1
|
He L, Chen Y, Shao X, Yao Q, Feng D, Yin L, Wang W. A Facile Method in Fabricating Flexible Conductive Composites with Large-Size Segregated Structures for Electromagnetic Interference Shielding. Macromol Rapid Commun 2025; 46:e2400585. [PMID: 39461897 DOI: 10.1002/marc.202400585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/06/2024] [Indexed: 10/29/2024]
Abstract
To resist the plastic deformation of polymer particles during hot press molding, high molecular weights, and moduli are required for composites with segregated structures, thus the prepared composites exhibit poor flexibility. Also, larger particle sizes can bring lower percolation thresholds while the ensuing greater deformation destroys the conductive network. Moreover, segregated composites still face preparation complexities. Herein, a facile method for developing flexible composites with large-size segregated structures is proposed. First, silver-coated polydopamine-modified reduced graphene oxide (Ag@PrGO), as conductive fillers, is prepared by electroless plating. Next, polydimethylsiloxane (PDMS)-coated polyolefin elastomer (POE) beads are put into a bag containing the fillers. After a simple shaking, the fillers are adhered to the POE surface as the cohesive property of cured PDMS. Finally, flexible composites with large-size segregated structures are obtained via hot pressing. Benefiting from the 2D structure of the Ag@PrGO and the ability to slip, the conductive networks possess adaptable deformability. The prepared composites exhibit excellent electrical conductivity (203.55 S cm-1) at filler volume fractions of 3.4 vol%. The EMI shielding effectiveness can reach 70 dB in the X-band at a thickness of 1.9 mm and remains stable after bending and rubbing damage. This work paves the way for constructing large-size segregated structures.
Collapse
Affiliation(s)
- Liang He
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoming Shao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qiyuan Yao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ding Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lijie Yin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wencai Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Shijie Gao, Liu X, Liu X, Chen D, Guo H, Yin J. Predicting the AC Conductivity of Nanocomposite Films using the Bagging Model. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
3
|
Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim DH. Soft Bioelectronics Based on Nanomaterials. Chem Rev 2021; 122:5068-5143. [PMID: 34962131 DOI: 10.1021/acs.chemrev.1c00531] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent advances in nanostructured materials and unconventional device designs have transformed the bioelectronics from a rigid and bulky form into a soft and ultrathin form and brought enormous advantages to the bioelectronics. For example, mechanical deformability of the soft bioelectronics and thus its conformal contact onto soft curved organs such as brain, heart, and skin have allowed researchers to measure high-quality biosignals, deliver real-time feedback treatments, and lower long-term side-effects in vivo. Here, we review various materials, fabrication methods, and device strategies for flexible and stretchable electronics, especially focusing on soft biointegrated electronics using nanomaterials and their composites. First, we summarize top-down material processing and bottom-up synthesis methods of various nanomaterials. Next, we discuss state-of-the-art technologies for intrinsically stretchable nanocomposites composed of nanostructured materials incorporated in elastomers or hydrogels. We also briefly discuss unconventional device design strategies for soft bioelectronics. Then individual device components for soft bioelectronics, such as biosensing, data storage, display, therapeutic stimulation, and power supply devices, are introduced. Afterward, representative application examples of the soft bioelectronics are described. A brief summary with a discussion on remaining challenges concludes the review.
Collapse
Affiliation(s)
- Kyoung Won Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Wei Y, Zhou H, Deng H, Ji W, Tian K, Ma Z, Zhang K, Fu Q. "Toolbox" for the Processing of Functional Polymer Composites. NANO-MICRO LETTERS 2021; 14:35. [PMID: 34918192 PMCID: PMC8677876 DOI: 10.1007/s40820-021-00774-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/17/2021] [Indexed: 05/31/2023]
Abstract
UNLABELLED The processing methods of functional polymer composites (FPCs) are systematically summarized in “Toolbox”. The relationship of processing method-structure-property is discussed and the selection and combination of tools in processing among different FPCs are analyzed. A promising prospect is provided regarding the design principle for high performance FPCs for further investigation. ABSTRACT Functional polymer composites (FPCs) have attracted increasing attention in recent decades due to their great potential in delivering a wide range of functionalities. These functionalities are largely determined by functional fillers and their network morphology in polymer matrix. In recent years, a large number of studies on morphology control and interfacial modification have been reported, where numerous preparation methods and exciting performance of FPCs have been reported. Despite the fact that these FPCs have many similarities because they are all consisting of functional inorganic fillers and polymer matrices, review on the overall progress of FPCs is still missing, and especially the overall processing strategy for these composites is urgently needed. Herein, a “Toolbox” for the processing of FPCs is proposed to summarize and analyze the overall processing strategies and corresponding morphology evolution for FPCs. From this perspective, the morphological control methods already utilized for various FPCs are systematically reviewed, so that guidelines or even predictions on the processing strategies of various FPCs as well as multi-functional polymer composites could be given. This review should be able to provide interesting insights for the field of FPCs and boost future intelligent design of various FPCs. [Image: see text] SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40820-021-00774-5.
