1
|
Yang H, Guo M, Guan Q, Zhang L, Liu M, Li H, Qiao G, Yang Q, Shen M, Li Y. ROS-responsive simvastatin nano-prodrug based on tertiary amine-oxide zwitterionic polymer for atherosclerotic therapy. J Nanobiotechnology 2025; 23:176. [PMID: 40050920 PMCID: PMC11884140 DOI: 10.1186/s12951-025-03232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/11/2025] [Indexed: 03/10/2025] Open
Abstract
Atherosclerosis (AS) is a major cause of cardiovascular disease and is characterized by high levels of reactive oxygen species (ROS) and lipid deposition. This study utilized ROS-responsive oxalate bonds to conjugate simvastatin (SV) and tertiary amine-oxide zwitterionic polymer (OPDH), resulting in the design of a ROS-responsive simvastatin nano-prodrug (OPDH-SV). In vitro experiments have proved that OPDH-SV has excellent stability and low toxicity, can effectively reduce intracellular ROS and lipid levels, and inhibit foam cells formation. In addition, OPDH-SV is able to achieve cell-to-cell transmission through the cell's "endocytosis-efflux" mechanism and target mitochondria. In vivo experiments further confirmed the long-term circulation, targeted enrichment, and reduction of ROS and lipid levels of OPDH-SV in vivo. In summary, OPDH-SV has good biosafety and excellent in vivo therapeutic effect, and is expected to become a new type of anti-atherosclerotic nano-prodrug.
Collapse
Affiliation(s)
- Haiqin Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Mengcheng Guo
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Qingran Guan
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Lixue Zhang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Man Liu
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Haoyu Li
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, China
| | - Guanyu Qiao
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Qingbiao Yang
- College of Chemistry, Jilin University, Changchun, Jilin, 130021, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
| | - Yapeng Li
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China.
| |
Collapse
|
2
|
Yamasaki H, Itoh RD, Mizumoto KB, Yoshida YS, Otaki JM, Cohen MF. Spatiotemporal Characteristics Determining the Multifaceted Nature of Reactive Oxygen, Nitrogen, and Sulfur Species in Relation to Proton Homeostasis. Antioxid Redox Signal 2025; 42:421-441. [PMID: 38407968 DOI: 10.1089/ars.2023.0544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Significance: Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) act as signaling molecules, regulating gene expression, enzyme activity, and physiological responses. However, excessive amounts of these molecular species can lead to deleterious effects, causing cellular damage and death. This dual nature of ROS, RNS, and RSS presents an intriguing conundrum that calls for a new paradigm. Recent Advances: Recent advancements in the study of photosynthesis have offered significant insights at the molecular level and with high temporal resolution into how the photosystem II oxygen-evolving complex manages to prevent harmful ROS production during the water-splitting process. These findings suggest that a dynamic spatiotemporal arrangement of redox reactions, coupled with strict regulation of proton transfer, is crucial for minimizing unnecessary ROS formation. Critical Issues: To better understand the multifaceted nature of these reactive molecular species in biology, it is worth considering a more holistic view that combines ecological and evolutionary perspectives on ROS, RNS, and RSS. By integrating spatiotemporal perspectives into global, cellular, and biochemical events, we discuss local pH or proton availability as a critical determinant associated with the generation and action of ROS, RNS, and RSS in biological systems. Future Directions: The concept of localized proton availability will not only help explain the multifaceted nature of these ubiquitous simple molecules in diverse systems but also provide a basis for new therapeutic strategies to manage and manipulate these reactive species in neural disorders, pathogenic diseases, and antiaging efforts.
Collapse
Affiliation(s)
- Hideo Yamasaki
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Ryuuichi D Itoh
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | | | - Yuki S Yoshida
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Joji M Otaki
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Michael F Cohen
- University of California Cooperative Extension, Santa Clara County, San Jose, California, USA
| |
Collapse
|
3
|
Yang C, Mu GF, Liang X, Yan Q. Gas-Responsive and Gas-Releasing Polymer Assemblies. Chemphyschem 2024; 25:e202400413. [PMID: 38747673 DOI: 10.1002/cphc.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Indexed: 06/28/2024]
Abstract
In order to explore the unique physiological roles of gas signaling molecules and gasotransmitters in vivo, chemists have engineered a variety of gas-responsive polymers that can monitor their changes in cellular milieu, and gas-releasing polymers that can orchestrate the release of gases. These have advanced their potential applications in the field of bio-imaging, nanodelivery, and theranostics. Since these polymers are of different chain structures and properties, the morphology of their assemblies will manifest distinct transitions after responding to gas or releasing gas. In this review, we summarize the fundamental design rationale of gas-responsive and gas-releasing polymers in structure and their controlled transition in self-assembled morphology and function, as well as present some perspectives in this prosperous field. Emerging challenges faced for the future research are also discussed.
Collapse
Affiliation(s)
- Cuiqin Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| | - Gui-Fang Mu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| | - Xin Liang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| |
Collapse
|
4
|
Zhang C, Zhang X, Zhou Z. Dual-site lysosome-targeted fluorescent sensor for fast distinguishing visualization of HClO and ONOO - in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124064. [PMID: 38428215 DOI: 10.1016/j.saa.2024.124064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
As two of important highly reactive species / nitrogen species, hypochloric acid (HClO) and peroxynitrite (ONOO-) are involved in various pathological and physiological processes, which are important factors that affect and reflect the functional state of lysosome. Nevertheless, many of their roles are still indefinite because of lack of suitable analytical methods for HClO and ONOO- detection in lysosome. Herein, we designed a lysosome-targeted probe to monitor HClO and ONOO-, which was a hydrid of the benzothiazole derivative, methyl thioether (HClO recognition site) and morpholino hydrazone (ONOO- recognition and lysosome target site). The probe exhibited high sensitivity, good selectivity and fast response toward HClO and ONOO- without spectral crosstalk, and can be employed for quantitative monitoring HClO and ONOO- with LOD of 63 and 83 nM, respectively. In addition, the dual-site probe was lysosome targetable and could be used for detection of HClO and ONOO- in living cells. Furthermore, the excellent behavior made it was suitable for imaging of HClO and ONOO- in zebrafish. Thus, the present probe provides a potent tool for distinguishing monitoring HClO and ONOO- and exploring the role of HClO and ONOO- in biological systems.
