1
|
Li CW, Merlitz H, Sommer JU. How to estimate the surface coverage of polymer grafted planar substrates and spherical nanoparticles. SOFT MATTER 2025; 21:2915-2922. [PMID: 40145531 DOI: 10.1039/d5sm00005j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Surface coverage is an important parameter in describing the kinetics of adsorption in interface science, the adsorption theory of macromolecules (e.g., proteins, DNA) on biomaterial surface, the stability of colloids with surface modifications and the application of surfactants at interfaces. In this work, we focus on nanoparticles (NPs) with polymer coatings and, with a mean-field approach, propose a universal theoretical model for calculating the coverage of polymers on planar or spherical substrates at different solvent qualities. Validated by molecular dynamics simulations, our model is applicable to a wide range of polymer morphologies - from partially occluded to completely covered NPs - and provides a novel quantitative approach to characterize this type of polymer patchy particles.
Collapse
Affiliation(s)
- Cheng-Wu Li
- Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany.
| | - Holger Merlitz
- Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany.
| | - Jens-Uwe Sommer
- Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany.
- Institute for Theoretical Physics, TU Dresden, Zellescher Weg 13, Germany
| |
Collapse
|
2
|
Rossner C. Polymer-Grafted Gold Colloids and Supracolloids: From Mechanisms of Formation to Dynamic Soft Matter. Macromol Rapid Commun 2025; 46:e2400851. [PMID: 39783139 PMCID: PMC11884231 DOI: 10.1002/marc.202400851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Gold nanoparticles represent nanosized colloidal entities with high relevance for both basic and applied research. When gold nanoparticles are functionalized with polymer-molecule ligands, hybrid nanoparticles emerge whose interactions with the environment are controlled by the polymer coating layer: Colloidal stability and structure formation on the single particle level as well as at the supracolloidal scale can be enabled and engineered by tailoring the composition and architecture of this polymer coating. These possibilities in controlling structure formation may lead to synergistic and/or emergent functional properties of such hybrid colloidal systems. Eventually, the responsivity of the polymer coating to external triggers also enables the formation of hybrid supracolloidal systems with specific dynamic properties. This review provides an overview of fundamentals and recent developments in this vibrant domain of materials science.
Collapse
Affiliation(s)
- Christian Rossner
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
- Faculty of Chemistry and Food ChemistryTechnische Universität DresdenD‐01069DresdenGermany
- Department of PolymersUniversity of Chemistry and Technology PragueTechnická 5Prague 6166 28Czech Republic
| |
Collapse
|
3
|
Wang Y, Chen L, Lu J, Pan J, Zhang J. Surface Orthogonal Patterning and Bidirectional Self-Assembly of Nanoparticles Tethered by V-Shaped Diblock Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16595-16604. [PMID: 39066716 DOI: 10.1021/acs.langmuir.4c02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We investigated the surface orthogonal patterning and bidirectional self-assembly of binary hairy nanoparticles (NPs) constructed by uniformly tethering a single NP with multiple V-shaped AB diblock copolymers using Brownian dynamics simulations in a poor solvent. At low concentration, the chain collapse and microphase separation of binary polymer brushes can lead to the patterning of the NP surface into A- and B-type orthogonal patches with various numbers of domains (valency), n = 1-6, that adopt spherical, linear, triangular, tetrahedral, square pyramidal, and pentagonal pyramidal configurations. There is a linear relationship between the valency and the average ratio of NP diameter to the polymers' unperturbed root-mean-square end-to-end distance for the corresponding valency. The linear slope depends on the grafting density and is independent of the interaction parameters between polymers. At high concentration, the orthogonal patch NPs serve as building blocks and exhibit directional attractions by overlapping the same type of domains, resulting in self-assembly into a series of fascinating architectures depending on the valency and polymer length. Notably, the 2-valent orthogonal patch NPs have the bidirectional bonding ability to form the two-dimensional (2D) square NP arrays by two distinct pathways. Simultaneously patching A and B blocks enables the one-step formation of 2D square arrays via bidirectional growth, whereas step-by-step patching causes the directional formation of 1D chains followed by 2D square arrays. Moreover, the gap between NPs in the 2D square arrays is related to the polymer length but independent of the NP diameter. These 2D square NP arrays are of significant value in practical applications such as integrated circuit manufacturing and nanotechnology.