Collapse
Affiliation(s)
- Yun Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Hongju Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Hua Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Wenjing Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Ke Tian
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zhuyu Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Kaiyi Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| |
Collapse
|
5
|
Zhu Z, Gao C, Shen Y, Wang T, Hu G. Improving oxygen barrier properties of
PET
composites via grafting hydroxy‐terminated polybutadiene with nanosilica. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zihao Zhu
- College of Materials Science and Engineering Nanjing Tech University Nanjing China
| | - Cong Gao
- College of Materials Science and Engineering Nanjing Tech University Nanjing China
| | - Yucai Shen
- College of Materials Science and Engineering Nanjing Tech University Nanjing China
| | - Tingwei Wang
- College of Materials Science and Engineering Nanjing Tech University Nanjing China
| | - Guangjun Hu
- China Resources Chemical Innovative Materials Co., Ltd Changzhou China
| |
Collapse
|
6
|
Luo H, Zhou X, Ellingford C, Zhang Y, Chen S, Zhou K, Zhang D, Bowen CR, Wan C. Interface design for high energy density polymer nanocomposites. Chem Soc Rev 2019; 48:4424-4465. [PMID: 31270524 DOI: 10.1039/c9cs00043g] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides a detailed overview on the latest developments in the design and control of the interface in polymer based composite dielectrics for energy storage applications. The methods employed for interface design in composite systems are described for a variety of filler types and morphologies, along with novel approaches employed to build hierarchical interfaces for multi-scale control of properties. Efforts to achieve a close control of interfacial properties and geometry are then described, which includes the creation of either flexible or rigid polymer interfaces, the use of liquid crystals and developing ceramic and carbon-based interfaces with tailored electrical properties. The impact of the variety of interface structures on composite polarization and energy storage capability are described, along with an overview of existing models to understand the polarization mechanisms and quantitatively assess the potential benefits of different structures for energy storage. The applications and properties of such interface-controlled materials are then explored, along with an overview of existing challenges and practical limitations. Finally, a summary and future perspectives are provided to highlight future directions of research in this growing and important area.
Collapse
Affiliation(s)
- Hang Luo
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China.
| | - Xuefan Zhou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China.
| | - Christopher Ellingford
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, CV4 7AL, UK.
| | - Yan Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China. and Department of Mechanical Engineering, University of Bath, Bath, BA2 2ET, UK.
| | - Sheng Chen
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Kechao Zhou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China.
| | - Dou Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China.
| | - Chris R Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 2ET, UK.
| | - Chaoying Wan
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, CV4 7AL, UK.
| |
Collapse
|
7
|
Surface-modified microcrystalline cellulose for reinforcement of chitosan film. Carbohydr Polym 2018; 201:367-373. [DOI: 10.1016/j.carbpol.2018.08.085] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/28/2018] [Accepted: 08/20/2018] [Indexed: 11/22/2022]
|
8
|
Duan L, D'hooge DR, Spoerk M, Cornillie P, Cardon L. Facile and Low-Cost Route for Sensitive Stretchable Sensors by Controlling Kinetic and Thermodynamic Conductive Network Regulating Strategies. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22678-22691. [PMID: 29808670 DOI: 10.1021/acsami.8b03967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Highly sensitive conductive polymer composites (CPCs) are designed employing a facile and low-cost extrusion manufacturing process for both low- and high-strain sensing in the field of, for example, structural health/damage monitoring and human body movement tracking. Focus is on the morphology control for extrusion-processed carbon black (CB)-filled CPCs, utilizing binary and ternary composites based on thermoplastic polyurethane (TPU) and olefin block copolymer (OBC). The relevance of the correct CB amount, kinetic control through a variation of the compounding sequence, and thermodynamic control induced by annealing is highlighted, considering a wide range of experimental (e.g., static and dynamic resistance/scanning electron microscopy/rheological measurements) and theoretical analyses. High CB mass fractions (20 m %) are needed for OBC (or TPU)-CB binary composites but only lead to an intermediate sensitivity as their conductive network is fully packed and therefore difficult to be truly destructed. Annealing is needed to enable a monotonic increase of the relative resistance with respect to strain. With ternary composites, a much higher sensitivity with a clearer monotonic increase results, provided that a low CB mass fraction (10-16 m %) is used and annealing is applied. In particular, with CB first dispersed in OBC and annealing, a less compact, hence, brittle conductive network (10-12 m % CB) is obtained, allowing high-performance sensing.
Collapse
Affiliation(s)
- Lingyan Duan
- Centre for Polymer and Material Technologies, Department of Materials, Textiles and Chemical Engineering , Ghent University , Technologiepark 915 , Zwijnaarde, Ghent 9052 , Belgium
| | - Dagmar R D'hooge
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering , Ghent University , Technologiepark 914 , Zwijnaarde, Ghent 9052 , Belgium
- Centre for Textile Science and Engineering, Department of Materials, Textiles and Chemical Engineering , Ghent University , Technologiepark 907 , Zwijnaarde, Ghent 9052 , Belgium
| | - Martin Spoerk
- Centre for Polymer and Material Technologies, Department of Materials, Textiles and Chemical Engineering , Ghent University , Technologiepark 915 , Zwijnaarde, Ghent 9052 , Belgium
- Institute of Polymer Processing , Montanuniversitaet Leoben , A-8700 Leoben , Austria
| | - Pieter Cornillie
- Department of Morphology, Faculty of Veterinary Medicine , Ghent University , Salisburylaan 133 , 9820 Merelbeke , Belgium
| | - Ludwig Cardon
- Centre for Polymer and Material Technologies, Department of Materials, Textiles and Chemical Engineering , Ghent University , Technologiepark 915 , Zwijnaarde, Ghent 9052 , Belgium
| |
Collapse
|