1
|
Li X, Jin Y, Zhu N, Jin LY. Applications of Supramolecular Polymers Generated from Pillar[ n]arene-Based Molecules. Polymers (Basel) 2023; 15:4543. [PMID: 38231964 PMCID: PMC10708374 DOI: 10.3390/polym15234543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Supramolecular chemistry enables the manipulation of functional components on a molecular scale, facilitating a "bottom-up" approach to govern the sizes and structures of supramolecular materials. Using dynamic non-covalent interactions, supramolecular polymers can create materials with reversible and degradable characteristics and the abilities to self-heal and respond to external stimuli. Pillar[n]arene represents a novel class of macrocyclic hosts, emerging after cyclodextrins, crown ethers, calixarenes, and cucurbiturils. Its significance lies in its distinctive structure, comparing an electron-rich cavity and two finely adjustable rims, which has sparked considerable interest. Furthermore, the straightforward synthesis, uncomplicated functionalization, and remarkable properties of pillar[n]arene based on supramolecular interactions make it an excellent candidate for material construction, particularly in generating interpenetrating supramolecular polymers. Polymers resulting from supramolecular interactions involving pillar[n]arene find potential in various applications, including fluorescence sensors, substance adsorption and separation, catalysis, light-harvesting systems, artificial nanochannels, and drug delivery. In this context, we provide an overview of these recent frontier research fields in the use of pillar[n]arene-based supramolecular polymers, which serves as a source of inspiration for the creation of innovative functional polymer materials derived from pillar[n]arene derivatives.
Collapse
Affiliation(s)
| | | | - Nansong Zhu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China (Y.J.)
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China (Y.J.)
| |
Collapse
|
2
|
Shan PH, Hu JH, Liu M, Tao Z, Xiao X, Redshaw C. Progress in host–guest macrocycle/pesticide research: Recognition, detection, release and application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Yang Q, Xu W, Cheng M, Zhang S, Kovaleva EG, Liang F, Tian D, Liu JA, Abdelhameed RM, Cheng J, Li H. Controlled release of drug molecules by pillararene-modified nanosystems. Chem Commun (Camb) 2022; 58:3255-3269. [PMID: 35195641 DOI: 10.1039/d1cc05584d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stimuli-responsive nanosystems have attracted the interest of researchers due to their intelligent function of controlled release regulated by a variety of external stimuli and have been applied in biomedical fields. Pillar[n]arenes with the advantages of a rigid structure, electron holes and easy functionalization are considered as excellent candidates for the construction of host-guest nanosystems. In recent years, many pillararene modified nanosystems have been reported in response to different stimuli. In this feature article, we summarize the advance of stimuli-responsive pillararene modified nanosystems for controlled release of drugs from the perspectives of decomposition release and gated release, focusing on the control principles of these nanosystems. We expect that this review can enlighten and guide investigators in the field of stimuli-responsive controlled release.
Collapse
Affiliation(s)
- Qinglin Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Weiwei Xu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Elena G Kovaleva
- Department of Technology for Organic Synthesis, Ural Federal University, Mira Street, 28, 620002 Yekaterinburg, Russia.
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Demei Tian
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Jun-An Liu
- The Department of Applied Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Division, National Research Center, 33 El Buhouth St., Dokki, Siza, P.O. 12311, Egypt.