Collapse
Affiliation(s)
- Chunxiang Zhang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Changde 415000, PR China
| | - Xiangyang Zhang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Changde 415000, PR China
| | - Zile Zhou
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Changde 415000, PR China.
| |
Collapse
|
5
|
Islam F, Zeng Q. Advances in Organosulfur-Based Polymers for Drug Delivery Systems. Polymers (Basel) 2024; 16:1207. [PMID: 38732676 PMCID: PMC11085353 DOI: 10.3390/polym16091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/07/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024] Open
Abstract
Organosulfur-based polymers have unique properties that make them useful for targeted and managed drug delivery, which can improve therapy while reducing side effects. This work aims to provide a brief review of the synthesis strategies, characterization techniques, and packages of organosulfur-based polymers in drug delivery. More importantly, this work discusses the characterization, biocompatibility, controlled release, nanotechnology, and targeted therapeutic aspects of these important structural units. This review provides not only a good comprehension of organosulfur-based polymers but also an insightful discussion of potential future prospectives in research. The discovery of novel organosulfur polymers and innovations is highly expected to be stimulated in order to synthesize polymer prototypes with increased functional accuracy, efficiency, and low cost for many industrial applications.
Collapse
Affiliation(s)
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
6
|
Fu Q, Yang X, Wang M, Zhu K, Wang Y, Song J. Activatable Probes for Ratiometric Imaging of Endogenous Biomarkers In Vivo. ACS NANO 2024; 18:3916-3968. [PMID: 38258800 DOI: 10.1021/acsnano.3c10659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dynamic variations in the concentration and abnormal distribution of endogenous biomarkers are strongly associated with multiple physiological and pathological states. Therefore, it is crucial to design imaging systems capable of real-time detection of dynamic changes in biomarkers for the accurate diagnosis and effective treatment of diseases. Recently, ratiometric imaging has emerged as a widely used technique for sensing and imaging of biomarkers due to its advantage of circumventing the limitations inherent to conventional intensity-dependent signal readout methods while also providing built-in self-calibration for signal correction. Here, the recent progress of ratiometric probes and their applications in sensing and imaging of biomarkers are outlined. Ratiometric probes are classified according to their imaging mechanisms, and ratiometric photoacoustic imaging, ratiometric optical imaging including photoluminescence imaging and self-luminescence imaging, ratiometric magnetic resonance imaging, and dual-modal ratiometric imaging are discussed. The applications of ratiometric probes in the sensing and imaging of biomarkers such as pH, reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), gas molecules, enzymes, metal ions, and hypoxia are discussed in detail. Additionally, this Review presents an overview of challenges faced in this field along with future research directions.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
7
|
Liu H, Lu HH, Alp Y, Wu R, Thayumanavan S. Structural Determinants of Stimuli-Responsiveness in Amphiphilic Macromolecular Nano-assemblies. Prog Polym Sci 2024; 148:101765. [PMID: 38476148 PMCID: PMC10927256 DOI: 10.1016/j.progpolymsci.2023.101765] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Stimuli-responsive nano-assemblies from amphiphilic macromolecules could undergo controlled structural transformations and generate diverse macroscopic phenomenon under stimuli. Due to the controllable responsiveness, they have been applied for broad material and biomedical applications, such as biologics delivery, sensing, imaging, and catalysis. Understanding the mechanisms of the assembly-disassembly processes and structural determinants behind the responsive properties is fundamentally important for designing the next generation of nano-assemblies with programmable responsiveness. In this review, we focus on structural determinants of assemblies from amphiphilic macromolecules and their macromolecular level alterations under stimuli, such as the disruption of hydrophilic-lipophilic balance (HLB), depolymerization, decrosslinking, and changes of molecular packing in assemblies, which eventually lead to a series of macroscopic phenomenon for practical purposes. Applications of stimuli-responsive nano-assemblies in delivery, sensing and imaging were also summarized based on their structural features. We expect this review could provide readers an overview of the structural considerations in the design and applications of nanoassemblies and incentivize more explorations in stimuli-responsive soft matters.
Collapse
Affiliation(s)
- Hongxu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 P. R. China
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hung-Hsun Lu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Yasin Alp
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ruiling Wu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
8
|
Wang K, Mao W, Song X, Chen M, Feng W, Peng B, Chen Y. Reactive X (where X = O, N, S, C, Cl, Br, and I) species nanomedicine. Chem Soc Rev 2023; 52:6957-7035. [PMID: 37743750 DOI: 10.1039/d2cs00435f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Reactive oxygen, nitrogen, sulfur, carbonyl, chlorine, bromine, and iodine species (RXS, where X = O, N, S, C, Cl, Br, and I) have important roles in various normal physiological processes and act as essential regulators of cell metabolism; their inherent biological activities govern cell signaling, immune balance, and tissue homeostasis. However, an imbalance between RXS production and consumption will induce the occurrence and development of various diseases. Due to the considerable progress of nanomedicine, a variety of nanosystems that can regulate RXS has been rationally designed and engineered for restoring RXS balance to halt the pathological processes of different diseases. The invention of radical-regulating nanomaterials creates the possibility of intriguing projects for disease treatment and promotes advances in nanomedicine. In this comprehensive review, we summarize, discuss, and highlight very-recent advances in RXS-based nanomedicine for versatile disease treatments. This review particularly focuses on the types and pathological effects of these reactive species and explores the biological effects of RXS-based nanomaterials, accompanied by a discussion and the outlook of the challenges faced and future clinical translations of RXS nanomedicines.
Collapse
Affiliation(s)
- Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
9
|
Chen Y, Tan J, Shen L. Seeded RAFT Polymerization-Induced Self-assembly: Recent Advances and Future Opportunities. Macromol Rapid Commun 2023; 44:e2300334. [PMID: 37615609 DOI: 10.1002/marc.202300334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/30/2023] [Indexed: 08/25/2023]
Abstract
Over the past decade, polymerization-induced self-assembly (PISA) has fully proved its versatility for scale-up production of block copolymer nanoparticles with tunable sizes and morphologies; yet, there are still some limitations. Recently, seeded PISA approaches combing PISA with heterogeneous seeded polymerizations have been greatly explored and are expected to overcome the limitations of traditional PISA. In this review, recent advances in seeded PISA that have expanded new horizons for PISA are highlighted including i) general considerations for seeded PISA (e.g., kinetics, the preparation of seeds, the selection of monomers), ii) morphological evolution induced by seeded PISA (e.g., from corona-shell-core nanoparticles to vesicles, vesicles-to-toroid, disassembly of vesicles into nanospheres), and iii) various well-defined nanoparticles with hierarchical and sophisticated morphologies (e.g., multicompartment micelles, porous vesicles, framboidal vesicles, AXn -type colloidal molecules). Finally, new insights into seeded PISA and future perspectives are proposed.