Collapse
Affiliation(s)
- Yingying Wang
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| | - Liyuan Chen
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| | - Jiafan Lu
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| | - Junxing Pan
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| | - Jinjun Zhang
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| |
Collapse
|
4
|
Kim A, Akkunuri K, Qian C, Yao L, Sun K, Chen Z, Vo T, Chen Q. Direct Imaging of "Patch-Clasping" and Relaxation in Robust and Flexible Nanoparticle Assemblies. ACS NANO 2024; 18:939-950. [PMID: 38146750 DOI: 10.1021/acsnano.3c09710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Polymer patching on inorganic nanoparticles (NPs) enables multifunctionality and directed self-assembly into nonclosely packed optical and mechanical metamaterials. However, experimental demonstration of such assemblies has been scant due to challenges in leveraging patch-induced NP-NP attractions and understanding NP self-assembly dynamics. Here we use low-dose liquid-phase transmission electron microscopy to visualize the dynamic behaviors of tip-patched triangular nanoprisms upon patch-clasping, where polymer patches interpenetrate to form cohesive bonds that connect NPs. Notably, these bonds are longitudinally robust but rotationally flexible. Patch-clasping is found to allow highly selective tip-tip assembly, interconversion between dimeric bowtie and sawtooth configurations, and collective structural relaxation of NP networks. The integration of single particle tracking, polymer physics theory, and molecular dynamics simulation reveals the macromolecular origin of patch-clasping-induced NP dynamics. Our experiment-computation integration can aid the design of stimuli-responsive nanomaterials, such as topological metamaterials for chiral sensors, waveguides, and nanoantennas.
Collapse
Affiliation(s)
- Ahyoung Kim
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Kireeti Akkunuri
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chang Qian
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Lehan Yao
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Kai Sun
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zi Chen
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Thi Vo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Cui Y, Wang J, Liang J, Qiu H. Molecular Engineering of Colloidal Atoms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207609. [PMID: 36799197 DOI: 10.1002/smll.202207609] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/02/2023] [Indexed: 05/18/2023]
Abstract
Creation of architectures with exquisite hierarchies actuates the germination of revolutionized functions and applications across a wide range of fields. Hierarchical self-assembly of colloidal particles holds the promise for materialized realization of structural programing and customizing. This review outlines the general approaches to organize atom-like micro- and nanoparticles into prescribed colloidal analogs of molecules by exploiting diverse interparticle driving motifs involving confining templates, interactive surface ligands, and flexible shape/surface anisotropy. Furthermore, the self-regulated/adaptive co-assembly of simple unvarnished building blocks is discussed to inspire new designs of colloidal assembly strategies.
Collapse
Affiliation(s)
- Yan Cui
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingchun Wang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juncong Liang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Gong S, Wang T, Lin J, Wang L. Patterning of Polymer-Functionalized Nanoparticles with Varied Surface Mobilities of Polymers. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1254. [PMID: 36770260 PMCID: PMC9920074 DOI: 10.3390/ma16031254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The polymers can be either dynamically tethered to or permanently grafted to the nanoparticle to produce polymer-functionalized nanoparticles. The surface mobility of polymer ligands with one end anchored to the nanoparticle can affect the surface pattern, but the effect remains unclear. Here, we addressed the influence of lateral polymer mobility on surface patterns by performing self-consistent field theory calculations on a modeled polymer-functionalized nanoparticle consisting of immobile and mobile brushes. The results show that except for the radius of nanoparticles and grafting density, the fraction of mobile brushes substantially influences the surface patterning of polymer-functionalized nanoparticles, including striped patterns and patchy patterns with various patches. The number of patches on a nanoparticle increases as the fraction of mobile brushes decreases, favored by the entropy of immobile brushes. Critically, we found that broken symmetry usually occurs in patchy nanoparticles, associated with the balance of enthalpic and entropic effects. The present work provides a fundamental understanding of the dependence of surface patterning on lateral polymer mobility. The work could also guide the preparation of diversified nanopatterns, especially for the asymmetric patchy nanoparticles, enabling the fundamental investigation of the interaction between polymer-functionalized nanoparticles.