| | - Jing Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| |
Collapse
|
4
|
Liu L, Hu Y, Huang S, Jin Y, Cui J, Gong W, Zhang W. A pillar[5]arene-based covalent organic framework with pre-encoded selective host-guest recognition. Chem Sci 2021; 12:13316-13320. [PMID: 34777750 PMCID: PMC8528016 DOI: 10.1039/d1sc03680g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/15/2021] [Indexed: 01/27/2023] Open
Abstract
It is highly desirable to maintain both permanent accessible pores and selective molecular recognition capability of macrocyclic cavitands in the solid state. Integration of well-defined discrete macrocyclic hosts into ordered porous polymeric frameworks (e.g., covalent organic frameworks, COFs) represents a promising strategy to transform many supramolecular chemistry concepts and principles well established in the solution phase into the solid state, which can enable a broad range of practical applications, such as high-efficiency molecular separation, heterogeneous catalysis, and pollution remediation. However, it is still a challenging task to construct macrocycle-embedded COFs. In this work, a novel pillar[5]arene-derived (P5) hetero-porous COF, denoted as P5-COF, was rationally designed and synthesized. Featuring the unique backbone structure, P5-COF exhibited selective adsorption of C2H2 over C2H4 and C2H6, as well as significantly enhanced host-guest binding interaction with paraquat, in comparison with the pillar[5]arene-free COF analog, Model-COF. The present work established a new strategy for developing COFs with customizable molecular recognition/separation properties through the bottom-up "pre-porous macrocycle to porous framework" design.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80309 USA
| | - Yiming Hu
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80309 USA
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80309 USA
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80309 USA
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Weitao Gong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology Dalian Liaoning Province 116024 P. R. China
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80309 USA
| |
Collapse
|
5
|
Li Y, Yang Y, Pei X, Li Y, Yuan Y, Huang X. Synthesis of cucurbit
[6]
uril pendent
upper critical solution temperature
type copolymers: self‐assembly and multi‐stimuli‐responsive behavior. POLYM INT 2021. [DOI: 10.1002/pi.6211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yanli Li
- School of Chemistry and Chemical Engineering Inner Mongolia University Hohhot China
| | - YeFang Yang
- School of Chemistry and Chemical Engineering Inner Mongolia University Hohhot China
| | - Xinqi Pei
- School of Chemistry and Chemical Engineering Inner Mongolia University Hohhot China
| | - Yu Li
- School of Chemistry and Chemical Engineering Inner Mongolia University Hohhot China
| | - Yuhui Yuan
- School of Chemistry and Chemical Engineering Inner Mongolia University Hohhot China
| | - Xiaoling Huang
- School of Chemistry and Chemical Engineering Inner Mongolia University Hohhot China
| |
Collapse
|
6
|
Hua Y, Chen L, Hou C, Liu S, Pei Z, Lu Y. Supramolecular Vesicles Based on Amphiphilic Pillar[n]arenes for Smart Nano-Drug Delivery. Int J Nanomedicine 2020; 15:5873-5899. [PMID: 32848395 PMCID: PMC7429218 DOI: 10.2147/ijn.s255637] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/10/2020] [Indexed: 11/23/2022] Open
Abstract
Supramolecular vesicles are the most popular smart nano-drug delivery systems (SDDs) because of their unique cavities, which have high loading carrying capacity and controlled-release action in response to specific stimuli. These vesicles are constructed from amphiphilic molecules via host-guest complexation, typically with targeted stimuli-responsive units, which are particularly important in biotechnology and biomedicine applications. Amphiphilic pillar[n]arenes, which are novel and functional macrocyclic host molecules, have been widely used to construct supramolecular vesicles because of their intrinsic rigid and symmetrical structure, electron-rich cavities and excellent properties. In this review, we first explain the synthesis of three types of amphiphilic pillar[n]arenes: neutral, anionic and cationic pillar[n]arenes. Second, we examine supramolecular vesicles composed of amphiphilic pillar[n]arenes recently used for the construction of SDDs. In addition, we describe the prospects for multifunctional amphiphilic pillar[n]arenes, particularly their potential in novel applications.
Collapse
Affiliation(s)
- Yijie Hua
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei061100, People’s Republic of China
| | - Lan Chen
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei061100, People’s Republic of China
| | - Chenxi Hou
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi712100, People’s Republic of China
| | - Shengbo Liu
- School of Chemistry, Biology, and Material Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu215009, People’s Republic of China
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi712100, People’s Republic of China
| | - Yuchao Lu
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei061100, People’s Republic of China
| |
Collapse
|
7
|
Ding JD, Jin WJ, Pei Z, Pei Y. Morphology transformation of pillararene-based supramolecular nanostructures. Chem Commun (Camb) 2020; 56:10113-10126. [DOI: 10.1039/d0cc03682j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this feature article, the construction methods and the factors that influence the morphological transformation of pillararene-based supramolecular nanostructures are reviewed.