Collapse
Affiliation(s)
- Yifei Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Liangliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
10
|
Hari SK, Gauba A, Shrivastava N, Tripathi RM, Jain SK, Pandey AK. Polymeric micelles and cancer therapy: an ingenious multimodal tumor-targeted drug delivery system. Drug Deliv Transl Res 2023; 13:135-163. [PMID: 35727533 DOI: 10.1007/s13346-022-01197-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/13/2022]
Abstract
Since the beginning of pharmaceutical research, drug delivery methods have been an integral part of it. Polymeric micelles (PMs) have emerged as multifunctional nanoparticles in the current technological era of nanocarriers, and they have shown promise in a range of scientific fields. They can alter the release profile of integrated pharmacological substances and concentrate them in the target zone due to their improved permeability and retention, making them more suitable for poorly soluble medicines. With their ability to deliver poorly soluble chemotherapeutic drugs, PMs have garnered considerable interest in cancer. As a result of their remarkable biocompatibility, improved permeability, and minimal toxicity to healthy cells, while also their capacity to solubilize a wide range of drugs in their micellar core, PMs are expected to be a successful treatment option for cancer therapy in the future. Their nano-size enables them to accumulate in the tumor microenvironment (TME) via the enhanced permeability and retention (EPR) effect. In this review, our major aim is to focus primarily on the stellar applications of PMs in the field of cancer therapeutics along with its mechanism of action and its latest advancements in drug and gene delivery (DNA/siRNA) for cancer, using various therapeutic strategies such as crossing blood-brain barrier, gene therapy, photothermal therapy (PTT), and immunotherapy. Furthermore, PMs can be employed as "smart drug carriers," allowing them to target specific cancer sites using a variety of stimuli (endogenous and exogenous), which improve the specificity and efficacy of micelle-based targeted drug delivery. All the many types of stimulants, as well as how the complex of PM and various anticancer drugs react to it, and their pharmacodynamics are also reviewed here. In conclusion, commercializing engineered micelle nanoparticles (MNPs) for application in therapy and imaging can be considered as a potential approach to improve the therapeutic index of anticancer drugs. Furthermore, PM has stimulated intense interest in research and clinical practice, and in light of this, we have also highlighted a few PMs that have previously been approved for therapeutic use, while the majority are still being studied in clinical trials for various cancer therapies.
Collapse
Affiliation(s)
- Sharath Kumar Hari
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Ankita Gauba
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Neeraj Shrivastava
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Ravi Mani Tripathi
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India.
| | - Sudhir Kumar Jain
- School of Studies in Microbiology, Vikram University, Ujjain, Madhya Pradesh, 456010, India
| | - Akhilesh Kumar Pandey
- Department of Biological Sciences, Rani Durgavati University, Jabalpur, M.P, 482001, India.,Vikram University, Ujjain, Madhya Pradesh, 456010, India
| |
Collapse
|
11
|
Zhao R, Ning X, Wang M, Wang H, Xing G, Wang L, Lu C, Yu A, Wang Y. A ROS-Responsive Simvastatin Nano-Prodrug and its Fibronectin-Targeted Co-Delivery System for Atherosclerosis Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25080-25092. [PMID: 35618653 DOI: 10.1021/acsami.2c02354] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoprodrugs with responsive release properties integrate the advantages of stimuli-responsive prodrugs and nanotechnology. They would provide ultimate opportunity in fighting atherosclerosis. In this study, we synthesized a redox-responsive nanoprodrug of simvastatin (TPTS) by conjugating α-tocopherol polyethylene glycol derivative to the pharmacophore of simvastatin with a thioketal linker. TPTS formed nanoparticles and released parent simvastatin in the presence of hydrogen peroxide. Moreover, by taking advantage of the self-assembly behavior of TPTS, we developed a fibronectin-targeted delivery system (TPTS/C/T) to codelivery simvastatin prodrug and ticagrelor. In vitro and in vivo experiments indicated that TPTS and TPTS/C/T had good stability, which could reduce off-target leakage of drugs. They greatly inhibited the M1-type polarization of macrophages; reduced intracellular reactive oxygen species level and inflammatory cytokine; and TNF-α, MCP-1, and IL-1β were secreted by macrophage cells, thus providing enhanced anti-inflammatory and antioxidant effects compared with free simvastatin. TPTS/C/T realized targeted drug release to plaques and synergistic therapeutic effects of simvastatin and ticagrelor on atherosclerosis treatment in an ApoE-/- mouse model, resulting in excellent atherosclerosis therapeutic efficacy and a promising biosafety profile. Therefore, this study provides a new method for manufacturing statin nanodrugs and a new design idea for related responsive drug release nanosystems for atherosclerosis.
Collapse
Affiliation(s)
- Runze Zhao
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoyue Ning
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengqi Wang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huanhuan Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guang Xing
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Li Wang
- Department of Cardiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Ao Yu
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongjian Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Hernández Becerra E, Quinchia J, Castro C, Orozco J. Light-Triggered Polymersome-Based Anticancer Therapeutics Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:836. [PMID: 35269324 PMCID: PMC8912464 DOI: 10.3390/nano12050836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023]
Abstract
Polymersomes are biomimetic cell membrane-like model structures that are self-assembled stepwise from amphiphilic copolymers. These polymeric (nano)carriers have gained the scientific community's attention due to their biocompatibility, versatility, and higher stability than liposomes. Their tunable properties, such as composition, size, shape, and surface functional groups, extend encapsulation possibilities to either hydrophilic or hydrophobic cargoes (or both) and their site-specific delivery. Besides, polymersomes can disassemble in response to different stimuli, including light, for controlling the "on-demand" release of cargo that may also respond to light as photosensitizers and plasmonic nanostructures. Thus, polymersomes can be spatiotemporally stimulated by light of a wide wavelength range, whose exogenous response may activate light-stimulable moieties, enhance the drug efficacy, decrease side effects, and, thus, be broadly employed in photoinduced therapy. This review describes current light-responsive polymersomes evaluated for anticancer therapy. It includes light-activable moieties' features and polymersomes' composition and release behavior, focusing on recent advances and applications in cancer therapy, current trends, and photosensitive polymersomes' perspectives.