Collapse
|
7
|
Burks GR, Yao L, Kalutantirige FC, Gray KJ, Bello E, Rajagopalan S, Bialik SB, Barrick JE, Alleyne M, Chen Q, Schroeder CM. Electron Tomography and Machine Learning for Understanding the Highly Ordered Structure of Leafhopper Brochosomes. Biomacromolecules 2023; 24:190-200. [PMID: 36516996 DOI: 10.1021/acs.biomac.2c01035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insects known as leafhoppers (Hemiptera: Cicadellidae) produce hierarchically structured nanoparticles known as brochosomes that are exuded and applied to the insect cuticle, thereby providing camouflage and anti-wetting properties to aid insect survival. Although the physical properties of brochosomes are thought to depend on the leafhopper species, the structure-function relationships governing brochosome behavior are not fully understood. Brochosomes have complex hierarchical structures and morphological heterogeneity across species, due to which a multimodal characterization approach is required to effectively elucidate their nanoscale structure and properties. In this work, we study the structural and mechanical properties of brochosomes using a combination of atomic force microscopy (AFM), electron microscopy (EM), electron tomography, and machine learning (ML)-based quantification of large and complex scanning electron microscopy (SEM) image data sets. This suite of techniques allows for the characterization of internal and external brochosome structures, and ML-based image analysis methods of large data sets reveal correlations in the structure across several leafhopper species. Our results show that brochosomes are relatively rigid hollow spheres with characteristic dimensions and morphologies that depend on leafhopper species. Nanomechanical mapping AFM is used to determine a characteristic compression modulus for brochosomes on the order of 1-3 GPa, which is consistent with crystalline proteins. Overall, this work provides an improved understanding of the structural and mechanical properties of leafhopper brochosomes using a new set of ML-based image classification tools that can be broadly applied to nanostructured biological materials.
Collapse
Affiliation(s)
- Gabriel R Burks
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Lehan Yao
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Falon C Kalutantirige
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Kyle J Gray
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Elizabeth Bello
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States.,Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Shreyas Rajagopalan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States.,Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Sarah B Bialik
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Marianne Alleyne
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States.,Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States.,Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Charles M Schroeder
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| |
Collapse
|
8
|
Kim A, Vo T, An H, Banerjee P, Yao L, Zhou S, Kim C, Milliron DJ, Glotzer SC, Chen Q. Symmetry-breaking in patch formation on triangular gold nanoparticles by asymmetric polymer grafting. Nat Commun 2022; 13:6774. [DOI: 10.1038/s41467-022-34246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractSynthesizing patchy particles with predictive control over patch size, shape, placement and number has been highly sought-after for nanoparticle assembly research, but is fraught with challenges. Here we show that polymers can be designed to selectively adsorb onto nanoparticle surfaces already partially coated by other chains to drive the formation of patchy nanoparticles with broken symmetry. In our model system of triangular gold nanoparticles and polystyrene-b-polyacrylic acid patch, single- and double-patch nanoparticles are produced at high yield. These asymmetric single-patch nanoparticles are shown to assemble into self-limited patch‒patch connected bowties exhibiting intriguing plasmonic properties. To unveil the mechanism of symmetry-breaking patch formation, we develop a theory that accurately predicts our experimental observations at all scales—from patch patterning on nanoparticles, to the size/shape of the patches, to the particle assemblies driven by patch‒patch interactions. Both the experimental strategy and theoretical prediction extend to nanoparticles of other shapes such as octahedra and bipyramids. Our work provides an approach to leverage polymer interactions with nanoscale curved surfaces for asymmetric grafting in nanomaterials engineering.