Collapse
Affiliation(s)
- Jin-Dong Ding
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Wen-Juan Jin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|
8
|
Wu J, Xia L, Liu Z, Xu Z, Cao H, Zhang W. Fabrication of a Dual‐Stimuli‐Responsive Supramolecular Micelle from a Pillar[5]arene‐Based Supramolecular Diblock Copolymer for Photodynamic Therapy. Macromol Rapid Commun 2019; 40:e1900240. [DOI: 10.1002/marc.201900240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/16/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Jian Wu
- Shanghai Key Laboratory of Functional Materials Chemistry Shanghai 200237 China
- East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Lei Xia
- Shanghai Key Laboratory of Functional Materials Chemistry Shanghai 200237 China
- East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Zhu Liu
- Shanghai Key Laboratory of Functional Materials Chemistry Shanghai 200237 China
- East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Zhiguang Xu
- China‐Australia Institute for Advanced Materials and ManufacturingJiaxing University Jiaxing 314001 China
| | - Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry Shanghai 200237 China
- East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry Shanghai 200237 China
- East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
9
|
Boominathan M, Kiruthika J, Arunachalam M. Construction of anion‐responsive crosslinked polypseudorotaxane based on molecular recognition of pillar[5]arene. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Muniyappan Boominathan
- Department of ChemistryThe Gandhigram Rural Institute (Deemed to be University) Tamil Nadu India 624 302
| | - Jeyavelraman Kiruthika
- Department of ChemistryThe Gandhigram Rural Institute (Deemed to be University) Tamil Nadu India 624 302
| | - Murugan Arunachalam
- Department of ChemistryThe Gandhigram Rural Institute (Deemed to be University) Tamil Nadu India 624 302
| |
Collapse
|
10
|
Song N, Lou XY, Ma L, Gao H, Yang YW. Supramolecular nanotheranostics based on pillarenes. Theranostics 2019; 9:3075-3093. [PMID: 31244942 PMCID: PMC6567958 DOI: 10.7150/thno.31858] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
With the rapid development of supramolecular chemistry and nanomaterials, supramolecular nanotheranostics has attracted remarkable attention owing to the advantages compared with conventional medicine. Supramolecular architectures relying on non-covalent interactions possess reversible and stimuli-responsive features; endowing supramolecular nanotheranostics based on supramolecular assemblies great potentials for the fabrication of integrated novel nanomedicines and controlled drug delivery systems. In particular, pillarenes, as a relatively new class of synthetic macrocycles, are important candidates in the construction of supramolecular therapeutic systems due to their excellent features such as rigid and symmetric structures, facile substitution, and unique host-guest properties. This review summarizes the development of pillarene-based supramolecular nanotheranostics for applications in biological mimicking, virus inhibition, cancer therapy, and diagnosis, which contains the following two major parts: (a) pillarene-based hybrid supramolecular nanotheranostics upon hybridizing with porous materials such as mesoporous silica nanoparticles, metal-organic frameworks, metal nanoparticles, and other inorganic materials; (b) pillarene-based organic supramolecular therapeutic systems that include supramolecular amphiphilic systems, artificial channels, and prodrugs based on host-guest complexes. Finally, perspectives on how pillarene-based supramolecular nanotheranostics will advance the field of pharmaceuticals and therapeutics are given.