Collapse
Affiliation(s)
- Elisa Hernández Becerra
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| | - Jennifer Quinchia
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| | - Cristina Castro
- Engineering School, Pontificia Bolivariana University, Bloque 11, Cq. 1 No. 70-01, Medellín 050004, Colombia;
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| |
Collapse
|
13
|
Huang T, Yan S, Yu Y, Xue Y, Yu Y, Han C. Dual-Responsive Ratiometric Fluorescent Probe for Hypochlorite and Peroxynitrite Detection and Imaging In Vitro and In Vivo. Anal Chem 2022; 94:1415-1424. [DOI: 10.1021/acs.analchem.1c04729] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tonghui Huang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Shirong Yan
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Yongbo Yu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Yunsheng Xue
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Yanyan Yu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Cuiping Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
14
|
Hu X, Jazani AM, Oh JK. Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Fibrosis, the Bad Actor in Cardiorenal Syndromes: Mechanisms Involved. Cells 2021; 10:cells10071824. [PMID: 34359993 PMCID: PMC8307805 DOI: 10.3390/cells10071824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiorenal syndrome is a term that defines the complex bidirectional nature of the interaction between cardiac and renal disease. It is well established that patients with kidney disease have higher incidence of cardiovascular comorbidities and that renal dysfunction is a significant threat to the prognosis of patients with cardiac disease. Fibrosis is a common characteristic of organ injury progression that has been proposed not only as a marker but also as an important driver of the pathophysiology of cardiorenal syndromes. Due to the relevance of fibrosis, its study might give insight into the mechanisms and targets that could potentially be modulated to prevent fibrosis development. The aim of this review was to summarize some of the pathophysiological pathways involved in the fibrotic damage seen in cardiorenal syndromes, such as inflammation, oxidative stress and endoplasmic reticulum stress, which are known to be triggers and mediators of fibrosis.
Collapse
|
16
|
Fang R, Pi J, Wei T, Ali A, Guo L. Stimulus-Responsive Polymers Based on Polypeptoid Skeletons. Polymers (Basel) 2021; 13:2089. [PMID: 34202869 PMCID: PMC8271857 DOI: 10.3390/polym13132089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Polypeptoids have attracted a lot of atteSDntion because of their unique structural characteristics and special properties. Polypeptoids have the same main chain structures to polypeptides, making them have low cytotoxicity and excellent biocompatibility. Polypeptoids can also respond to external environmental changes by modifying the configurations of the side chains. The external stimuli can be heat, pH, ions, ultraviolet/visible light and active oxygen or their combinations. This review paper discussed the recent research progress in the field of stimulus-responsive polypeptoids, including the design of new stimulus-responsive polypeptoid structures, controlled actuation factors in response to external stimuli and the application of responsive polypeptoid biomaterials in various biomedical and biological nanotechnology, such as drug delivery, tissue engineering and biosensing.
Collapse
Affiliation(s)
| | | | | | - Amjad Ali
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China; (R.F.); (J.P.); (T.W.)
| | - Li Guo
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China; (R.F.); (J.P.); (T.W.)
| |
Collapse
|
17
|
Gao F, Xiong Z. Reactive Oxygen Species Responsive Polymers for Drug Delivery Systems. Front Chem 2021; 9:649048. [PMID: 33968898 PMCID: PMC8103170 DOI: 10.3389/fchem.2021.649048] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/25/2021] [Indexed: 01/10/2023] Open
Abstract
Reactive oxygen species (ROS) play an essential role in regulating various physiological functions of living organisms; however, as the concentration of ROS increases in the area of a lesion, this may undermine cellular homeostasis, leading to a series of diseases. Using cell-product species as triggers for targeted regulation of polymer structures and activity represents a promising approach for the treatment. ROS-responsive polymer carriers allow the targeted delivery of drugs, reduce toxicity and side effects on normal cells, and control the release of drugs, which are all advantages compared with traditional small-molecule chemotherapy agents. These formulations have attracted great interest due to their potential applications in biomedicine. In this review, recent progresses on ROS responsive polymer carriers are summarized, with a focus on the chemical mechanism of ROS-responsive polymers and the design of molecular structures for targeted drug delivery and controlled drug release. Meanwhile, we discuss the challenges and future prospects of its applications.
Collapse
Affiliation(s)
- Fengxiang Gao
- University of Science and Technology of China, Hefei, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry CAS, Chinese Academy of Sciences, Changchun, China
| | - Zhengrong Xiong
- University of Science and Technology of China, Hefei, China
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry CAS, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
18
|
Deng Z, Liu S. Inflammation-responsive delivery systems for the treatment of chronic inflammatory diseases. Drug Deliv Transl Res 2021; 11:1475-1497. [PMID: 33860447 PMCID: PMC8048351 DOI: 10.1007/s13346-021-00977-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2021] [Indexed: 12/30/2022]
Abstract
Inflammation is the biological response of immune system to protect living organisms from injurious factors. However, excessive and uncontrolled inflammation is implicated in a variety of devastating chronic diseases including atherosclerosis, inflammatory bowel disease (IBD), and rheumatoid arthritis (RA). Improved understanding of inflammatory response has unveiled a rich assortment of anti-inflammatory therapeutics for the treatment and management of relevant chronic diseases. Notwithstanding these successes, clinical outcomes are variable among patients and serious adverse effects are often observed. Moreover, there exist some limitations for clinical anti-inflammatory therapeutics such as aqueous insolubility, low bioavailability, off-target effects, and poor accessibility to subcellular compartments. To address these challenges, the rational design of inflammation-specific drug delivery systems (DDSs) holds significant promise. Moreover, as compared to normal tissues, inflamed tissue-associated pathological milieu (e.g., oxidative stress, acidic pH, and overexpressed enzymes) provides vital biochemical stimuli for triggered delivery of anti-inflammatory agents in a spatiotemporally controlled manner. In this review, we summarize recent advances in the development of anti-inflammatory DDSs with built-in pathological inflammation-specific responsiveness for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Zhengyu Deng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences At the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui Province, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences At the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui Province, China.
| |
Collapse
|
19
|
Li X, Zhao X, Lv R, Hao L, Huo F, Yao X. Polymeric Nanoreactors as Emerging Nanoplatforms for Cancer Precise Nanomedicine. Macromol Biosci 2021; 21:e2000424. [PMID: 33811465 DOI: 10.1002/mabi.202000424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/23/2021] [Indexed: 12/20/2022]
Abstract
How to precisely detect and effectively cure cancer which is defined as precise nanomedicine has drawn great attention worldwide. Polymeric nanoreactors which can in situ catalyze inert species into activated ones, can greatly increase imaging quality and enhance therapeutic effects along with decreased background interference and reduced serious side effects. After a brief introduction, the design and preparation of polymeric nanoreactors are discussed from the following aspects, that is, solvent-switch, pH-tuning, film rehydration, hard template, electrostatic interaction, and polymerization-induced self-assembly (PISA). Subsequently, the biomedical applications of these nanoreactors in the fields of cancer imaging, cancer therapy, and cancer theranostics are highlighted. The last but not least, conclusions and future perspectives about polymeric nanoreactors are given. It is believed that polymeric nanoreactors can bring a great opportunity for future fabrication and clinical translation of precise nanomedicine.