Collapse
|
9
|
Zhang Y, Dong W, Wang Y, Wu Q, Yi C, Yang Y, Xu Y, Nie Z. Synthesis of Patchy Nanoparticles with Symmetry Resembling Polar Small Molecules. SMALL METHODS 2022; 6:e2200545. [PMID: 35869619 DOI: 10.1002/smtd.202200545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Patchy nanoparticles (NPs) show many important applications, especially for constructing structurally complex colloidal materials, but existing synthetic strategies generate patchy NPs with limited types of symmetry. This article describes a versatile copolymer ligand-based strategy for the scalable synthesis of uniform Au-(SiO2 )x patchy NPs (x is the patch number and 1 ≤ x ≤ 5) with unusual symmetry at high yield. The hydrolysis and condensation of tetraethyl orthosilicate on block-random copolymer ligands induces the segregation of copolymers on gold NPs (AuNPs) and hence governs the structure and distribution of silica patches formed on the AuNPs. The resulting patchy NPs possess unique configurations where the silica patches are symmetrically arranged at one side of the core NP, resembling the geometry of polar small molecules. The number, size, and morphology of silica patches, as well as the spacing between the patches and the AuNP can be precisely tuned by tailoring copolymer architectures, grafting density of copolymers, and the size of AuNPs. Furthermore, it is demonstrated that the Au-(SiO2 )x patchy NPs can assemble into more complex superstructures through directional interaction between the exposed Au surfaces. This work offers new opportunities of designing next-generation complex patchy NPs for applications in such as biomedicines, self-assembly, and catalysis.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Wenhao Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Yazi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Qi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Chenglin Yi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Yiqun Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Yifei Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu City, Zhejiang, 322000, P. R. China
| |
Collapse
|
10
|
Jeon J, Kang H, Lee K, Sohn BH. Patch formation on diblock copolymer micelles confined in templates for inducing patch orientation and cyclic colloidal molecules. J Colloid Interface Sci 2022; 616:813-822. [PMID: 35248968 DOI: 10.1016/j.jcis.2022.02.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Chemically or physically distinct patches can be induced on the micelles of amphiphilic block copolymers, which facilitate directional binding for the creation of hierarchical structures. Hence, control over the direction of patches on the micelles is a crucial factor to attain the directionality on the interactions between the micelles, particularly for generating colloidal molecules mimicking the symmetry of molecular structures. We hypothesized that direction and combination of the patches could be controlled by physical confinement of the micelles. EXPERIMENTS We first confined spherical micelles of diblock copolymers in topographic templates fabricated from nanopatterns of block copolymers by adjusting the coating conditions. Then, patch formation was conducted on the confined micelles by exposing them with a core-favorable solvent. Microscopic techniques of SEM, TEM, and AFM were employed to investigate directions of patches and structures of combined micelles in the template. FINDINGS The orientation of the patches on the micelles was guided by the physical confinement of the micelles in linear trenches. In addition, by confining the micelles in a circular hole, we obtained a specific polygon arrangement of the micelles depending on the number of micelles in the hole, which enabled the formation of cyclic colloidal molecules consisting of micelles.
Collapse
Affiliation(s)
- Jonghyuk Jeon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Heejung Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyunghyeon Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Byeong-Hyeok Sohn
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
11
|
Lee S, Sim K, Moon SY, Choi J, Jeon Y, Nam JM, Park SJ. Controlled Assembly of Plasmonic Nanoparticles: From Static to Dynamic Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007668. [PMID: 34021638 DOI: 10.1002/adma.202007668] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/30/2020] [Indexed: 05/20/2023]
Abstract
The spatial arrangement of plasmonic nanoparticles can dramatically affect their interaction with electromagnetic waves, which offers an effective approach to systematically control their optical properties and manifest new phenomena. To this end, significant efforts were made to develop methodologies by which the assembly structure of metal nanoparticles can be controlled with high precision. Herein, recent advances in bottom-up chemical strategies toward the well-controlled assembly of plasmonic nanoparticles, including multicomponent and multifunctional systems are reviewed. Further, it is discussed how the progress in this area has paved the way toward the construction of smart dynamic nanostructures capable of on-demand, reversible structural changes that alter their properties in a predictable and reproducible manner. Finally, this review provides insight into the challenges, future directions, and perspectives in the field of controlled plasmonic assemblies.
Collapse
Affiliation(s)
- Sunghee Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Kyunjong Sim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - So Yoon Moon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Jisu Choi
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Yoojung Jeon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| |
Collapse
|
12
|
Bohannon CA, Chancellor AJ, Kelly MT, Le TT, Zhu L, Li CY, Zhao B. Adaptable Multivalent Hairy Inorganic Nanoparticles. J Am Chem Soc 2021; 143:16919-16924. [PMID: 34623815 DOI: 10.1021/jacs.1c08261] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We report a polymer brush-based approach for fabricating multivalent patchy nanoparticles (NPs) with the number of nanodomains (valency) from 6 to 10, potentially from 1 to 10, by exploiting the lateral microphase separation of binary mixed homopolymer brushes grafted on NPs with a radius comparable to the polymer sizes. Well-defined mixed brushes were grown on 20.4 nm silica NPs by two-step surface-initiated reversible deactivation radical polymerizations and microphase separated laterally upon casting from a good solvent, producing multivalent NPs on 2D surfaces. A linear relationship between valency and average core size for the corresponding valency was observed. The mixed brush NPs exhibited abilities to form "bonds" through the overlap of nanodomains and to change the valency when interacting with adjacent NPs. This method could open up a new avenue for studying patchy NPs.