Collapse
Affiliation(s)
- Nan Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xin-Yue Lou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Lianjun Ma
- Department of Endoscopics, China-Japan Union Hospital of Jilin University, Jilin University, 126 Xiantai Street, Changchun 130033, P. R. China
| | - Hui Gao
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
11
|
Peng HQ, Liu B, Wei P, Zhang P, Zhang H, Zhang J, Li K, Li Y, Cheng Y, Lam JWY, Zhang W, Lee CS, Tang BZ. Visualizing the Initial Step of Self-Assembly and the Phase Transition by Stereogenic Amphiphiles with Aggregation-Induced Emission. ACS NANO 2019; 13:839-846. [PMID: 30537812 DOI: 10.1021/acsnano.8b08358] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Many highly ordered structures with smart functions are generated by self-assembly with stimuli responsiveness. Despite that electron microscopes enable us to directly observe the end products, it is hard to visualize the initial step and the kinetic stimuli-responsive behavior of self-assembly. Here, we report the design and synthesis of stereogenic amphiphiles, namely, ( Z)-TPE-OEG and ( E)-TPE-OEG, with aggregation-induced emission (AIE) characteristics from the hydrophobic tetraphenylethene core and thermoresponsive behavior from the hydrophilic oligoethylene glycol monomethyl ether chain. The two isomers can be easily isolated by high-performance liquid chromatography and characterized by 2D NMR spectroscopy. While ( Z)-TPE-OEG self-assembles into vesicles, its ( E)-cousin forms micelles in water. The initial step of their self-assembly processes can be visualized based on AIE characteristics, with a sensitivity much higher than the method based on transmittance measurement. The entrapment and release capabilities of the ( Z)-stereogenic amphiphile are demonstrated by employing pyrene as a guest. The thermoresponsive behavior of the ( Z)-amphiphile results in its continuous phase transition from microscopic self-assembly to macroscopic aggregation, which is successfully visualized in situ by confocal laser scanning microscopy accompanied by the AIE technique. Such a kinetic process shows different stages according to the microscopic visualization, and these stages have never been monitored through roughly observing the appearance of precipitates. It is anticipated that this study can deepen the understanding of the self-assembly processes for better monitoring and controlling them in different systems.
Collapse
Affiliation(s)
- Hui-Qing Peng
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park , Nanshan, Shenzhen 518057 , China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Bin Liu
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong , China
| | - Peifa Wei
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park , Nanshan, Shenzhen 518057 , China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Pengfei Zhang
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park , Nanshan, Shenzhen 518057 , China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Haoke Zhang
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park , Nanshan, Shenzhen 518057 , China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Jinfeng Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong , China
| | - Kai Li
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park , Nanshan, Shenzhen 518057 , China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Ying Li
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park , Nanshan, Shenzhen 518057 , China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Yanhua Cheng
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park , Nanshan, Shenzhen 518057 , China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Jacky W Y Lam
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park , Nanshan, Shenzhen 518057 , China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong , China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong , China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park , Nanshan, Shenzhen 518057 , China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
12
|
Zhong J, Tang Q, Ju Y, Lin Y, Bai X, Zhou J, Luo H, Lei Z, Tong Z. Redox and pH responsive polymeric vesicles constructed from a water-soluble pillar[5]arene and a paraquat-containing block copolymer for rate-tunable controlled release. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:202-214. [PMID: 30587090 DOI: 10.1080/09205063.2018.1561814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Herein, for rate-tunable controlled release, pH and redox dual responsive polymeric vesicles were constructed based on host-guest interaction between a water soluble pillar[5]arene (WP5) and a paraquat-containing block copolymer (BCP) in water. The yielding polymeric vesicles can be further applied in the controlled release of a hydrophilic model drug, doxorubicin hydrochloride (DOX). The drug release rate is regulated depending on the type of single stimulus or the combination of two stimuli. Meanwhile, DOX-loaded polymeric vesicles present anticancer activity in vitro comparable to free DOX under the studied conditions, which may be important for applications in the therapy of cancers as a controlled-release drug carrier.