Collapse
Affiliation(s)
- Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiaopeng Zhao
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Runkai Lv
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Linhui Hao
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Fengwei Huo
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xikuang Yao
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
20
|
Wang S, Liu Q, Li L, Urban MW. Recent Advances in Stimuli-Responsive Commodity Polymers. Macromol Rapid Commun 2021; 42:e2100054. [PMID: 33749047 DOI: 10.1002/marc.202100054] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Known for their adaptability to surroundings, capability of transport control of molecules, or the ability of converting one type of energy to another as a result of external or internal stimuli, responsive polymers play a significant role in advancing scientific discoveries that may lead to an array of diverge applications. This review outlines recent advances in the developments of selected commodity polymers equipped with stimuli-responsiveness to temperature, pH, ionic strength, enzyme or glucose levels, carbon dioxide, water, redox agents, electromagnetic radiation, or electric and magnetic fields. Utilized diverse applications ranging from drug delivery to biosensing, dynamic structural components to color-changing coatings, this review focuses on commodity acrylics, epoxies, esters, carbonates, urethanes, and siloxane-based polymers containing responsive elements built into their architecture. In the context of stimuli-responsive chemistries, current technological advances as well as a critical outline of future opportunities and applications are also tackled.
Collapse
Affiliation(s)
- Siyang Wang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Qianhui Liu
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Lei Li
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Marek W Urban
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
21
|
Qian F, Han Y, Han Z, Zhang D, Zhang L, Zhao G, Li S, Jin G, Yu R, Liu H. In Situ implantable, post-trauma microenvironment-responsive, ROS Depletion Hydrogels for the treatment of Traumatic brain injury. Biomaterials 2021; 270:120675. [PMID: 33548799 DOI: 10.1016/j.biomaterials.2021.120675] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/23/2020] [Accepted: 01/10/2021] [Indexed: 02/08/2023]
Abstract
Traumatic brain injury (TBI) generates excess reactive oxygen species (ROS), which can exacerbate secondary injury and result in disability and death. Secondary injury cascades can trigger the release of uncontrolled ROS into the surrounding normal brain tissue, forming an extended pool of ROS, which leads to massive neuronal death. Here, we developed an injectable, post-trauma microenvironment-responsive, ROS depletion hydrogel embedded curcumin (Cur) (TM/PC) for reducing ROS levels in damaged brain tissue to promote the regeneration and recovery of neurons. Hydrogel was composed of three parts: (1) Hydrophobic poly (propylene sulfide)120 (PPS120) was synthesized, with a ROS quencher and H2O2-responsive abilities, to embed Cur. (2) Matrix metalloproteinase (MMP)-responsive triglycerol monostearate (TM) was used to cover the PPS120 to form a TM/P hydrogel. (3) Cur could further eradicate the ROS, promoting the regeneration and recovery of neurons. In two postoperative TBI models, TM/PC hydrogel effectively responded the TBI surgical environment and released drug. TM/PC hydrogel significantly depleted ROS and reduced brain edema. In addition, reactive astrocytes and activated microglia were decreased, growth-associated protein 43 (GAP43) and doublecortin (DCX) were increased, suggested that TM/PC hydrogel had the strongest anti-inflammatory effect and effectively promoted nerve regeneration after TBI. This study provides new information for the management of TBI to prevent the secondary spread of damage.
Collapse
Affiliation(s)
- Feng Qian
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yuhan Han
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Zhengzhong Han
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Deyun Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Long Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Gang Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Shanshan Li
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, 221002, China
| | - Guoliang Jin
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, China.
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
22
|
Dong S, Liu L, Zhao H. Copper-coordination induced fabrication of stimuli-responsive polymersomes from amphiphilic block copolymer containing pendant thioethers. Polym Chem 2021. [DOI: 10.1039/d1py00371b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cu2+-Containing hybrid polymersomes were fabricated via a co-assembly approach. The polymersomes exhibited stimuli-responsiveness to the competitive ligand and H2O2/GSH and mediated a Fenton-like reaction to produce ˙OH.
Collapse
Affiliation(s)
- Shuqi Dong
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Li Liu
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| |
Collapse
|
23
|
Deng Z, Liu S. Controlled drug delivery with nanoassemblies of redox-responsive prodrug and polyprodrug amphiphiles. J Control Release 2020; 326:276-296. [DOI: 10.1016/j.jconrel.2020.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/20/2023]
|
24
|
|
25
|
Hu B, Lian Z, Zhou Z, Shi L, Yu Z. Reactive Oxygen Species-Responsive Adaptable Self-Assembly of Peptides toward Advanced Biomaterials. ACS APPLIED BIO MATERIALS 2020; 3:5529-5551. [DOI: 10.1021/acsabm.0c00758] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Zhengwen Lian
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Zhifei Zhou
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| |
Collapse
|
26
|
Deng Y, Chen H, Tao X, Trépout S, Ling J, Li MH. Synthesis and self-assembly of poly(ethylene glycol)-block-poly(N-3-(methylthio)propyl glycine) and their oxidation-sensitive polymersomes. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Zartner L, Muthwill MS, Dinu IA, Schoenenberger CA, Palivan CG. The rise of bio-inspired polymer compartments responding to pathology-related signals. J Mater Chem B 2020; 8:6252-6270. [PMID: 32452509 DOI: 10.1039/d0tb00475h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Self-organized nano- and microscale polymer compartments such as polymersomes, giant unilamellar vesicles (GUVs), polyion complex vesicles (PICsomes) and layer-by-layer (LbL) capsules have increasing potential in many sensing applications. Besides modifying the physicochemical properties of the corresponding polymer building blocks, the versatility of these compartments can be markedly expanded by biomolecules that endow the nanomaterials with specific molecular and cellular functions. In this review, we focus on polymer-based compartments that preserve their structure, and highlight the key role they play in the field of medical diagnostics: first, the self-assembling abilities that result in preferred architectures are presented for a broad range of polymers. In the following, we describe different strategies for sensing disease-related signals (pH-change, reductive conditions, and presence of ions or biomolecules) by polymer compartments that exhibit stimuli-responsiveness. In particular, we distinguish between the stimulus-sensitivity contributed by the polymer itself or by additional compounds embedded in the compartments in different sensing systems. We then address necessary properties of sensing polymeric compartments, such as the enhancement of their stability and biocompatibility, or the targeting ability, that open up new perspectives for diagnostic applications.