Collapse
Affiliation(s)
- Caleb A Bohannon
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Andrew J Chancellor
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Michael T Kelly
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tram T Le
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Lei Zhu
- Department of Macromolecular Science and Engineering and Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| | - Christopher Y Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
13
|
Lee J, Bae C, Ou Z, Park S, Kim J, Kim J. Nanoscopic morphological effect on the optical properties of polymer-grafted gold polyhedra. NANOSCALE ADVANCES 2021; 3:1927-1933. [PMID: 36133089 PMCID: PMC9419197 DOI: 10.1039/d1na00035g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 06/16/2023]
Abstract
Plasmonic nanoparticles show highly sensitive optical properties upon local dielectric environment changes. Hybridisation of plasmonic nanoparticles with active polymeric materials can allow stimuli-responsive and multiplex sensing over conventional monotonic sensing capacity. Such heterogeneous adlayers around the plasmonic core component, however, are likely to perturb the local refractive index in the nanometre regime and lead to uncertainty in its intrinsic sensitivity. Herein we prepare a series of polystyrene-grafted polyhedral gold nanoparticles, cubic and concave cubic cores, with different edge lengths and polymer thicknesses with precise synthesis control. Their localised surface plasmon resonance (LSPR) spectral changes are monitored to understand the effect of core morphological details in the interplay of nanoscale polymeric shells. Quantitative image analysis of changes in the core and shell shape contours and finite-difference time-domain simulations of the corresponding LSPR spectra and electric field distributions reveal that the magnitude of the LSPR spectral shift is closely dependent on the core morphology, polymer shell thickness and electric field intensity. We also demonstrate that the polystyrene-grafted gold concave cube displays higher sensitivity for nanoscale refractive index change in the polymer shell than the polystyrene-grafted gold cube at different temperatures. Our systematic investigation will help design polymer-composited plasmonic nanosensors for desirable applications.
Collapse
Affiliation(s)
- Jaedeok Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 South Korea
| | - Cheongwon Bae
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 South Korea
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University Stanford California 94305 USA
| | - Suhyeon Park
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 South Korea
| | - Jeongeon Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 South Korea
| | - Juyeong Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 South Korea
| |
Collapse
|
14
|
Yao L, Ou Z, Luo B, Xu C, Chen Q. Machine Learning to Reveal Nanoparticle Dynamics from Liquid-Phase TEM Videos. ACS CENTRAL SCIENCE 2020; 6:1421-1430. [PMID: 32875083 PMCID: PMC7453571 DOI: 10.1021/acscentsci.0c00430] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Indexed: 05/08/2023]
Abstract
Liquid-phase transmission electron microscopy (TEM) has been recently applied to materials chemistry to gain fundamental understanding of various reaction and phase transition dynamics at nanometer resolution. However, quantitative extraction of physical and chemical parameters from the liquid-phase TEM videos remains bottlenecked by the lack of automated analysis methods compatible with the videos' high noisiness and spatial heterogeneity. Here, we integrate, for the first time, liquid-phase TEM imaging with our customized analysis framework based on a machine learning model called U-Net neural network. This combination is made possible by our workflow to generate simulated TEM images as the training data with well-defined ground truth. We apply this framework to three typical systems of colloidal nanoparticles, concerning their diffusion and interaction, reaction kinetics, and assembly dynamics, all resolved in real-time and real-space by liquid-phase TEM. A diversity of properties for differently shaped anisotropic nanoparticles are mapped, including the anisotropic interaction landscape of nanoprisms, curvature-dependent and staged etching profiles of nanorods, and an unexpected kinetic law of first-order chaining assembly of concave nanocubes. These systems representing properties at the nanoscale are otherwise experimentally inaccessible. Compared to the prevalent image segmentation methods, U-Net shows a superior capability to predict the position and shape boundary of nanoparticles from highly noisy and fluctuating background-a challenge common and sometimes inevitable in liquid-phase TEM videos. We expect our framework to push the potency of liquid-phase TEM to its full quantitative level and to shed insights, in high-throughput and statistically significant fashion, on the nanoscale dynamics of synthetic and biological nanomaterials.
