromolecular and Organic Chemistry
- Institute for Complex Molecular Sciences
- 5600 MB Eindhoven
- The Netherlands
| | - Anja R. A. Palmans
- Laboratory for Macromolecular and Organic Chemistry
- Institute for Complex Molecular Sciences
- 5600 MB Eindhoven
- The Netherlands
| | - E. W. Meijer
- Laboratory for Macromolecular and Organic Chemistry
- Institute for Complex Molecular Sciences
- 5600 MB Eindhoven
- The Netherlands
| |
Collapse
|
25
|
Gonzalez-Burgos M, Latorre-Sanchez A, Pomposo JA. Advances in single chain technology. Chem Soc Rev 2015; 44:6122-42. [DOI: 10.1039/c5cs00209e] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarizes the recent advances in single chain technology for the construction of soft nano-objects via chain compaction, and their envisioned applications.
Collapse
Affiliation(s)
- Marina Gonzalez-Burgos
- Centro de Física de Materiales (CSIC, UPV/EHU) – Materials Physics Center
- E-20018 San Sebastián
- Spain
- Departamento de Física de Materiales
- Universidad del País Vasco (UPV/EHU)
| | - Alejandro Latorre-Sanchez
- Centro de Física de Materiales (CSIC, UPV/EHU) – Materials Physics Center
- E-20018 San Sebastián
- Spain
- Departamento de Física de Materiales
- Universidad del País Vasco (UPV/EHU)
| | - José A. Pomposo
- Centro de Física de Materiales (CSIC, UPV/EHU) – Materials Physics Center
- E-20018 San Sebastián
- Spain
- Departamento de Física de Materiales
- Universidad del País Vasco (UPV/EHU)
| |
Collapse
|