Collapse
Affiliation(s)
- Luisa Zartner
- Chemistry Department, University of Basel, Mattenstr. 24a, BPR1096, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
28
|
Jia L, Wang R, Fan Y. Encapsulation and release of drug nanoparticles in functional polymeric vesicles. SOFT MATTER 2020; 16:3088-3095. [PMID: 32149316 DOI: 10.1039/d0sm00069h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigated the co-assembly of amphiphilic diblock copolymers in solutions containing drugs and functional nanoparticles using the dissipative particle dynamics (DPD) method. By controlling the size and the concentration of the functional nanoparticles, the length of the hydrophobic blocks, and the interaction parameters between the hydrophobic block/solvent and the functional nanoparticles, we obtained the desired aggregates to load drugs. The aggregates loaded with drugs can be disk-like micelles, sphere-like micelles and vesicles with functional nanoparticles on the surface. When the solvent environment changes, the drugs loaded in the functional vesicles can release into the solvent. The release content is critically dependent on the repulsive interaction between the drugs and the solvent. The dynamic curve of drug release is obtained. The result is in agreement with the experiments about drug release. Our studies showed that we can precisely control the formation of functional vesicles to load and release drugs. Loading drugs in the process of self-assembly and controlling the release have broad potential in the field of clinical medicine and adding functional nanoparticles can be of great help in drug delivery and medical diagnosis.
Collapse
Affiliation(s)
- Lei Jia
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | |
Collapse
|
29
|
Jäger E, Sincari V, Albuquerque LJC, Jäger A, Humajova J, Kucka J, Pankrac J, Paral P, Heizer T, Janouskova O, Konefał R, Pavlova E, Sedlacek O, Giacomelli FC, Pouckova P, Sefc L, Stepanek P, Hruby M. Reactive Oxygen Species (ROS)-Responsive Polymersomes with Site-Specific Chemotherapeutic Delivery into Tumors via Spacer Design Chemistry. Biomacromolecules 2020; 21:1437-1449. [PMID: 32083473 DOI: 10.1021/acs.biomac.9b01748] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The lack of cellular and tissue specificities in conventional chemotherapies along with the generation of a complex tumor microenvironment (TME) limits the dosage of active agents that reaches tumor sites, thereby resulting in ineffective responses and side effects. Therefore, the development of selective TME-responsive nanomedicines is of due relevance toward successful chemotherapies, albeit challenging. In this framework, we have synthesized novel, ready-to-use ROS-responsive amphiphilic block copolymers (BCs) with two different spacer chemistry designs to connect a hydrophobic boronic ester-based ROS sensor to the polymer backbone. Hydrodynamic flow focusing nanoprecipitation microfluidics (MF) was used in the preparation of well-defined ROS-responsive PSs; these were further characterized by a combination of techniques [1H NMR, dynamic light scattering (DLS), static light scattering (SLS), transmission electron microscopy (TEM), and cryogenic TEM (cryo-TEM)]. The reaction with hydrogen peroxide releases an amphiphilic phenol or a hydrophilic carboxylic acid, which affects polymersome (PS) stability and cargo release. Therefore, the importance of the spacer chemistry in BC deprotection and PS stability and cargo release is herein highlighted. We have also evaluated the impact of spacer chemistry on the PS-specific release of the chemotherapeutic drug doxorubicin (DOX) into tumors in vitro and in vivo. We demonstrate that by spacer chemistry design one can enhance the efficacy of DOX treatments (decrease in tumor growth and prolonged animal survival) in mice bearing EL4 T cell lymphoma. Side effects (weight loss and cardiotoxicity) were also reduced compared to free DOX administration, highlighting the potential of the well-defined ROS-responsive PSs as TME-selective nanomedicines. The PSs could also find applications in other environments with high ROS levels, such as chronic inflammations, aging, diabetes, cardiovascular diseases, and obesity.
Collapse
Affiliation(s)
- Eliézer Jäger
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Vladimir Sincari
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Lindomar J C Albuquerque
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, Santo André 09210-580, Brazil
| | - Alessandro Jäger
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Jana Humajova
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic
| | - Jan Kucka
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Jan Pankrac
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, 120 00 Prague, Czech Republic
| | - Petr Paral
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, 120 00 Prague, Czech Republic
| | - Tomas Heizer
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, 120 00 Prague, Czech Republic
| | - Olga Janouskova
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Rafał Konefał
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Ondrej Sedlacek
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, Santo André 09210-580, Brazil
| | - Pavla Pouckova
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic
| | - Ludek Sefc
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, 120 00 Prague, Czech Republic
| | - Petr Stepanek
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Martin Hruby
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| |
Collapse
|
30
|
Jazani AM, Oh JK. Development and disassembly of single and multiple acid-cleavable block copolymer nanoassemblies for drug delivery. Polym Chem 2020. [DOI: 10.1039/d0py00234h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Acid-degradable block copolymer-based nanoassemblies are promising intracellular candidates for tumor-targeting drug delivery as they exhibit the enhanced release of encapsulated drugs through their dissociation.
Collapse
Affiliation(s)
- Arman Moini Jazani
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| |
Collapse
|
31
|
Zhang Y, Eltayeb O, Meng Y, Zhang G, Zhang Y, Shuang S, Dong C. Tumor microenvironment responsive mesoporous silica nanoparticles for dual delivery of doxorubicin and chemodynamic therapy (CDT) agent. NEW J CHEM 2020. [DOI: 10.1039/c9nj05427h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We engineered a tumor microenvironment-triggered MSN-based anti-cancer nanocarrier for simultaneous delivery of DOX and chemodynamic agent.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Omer Eltayeb
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Yating Meng
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Guomei Zhang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Yan Zhang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
32
|
Nguyen L, Li M, Woo S, You Y. Development of Prodrugs for PDT-Based Combination Therapy Using a Singlet-Oxygen-Sensitive Linker and Quantitative Systems Pharmacology. J Clin Med 2019; 8:jcm8122198. [PMID: 31847080 PMCID: PMC6947033 DOI: 10.3390/jcm8122198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy (PDT) has become an effective treatment for certain types of solid tumors. The combination of PDT with other therapies has been extensively investigated in recent years to improve its effectiveness and expand its applications. This focused review summarizes the development of a prodrug system in which anticancer drugs are activated locally at tumor sites during PDT treatment. The development of a singlet-oxygen-sensitive linker that can be conveniently conjugated to various drugs and efficiently cleaved to release intact drugs is recapitulated. The initial design of prodrugs, preliminary efficacy evaluation, pharmacokinetics study, and optimization using quantitative systems pharmacology is discussed. Current treatment optimization in animal models using physiologically based a pharmacokinetic (PBPK) modeling approach is also explored.