Collapse
Affiliation(s)
- Lehan Yao
- Department
of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute
for Advanced Science and Technology, and Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zihao Ou
- Department
of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute
for Advanced Science and Technology, and Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Binbin Luo
- Department
of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute
for Advanced Science and Technology, and Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Cong Xu
- Department
of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute
for Advanced Science and Technology, and Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Qian Chen
- Department
of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute
for Advanced Science and Technology, and Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- E-mail:
| |
Collapse
|
15
|
Galati E, Tao H, Rossner C, Zhulina EB, Kumacheva E. Morphological Transitions in Patchy Nanoparticles. ACS NANO 2020; 14:4577-4584. [PMID: 32176471 DOI: 10.1021/acsnano.0c00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoparticles (NPs) decorated with topographically or chemically distinct surface patches are an emerging class of colloidal building blocks of functional hierarchical materials. Surface segregation of polymer ligands into pinned micelles offers a strategy for the generation of patchy NPs with controlled spatial distribution and number of patches. The thermodynamic nature of this approach poses a question about the stability of multiple patches on the NP surface, as the lowest energy state is expected for NPs carrying a single patch. In the present work, for gold NPs end-grafted with thiol-terminated polymer molecules, we show that the patchy surface morphology is preserved under conditions of strong grafting of the thiol groups to the NP surface (i.e., up to a temperature of 40 °C), although the patch shape changes over time. At higher temperatures (e.g., at 80 °C), the number of patches per NP decreases, due to the increased lateral mobility and coalescence of the patches as well as the ultimate loss of the polymer ligands due to desorption at enhanced solvent quality. The experimental results were rationalized theoretically, using a scaling approach. The results of this work offer insight into the surface science of patchy nanocolloids and specify the time and temperature ranges of the applications of patchy NPs.
Collapse
Affiliation(s)
- Elizabeth Galati
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Huachen Tao
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Christian Rossner
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Physikalische Chemie und Physik der Polymere, D-01069 Dresden, Germany
| | - Ekaterina B Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint Petersburg 199004, Russia
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
16
|
Song X, Liu C, Liu X, Liu S. Investigating Polymer Transformation during the Encapsulation of Metal Nanoparticles by Polystyrene- b-poly(acrylic acid) in Colloids. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3969-3975. [PMID: 31867959 DOI: 10.1021/acsami.9b19264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The colloidal self-assembly method holds great potential for large-scale synthesis at low expense of energy as compared to methods that assemble molecules by manipulating building blocks one after another. The development of the colloidal method, however, requires careful and intelligent design of the single building blocks as numerous degrees of freedom like isotropic nanoparticles (NPs) generally form highly repetitive, lattice-like structures or random aggregates upon self-assembly because of their identical surfaces throughout. Specifically, it is an interesting direction that if one can precisely control the localization of surface functionalities (i.e., ligands or polymer shells) on the NPs, a plethora of self-assembled structures (e.g., chains, sheets, rings, twisted, and even staircase structures) would be possible. Despite numerous simulations and modeling for this type of NPs, just a handful literature studies reported the controlling synthesis of metal-polymer patchy NPs through polymer shell shrinking/transformation in colloids. However, there are no detailed control experiments showing the mechanism of this polymer shell shrinking or transformation phenomenon. With the absence of a fundamental understanding of the driving forces and interactions between metal NP surface ligands and the hydrophobic polymer shell domain, simple and efficient design and synthesis of unique metal-polymer hybrid nanostructures are still obscure. Here, we report a detailed mechanistic study on the polymer shell transformation by using different types of surface ligands in encapsulation of metal NPs by polymer shells. The polymer shell transformation dynamic is studied after postheating treatment. The polymer shell transformation/shrinking on the metal NP surface depends on its surface ligand size being applied in the encapsulation step (polymer-ligand hydrophobic interaction effect). Longer-chain ligands provide stronger interactions between NPs and the hydrophobic domain of the polymer shell, which inhibits the polymer shell transformation. In contrast, short-chain ligands lead to weaker interactions, which assist in the polymer shell transformation. By understanding the underlying mechanisms, many new types of NPs, such as metal-polymer core-shell NPs, metal-polymer Janus NPs, silica-metal-polymer hybrid NPs, and silica-metal-polymer flower-like NPs have been synthesized for the first time. A new bottom-up platform for the synthesis of anisotropic NPs with the ability to control the patches in a precise manner has been created, which will benefit both nanotechnology (such as self-assembly in the nanoscale) and applications such as selective detection of the underlying ligands on the metal surface by using a surface-enhanced Raman spectrum study.