Collapse
Affiliation(s)
- Jiaxing Zhong
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Qiuju Tang
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Yanshan Ju
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Yonghui Lin
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Xiaowen Bai
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Junyi Zhou
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Haipeng Luo
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Zhentao Lei
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Zaizai Tong
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| |
Collapse
|
13
|
Lin Q, Guan XW, Song SS, Fan H, Yao H, Zhang YM, Wei TB. A novel supramolecular polymer π-gel based on bis-naphthalimide functionalized-pillar[5]arene for fluorescence detection and separation of aromatic acid isomers. Polym Chem 2019. [DOI: 10.1039/c8py01299g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A pillar[5]arene-based supramolecular polymer π-gel, BPN-G, can selectively identify and separate benzoic acid isomers through rationally introduced multi-intermolecular interactions.
Collapse
Affiliation(s)
- Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| | - Xiao-Wen Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| | - Shan-Shan Song
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| | - Haiyan Fan
- Chemistry Department
- School of Science and Technology
- Nazarbayev University Astana 010000
- Kazakhstan
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| |
Collapse
|
14
|
Zhou J, Yu G, Huang F. Supramolecular chemotherapy based on host-guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chem Soc Rev 2018; 46:7021-7053. [PMID: 28980674 DOI: 10.1039/c6cs00898d] [Citation(s) in RCA: 478] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy is currently one of the most effective ways to treat cancer. However, traditional chemotherapy faces several obstacles to clinical trials, such as poor solubility/stability, non-targeting capability and uncontrollable release of the drugs, greatly limiting their anticancer efficacy and causing severe side effects towards normal tissues. Supramolecular chemotherapy integrating non-covalent interactions and traditional chemotherapy is a highly promising candidate in this regard and can be appropriately used for targeted drug delivery. By taking advantage of supramolecular chemistry, some limitations impeding traditional chemotherapy for clinical applications can be solved effectively. Therefore, we present here a review summarizing the progress of supramolecular chemotherapy in cancer treatment based on host-guest recognition and provide guidance on the design of new targeting supramolecular chemotherapy combining diagnostic and therapeutic functions. Based on a large number of state-of-the-art studies, our review will advance supramolecular chemotherapy on the basis of host-guest recognition and promote translational clinical applications.
Collapse
Affiliation(s)
- Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | |
Collapse
|
15
|
Abstract
Pillararenes are a unique group of supramolecular macrocycles, presenting important features and potential applications on account of their intrinsic structural properties and functionality. Developing pillararene-based self-assembled amphiphiles (PSAs) is an efficient approach to translate pillararenes into functional systems and materials for facilitating their practical applications. In this review article, we highlight recent significant advancements in PSAs. A new standard according to the number, solubility, and amphiphilicity of building blocks is employed for dividing PSAs into different categories. The fabrication of PSAs based on various building blocks and supramolecular interactions, and the formation of amphiphile-based self-assemblies are then discussed based on this standard. Furthermore, interesting stimulus-responsiveness to various factors, such as pH, redox, temperature, light, ionic effect, and host-guest competition, generated by the functional groups on various building blocks is summarized, and the corresponding supramolecular interactions in PSAs and their self-assemblies are elaborated. In addition, some important applications of PSAs and their assemblies are discussed. This review not only provides fundamental findings on the construction of PSAs, but also foresees future research directions in this rapidly developing area.