Collapse
Affiliation(s)
- Luong Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (L.N.); (M.L.); (S.W.)
| | - Mengjie Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (L.N.); (M.L.); (S.W.)
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (L.N.); (M.L.); (S.W.)
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Youngjae You
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (L.N.); (M.L.); (S.W.)
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
- Correspondence: ; Tel.: +1-716-645-4843
| |
Collapse
|
33
|
Deng Y, Chen H, Tao X, Cao F, Trépout S, Ling J, Li MH. Oxidation-Sensitive Polymersomes Based on Amphiphilic Diblock Copolypeptoids. Biomacromolecules 2019; 20:3435-3444. [DOI: 10.1021/acs.biomac.9b00713] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yangwei Deng
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, China
| | - Hui Chen
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Xinfeng Tao
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fangyi Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, China
| | - Sylvain Trépout
- Institut Curie, INSERM U1196 and CNRS UMR9187, 91405 Orsay Cedex, France
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, China
| | - Min-Hui Li
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, 100029 Beijing, China
| |
Collapse
|
34
|
Xu XF, Pan CY, Zhang WJ, Hong CY. Polymerization-Induced Self-Assembly Generating Vesicles with Adjustable pH-Responsive Release Performance. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00144] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao-Fei Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
35
|
Chen M, Li JW, Zhang WJ, Hong CY, Pan CY. pH- and Reductant-Responsive Polymeric Vesicles with Robust Membrane-Cross-Linked Structures: In Situ Cross-Linking in Polymerization-Induced Self-Assembly. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02081] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Miao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jia-Wei Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen-Jian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
36
|
Wang L, Zhu K, Cao W, Sun C, Lu C, Xu H. ROS-triggered degradation of selenide-containing polymers based on selenoxide elimination. Polym Chem 2019. [DOI: 10.1039/c9py00171a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A degradable ROS responsive selenide-containing block polymer would undergo an oxidation-related elimination and degradation process.
Collapse
Affiliation(s)
- Lu Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Kuixin Zhu
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Wei Cao
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | - Chenxing Sun
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Chenjie Lu
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
37
|
Yao Y, Zhang H, Wang Z, Ding J, Wang S, Huang B, Ke S, Gao C. Reactive oxygen species (ROS)-responsive biomaterials mediate tissue microenvironments and tissue regeneration. J Mater Chem B 2019; 7:5019-5037. [DOI: 10.1039/c9tb00847k] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ROS-responsive biomaterials alleviate the oxidative stress in tissue microenvironments, promoting tissue regeneration and disease therapy.
Collapse
Affiliation(s)
- Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhaoyi Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Baiqiang Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Shifeng Ke
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
38
|
Ramírez-Expósito MJ, Martínez-Martos JM. The Delicate Equilibrium between Oxidants and Antioxidants in Brain Glioma. Curr Neuropharmacol 2019; 17:342-351. [PMID: 29512467 PMCID: PMC6482474 DOI: 10.2174/1570159x16666180302120925] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/03/2018] [Accepted: 02/02/2018] [Indexed: 11/22/2022] Open
Abstract
Gliomas are the most frequent brain tumors in the adult population and unfortunately the adjuvant therapies are not effective. Brain tumorigenesis has been related both to the increased levels of free radicals as inductors of severe damages in healthy cells, but also with the reduced response of endogenous enzyme and non-enzymatic antioxidant defenses. In turn, both processes induce the change to malignant cells. In this review, we analyzed the role of the imbalance between free radicals production and antioxidant mechanism in the development and progression of gliomas but also the influence of redox status on the two major distinctive forms of programmed cell death related to cancer: apoptosis and autophagy. These data may be the reference to the development of new pharmacological options based on redox microenvironment for glioma treatment.
Collapse
Affiliation(s)
- María Jesús Ramírez-Expósito
- Experimental and Clinical Physiopathology Research Group CTS-1039; Department of Health Sciences, Faculty of Health Sciences; University of Jaén, Campus Universitario Las Lagunillas, Jaén, Spain
| | - José Manuel Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039; Department of Health Sciences, Faculty of Health Sciences; University of Jaén, Campus Universitario Las Lagunillas, Jaén, Spain
| |
Collapse
|
39
|
Zheng D, Gao Z, Xu T, Liang C, Shi Y, Wang L, Yang Z. Responsive peptide-based supramolecular hydrogels constructed by self-immolative chemistry. NANOSCALE 2018; 10:21459-21465. [PMID: 30427030 DOI: 10.1039/c8nr07534d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peptide-based supramolecular hydrogels that are stimuli-responsive under aqueous conditions have many potential biological applications, including drug delivery and sensing. Herein, we reported a series of responsive peptide-based supramolecular hydrogels that respond to glutathione (GSH), nitric oxide (NO) and hydrogen sulfide (H2S), which are biologically important signaling molecules. The responsive hydrogelators were designed by "self-immolative" chemistry and constructed by using self-immolative groups to modify short peptides. The self-immolative capping group could be removed in the presence of a corresponding trigger, thus causing gel-sol phase transitions. The potential of our responsive hydrogels for drug release was also demonstrated in this study. Our study offered several candidates of responsive hydrogels for sensing and drug delivery.
Collapse
Affiliation(s)
- Debin Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Synthesis and characterization of triple-responsive PNiPAAm-S-S-P(αN3CL-g-alkyne) copolymers bearing cholesterol and fluorescence monitor. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Liu G, Hu J, Liu S. Emerging Applications of Fluorogenic and Non-fluorogenic Bifunctional Linkers. Chemistry 2018; 24:16484-16505. [PMID: 29893499 DOI: 10.1002/chem.201801290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 01/06/2023]
Abstract
Homo- and hetero-bifunctional linkers play vital roles in constructing a variety of functional systems, ranging from protein bioconjugates with drugs and functional agents, to surface modification of nanoparticles and living cells, and to the cyclization/dimerization of synthetic polymers and biomolecules. Conventional approaches for assaying conjugation extents typically rely on ex situ techniques, such as mass spectrometry, gel electrophoresis, and size-exclusion chromatography. If the conjugation process involving bifunctional linkers was rendered fluorogenic, then in situ monitoring, quantification, and optical tracking/visualization of relevant processes would be achieved. In this review, conventional non-fluorogenic linkers are first discussed. Then the focus is on the evolution and emerging applications of fluorogenic bifunctional linkers, which are categorized into hetero-bifunctional single-caging fluorogenic linkers, homo-bifunctional double-caging fluorogenic linkers, and hetero-bifunctional double-caging fluorogenic linkers. In addition, stimuli-cleavable bifunctional linkers designed for both conjugation and subsequent site-specific triggered release are also summarized.