Collapse
Affiliation(s)
- Xiaohui Song
- Department of Material Science and Engineering , University of California at Berkeley , Berkeley , California 94720 , United States
- Department of Chemistry and Biological Chemistry , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Cuicui Liu
- Department of Chemistry and Biological Chemistry , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Xiaotao Liu
- Department of Material Science and Engineering , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Songlin Liu
- Department of Chemistry and Biological Chemistry , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| |
Collapse
|
17
|
Tao H, Chen L, Galati E, Manion JG, Seferos DS, Zhulina EB, Kumacheva E. Helicoidal Patterning of Gold Nanorods by Phase Separation in Mixed Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15872-15879. [PMID: 31402668 DOI: 10.1021/acs.langmuir.9b02001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The spatial distribution of polymer ligands on the surface of nanoparticles (NPs) is of great importance because it determines their interactions with each other and with the surrounding environment. Phase separation in mixtures of polymer brushes has been studied for spherical NPs; however, the role of local surface curvature of nonspherical NPs in the surface phase separation of end-grafted polymer ligands remains an open question. Here, we examined phase separation in mixed monolayers of incompatible polystyrene and poly(ethylene glycol) brushes end-capping the surface of gold nanorods in a good solvent. By varying the molar ratio between these polymers, we generated a range of surface patterns, including uniform and nonuniform polystyrene shells, randomly distributed polystyrene surface patches, and, most interestingly, a helicoidal pattern of polystyrene patches wrapping around the nanorods. The helicoidally patterned nanorods exhibited long-term colloidal stability in a good solvent. The helicoidal wrapping of the nanorods was achieved for the mixtures of polymers with different molecular weights and preserved when the quality of the solvent for the polymers was reduced. The helicoidal organization of polymer patches on the surface of nanorods can be used for templating the synthesis or self-assembly of helicoidal multicomponent nanomaterials.
Collapse
Affiliation(s)
- Huachen Tao
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Linye Chen
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Elizabeth Galati
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Joseph G Manion
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Dwight S Seferos
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Ekaterina B Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences , Saint Petersburg 199004 , Russian Federation
| | - Eugenia Kumacheva
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
- Institute of Biomaterials and Biomedical Engineering , University of Toronto , Toronto , Ontario M5S 3G9 , Canada
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| |
Collapse
|
18
|
Lee J, Lee H, Kiguye C, Bae C, Kim J. Controllable coating and reshaping of gold nanorods with tetracyanoquinodimethane. Chem Commun (Camb) 2019; 55:11731-11734. [PMID: 31512687 DOI: 10.1039/c9cc05603c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various nanoparticle surface layers allow unique functionalities. We developed a coating method with tetracyanoquinodimethane that forms solid layers through π stacking on gold nanorod surfaces. Its reaction mechanism was investigated with reaction time, aging time and surfactant concentration. Our method could be generalizable to different nanoparticle shapes and crystal facets.
Collapse
Affiliation(s)
- Jaedeok Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea.
| | - Hyoseong Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea.
| | - Collins Kiguye
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea.
| | - Cheongwon Bae
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea.
| | - Juyeong Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea.