Collapse
Affiliation(s)
- Huacheng Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | | | | |
Collapse
|
16
|
Li P, Yao Q, Lü B, Ma G, Yin M. Visible Light-Induced Supra-Amphiphilic Switch Leads to Transition from Supramolecular Nanosphere to Nanovesicle Activated by Pillar[5]arene-Based Host-Guest Interaction. Macromol Rapid Commun 2018; 39:e1800133. [PMID: 29786904 DOI: 10.1002/marc.201800133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/02/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Pengyu Li
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| | - Qianfang Yao
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| | - Baozhong Lü
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| | - Guiping Ma
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| |
Collapse
|
17
|
Zhang Y, Wu X, Hou C, Shang K, Yang K, Tian Z, Pei Z, Qu Y, Pei Y. Dual-responsive dithio-polydopamine coated porous CeO 2 nanorods for targeted and synergistic drug delivery. Int J Nanomedicine 2018; 13:2161-2173. [PMID: 29695903 PMCID: PMC5905827 DOI: 10.2147/ijn.s152002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective The aim was to produce the first report of assembling degradable stimuli-responsive dithio-polydopamine coating with a cancer target unit for synergistic and targeted drug delivery. Methods A multifunctional drug delivery system was constructed by coating a dual-responsive dithio-polydopamine (PDS) on porous CeO2 nanorods and subsequent conjugation of lactose derivative, where the PDS was formed by self-polymerization of dithio-dopamine (DOPASS). Results The multifunctional drug delivery system displayed excellent cancer targeted ability resulting from the conjugation of lactose derivative, which could specifically recognize the overexpressed asialoglycoprotein receptors on the surface of HepG2 cells. It also showed a dual-responsive property of glutathione and pH, achieving controllable drug release from the cleavage of disulfide bond and subsequent degradation of PDS in cancer cells. Moreover, the degradation of PDS led to the exposure of CeO2 nanorods, which has a synergistic anticancer effect due to its cytotoxicity to cancer cells. Conclusion This work presents a good example of a rational design towards synergistic and targeted DDS for cancer chemotherapies.
Collapse
Affiliation(s)
- Ying Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiaowen Wu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Chenxi Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Kun Shang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Kui Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhimin Tian
- Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yongquan Qu
- Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
18
|
Yang DP, Oo MNNL, Deen GR, Li Z, Loh XJ. Nano-Star-Shaped Polymers for Drug Delivery Applications. Macromol Rapid Commun 2017; 38. [PMID: 28895248 DOI: 10.1002/marc.201700410] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 06/28/2017] [Indexed: 12/19/2022]
Abstract
With the advancement of polymer engineering, complex star-shaped polymer architectures can be synthesized with ease, bringing about a host of unique properties and applications. The polymer arms can be functionalized with different chemical groups to fine-tune the response behavior or be endowed with targeting ligands or stimuli responsive moieties to control its physicochemical behavior and self-organization in solution. Rheological properties of these solutions can be modulated, which also facilitates the control of the diffusion of the drug from these star-based nanocarriers. However, these star-shaped polymers designed for drug delivery are still in a very early stage of development. Due to the sheer diversity of macromolecules that can take on the star architectures and the various combinations of functional groups that can be cross-linked together, there remain many structure-property relationships which have yet to be fully established. This review aims to provide an introductory perspective on the basic synthetic methods of star-shaped polymers, the properties which can be controlled by the unique architecture, and also recent advances in drug delivery applications related to these star candidates.
Collapse
Affiliation(s)
- Da-Peng Yang
- College of Chemical Engineering & Materials Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Ma Nwe Nwe Linn Oo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive Singapore, Singapore, 637459, Singapore
| | - Gulam Roshan Deen
- Soft Materials Laboratory, Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637459, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| |
Collapse
|
19
|
Lin S, Shang J, Zhang X, Theato P. “Breathing” CO
2
‐, O
2
‐, and Light‐Responsive Vesicles from a Triblock Copolymer for Rate‐Tunable Controlled Release. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700313] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/16/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Shaojian Lin
- Institute for Technical and Macromolecular ChemistryUniversity of Hamburg Bundesstrasse 45 D‐20146 Hamburg Germany
| | - Jiaojiao Shang
- Institute for Technical and Macromolecular ChemistryUniversity of Hamburg Bundesstrasse 45 D‐20146 Hamburg Germany
| | - Xiaoxiao Zhang
- Institute for Technical and Macromolecular ChemistryUniversity of Hamburg Bundesstrasse 45 D‐20146 Hamburg Germany
| | - Patrick Theato
- Institute for Technical and Macromolecular ChemistryUniversity of Hamburg Bundesstrasse 45 D‐20146 Hamburg Germany
| |
Collapse
|