Collapse
Affiliation(s)
- Guhuan Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the MicroscaleiChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P.R. China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the MicroscaleiChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P.R. China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the MicroscaleiChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P.R. China
| |
Collapse
|
42
|
Recent advances on stimuli-responsive macromolecular magnetic resonance imaging (MRI) contrast agents. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9291-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Zhang WJ, Hong CY, Pan CY. Polymerization-Induced Self-Assembly of Functionalized Block Copolymer Nanoparticles and Their Application in Drug Delivery. Macromol Rapid Commun 2018; 40:e1800279. [DOI: 10.1002/marc.201800279] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/21/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| |
Collapse
|
44
|
Zhang M, Song CC, Su S, Du FS, Li ZC. ROS-Activated Ratiometric Fluorescent Polymeric Nanoparticles for Self-Reporting Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7798-7810. [PMID: 29424527 DOI: 10.1021/acsami.7b18438] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS)-responsive theranostic nanomedicines have attracted wide interest in recent years because ROS stress is implicated in some pathological disorders such as inflammatory diseases and cancers. In this article, we report a kind of innovative ROS-responsive theranostic polymeric nanoparticles that are able to load hydrophobic drugs and to fluorescently self-report the in vitro or intracellular drug release under ROS triggering. The fluorescent nanoparticles were formed by amphiphilic block copolymers consisting of a poly(ethylene glycol) (PEG) segment and an oxidation-responsive hydrophobic block. The copolymers with different hydrophobic block lengths were synthesized by the atom transfer radical polymerization of a phenylboronic ester-containing acrylic monomer with a small fraction of a ROS-activatable 1,8-naphthalimide-based fluorescent monomer, using PEG-Br as the macroinitiator. The copolymer nanoparticles were stable in neutral phosphate buffer but degraded upon H2O2 triggering, with the degradation rate depending on the hydrophobic block length and the concentration of H2O2. The degradation of nanoparticles was accompanied by a colorimetric change of the fluorophore from blue to green, which affords the nanoparticles the ability to detecting H2O2 by a ratiometric fluorescent approach. Moreover, the nanoparticles could encapsulate doxorubicin (DOX) and the H2O2-triggered DOX release was well associated with the change in ratiometric fluorescence. Confocal laser scanning microscope results reveal that the fluorescent nanoparticles were internalized into A549 cells through the endocytosis pathway. The ROS-stimulated degradation of the nanoparticles and intracellular DOX release and the fate of the degraded polymers could be monitored by ratiometric fluorescent imaging. Finally, the naked nanoparticles and the degradation products are cytocompatible, whereas the DOX-loaded ones exhibit concentration-dependent cytotoxicity. Of importance, the stimulation with exogenous H2O2 or lipopolysaccharide enhanced obviously the cell-killing capability of the DOX-loaded nanoparticles because of the ROS-enhanced intracellular DOX release.
Collapse
Affiliation(s)
- Mei Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Cheng-Cheng Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Shan Su
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| |
Collapse
|
45
|
Zhang WM, Zhang J, Qiao Z, Liu HY, Wu ZQ, Yin J. Facile fabrication of positively-charged helical poly(phenyl isocyanide) modified multi-stimuli-responsive nanoassembly capable of high efficiency cell-penetrating, ratiometric fluorescence imaging, and rapid intracellular drug release. Polym Chem 2018. [DOI: 10.1039/c8py00865e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High efficiency cell-penetrating helical chain functionalized polymeric micelles capable of co-delivery of cargoes and rapid release were reported.
Collapse
Affiliation(s)
- Wen-Ming Zhang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Jian Zhang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Zhu Qiao
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Huan-Ying Liu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Jun Yin
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| |
Collapse
|
46
|
Wu W, Dai W, Zhao X, Zhang J, Zhao Y. Synthesis, self-assembly and drug release behaviors of reduction-labile multi-responsive block miktobrush quaterpolymers with linear and V-shaped grafts. Polym Chem 2018. [DOI: 10.1039/c8py00245b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stimuli-tunable topological/morphological transitions and drug release properties based on novel disulfide-functionalized coil–comb–coil quaterpolymers were revealed.
Collapse
Affiliation(s)
- Wentao Wu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Wenxue Dai
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiaoqi Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
47
|
Zhao X, Wu W, Zhang J, Dai W, Zhao Y. Thermoresponse and self-assembly of an ABC star quarterpolymer with O2 and redox dual-responsive Y junctions. Polym Chem 2018. [DOI: 10.1039/c8py00085a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stimuli-tunable LCST-type phase transition and self-assembly behaviors of a multi-responsive 3-miktoarm star bearing O2/redox-sensitive and H-bond-switchable Y junctions were revealed.
Collapse
Affiliation(s)
- Xiaoqi Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Wentao Wu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Wenxue Dai
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
48
|
Chen W, Zhang Y, Li X, Chen H, Sun J, Feng F. H 2S Activated Drug Release from Protein Cages. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33571-33575. [PMID: 28915008 DOI: 10.1021/acsami.7b12524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We took advantage of gasotransmitter H2S as a chemical reaction-based trigger for controlled release of doxorubicin which is precoordinated by copper ions and enclosed in horse spleen apoferritin. The nanocomposite is stable at physiological pH and temperature before H2S activation. The drug release process avoids disassembly of protein shells and is controllable by the strong affinity of sulfide with copper ions. The in vitro cytotoxicity assay indicates the antitumor effect of doxorubicin toward tumor cells could be achievable by H2S activation.
Collapse
Affiliation(s)
- Weijian Chen
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Yajie Zhang
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Xiao Li
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Hong Chen
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
- Lab of Advanced Functional Materials, School of Environmental Science, Nanjing Xiaozhuang University , Nanjing 210013, P. R. China
| | - Jian Sun
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Fude Feng
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| |
Collapse
|