| |
Collapse
|
19
|
Chen W, Guo J, Zhao Q, Gopalan P, Fafarman AT, Keller A, Zhang M, Wu Y, Murray CB, Kagan CR. Designing Strong Optical Absorbers via Continuous Tuning of Interparticle Interaction in Colloidal Gold Nanocrystal Assemblies. ACS NANO 2019; 13:7493-7501. [PMID: 31136152 DOI: 10.1021/acsnano.9b02818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We program the optical properties of colloidal Au nanocrystal (NC) assemblies via an unconventional ligand hybridization (LH) strategy to precisely engineer interparticle interactions and design materials with optical properties difficult or impossible to achieve in bulk form. Long-chain hydrocarbon ligands used in NC synthesis are partially exchanged, from 0% to 100%, with compact thiocyanate ligands by controlling the reaction time for exchange. The resulting NC assemblies show transmittance, reflectance, optical permittivity, and direct-current (DC) resistivity that continuously traverse a dielectric-metal transition, providing analog tuning of their physical properties, unlike the digital control realized by complete exchange with ligands of varying length. Exploiting this LH strategy, we create Au NC assemblies that are strong, ultrathin film optical absorbers, as seen by a 6× increase in the extinction of infrared light compared to that in bulk Au thin films and by a temperature rise of 20 °C upon illumination with 808 nm light. Our LH strategy may be applied to the design of materials constructed from NCs of different size, shape, and composition for specific applications.
Collapse
Affiliation(s)
| | | | | | | | - Aaron T Fafarman
- Department of Chemical and Biological Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | | | | | | | | | | |
Collapse
|
20
|
Kim A, Zhou S, Yao L, Ni S, Luo B, Sing CE, Chen Q. Tip-Patched Nanoprisms from Formation of Ligand Islands. J Am Chem Soc 2019; 141:11796-11800. [DOI: 10.1021/jacs.9b05312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
Rossner C, Zhulina EB, Kumacheva E. Staged Surface Patterning and Self‐Assembly of Nanoparticles Functionalized with End‐Grafted Block Copolymer Ligands. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Christian Rossner
- Department of ChemistryUniversity of Toronto Toronto ON M5S 3H6 Canada
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences Saint Petersburg 199004 Russia
| | - Eugenia Kumacheva
- Department of ChemistryUniversity of Toronto Toronto ON M5S 3H6 Canada
- Institute of Biomaterials and Biomedical Engineering Toronto ON M5S 3G9 Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto Toronto ON M5S 3E5 Canada
| |
Collapse
|
22
|
Rossner C, Zhulina EB, Kumacheva E. Staged Surface Patterning and Self‐Assembly of Nanoparticles Functionalized with End‐Grafted Block Copolymer Ligands. Angew Chem Int Ed Engl 2019; 58:9269-9274. [DOI: 10.1002/anie.201904430] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Christian Rossner
- Department of ChemistryUniversity of Toronto Toronto ON M5S 3H6 Canada
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences Saint Petersburg 199004 Russia
| | - Eugenia Kumacheva
- Department of ChemistryUniversity of Toronto Toronto ON M5S 3H6 Canada
- Institute of Biomaterials and Biomedical Engineering Toronto ON M5S 3G9 Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto Toronto ON M5S 3E5 Canada
| |
Collapse
|
23
|
Luo B, Kim A, Smith JW, Ou Z, Wu Z, Kim J, Chen Q. Hierarchical self-assembly of 3D lattices from polydisperse anisometric colloids. Nat Commun 2019; 10:1815. [PMID: 31000717 PMCID: PMC6472373 DOI: 10.1038/s41467-019-09787-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/21/2019] [Indexed: 01/22/2023] Open
Abstract
Colloids are mainly divided into two types defined by size. Micron-scale colloids are widely used as model systems to study phase transitions, while nanoparticles have physicochemical properties unique to their size. Here we study a promising yet underexplored third type: anisometric colloids, which integrate micrometer and nanometer dimensions into the same particle. We show that our prototypical system of anisometric silver plates with a high polydispersity assemble, unexpectedly, into an ordered, three-dimensional lattice. Real-time imaging and interaction modeling elucidate the crucial role of anisometry, which directs hierarchical assembly into secondary building blocks-columns-which are sufficiently monodisperse for further ordering. Ionic strength and plate tip morphology control the shape of the columns, and therefore the final lattice structures (hexagonal versus honeycomb). Our joint experiment-modeling study demonstrates potentials of encoding unconventional assembly in anisometric colloids, which can likely introduce properties and phase behaviors inaccessible to micron- or nanometer-scale colloids.
Collapse
Affiliation(s)
- Binbin Luo
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Ahyoung Kim
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - John W Smith
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Zihao Ou
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Zixuan Wu
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Juyeong Kim
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL, 61801, USA
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA.
- Materials Research Laboratory, University of Illinois, Urbana, IL, 61801, USA.
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|