1
|
Frejková M, Běhalová K, Rubanová D, De Sanctis JB, Kubala L, Chytil P, Šimonová A, Křížek T, Randárová E, Gunár K, Etrych T. Polymer nanotherapeutics with the controlled release of acetylsalicylic acid and its derivatives inhibiting cyclooxygenase isoforms and reducing the production of pro-inflammatory mediators. Int J Pharm 2024; 665:124742. [PMID: 39317246 DOI: 10.1016/j.ijpharm.2024.124742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
The effective treatment of inflammatory diseases, particularly their chronic forms, is a key task of modern medicine. Herein, we report the synthesis and evaluation of biocompatible polymer conjugates based on N-2-(hydroxypropyl)methacrylamide copolymers enabling the controlled release of acetylsalicylic acid (ASA)-based anti-inflammatory drugs under specific stimuli. All polymer nanotherapeutics were proposed as water-soluble drug delivery systems with a hydrodynamic size below 10 nm ensuring suitability for the parenteral application and preventing opsonization by the reticuloendothelial system. The nanotherapeutics bearing an ester-bound ASA exhibited long-term release of the ASA/salicylic acid mixture, while the nanotherapeutics carrying salicylic acid hydrazide (SAH) ensured the selective release of SAH in the acidic inflammatory environment thanks to the pH-sensitive hydrazone bond between the polymer carrier and SAH. The ASA- and SAH-containing nanotherapeutics inhibited both cyclooxygenase isoforms and/or the production of pro-inflammatory mediators. Thanks to their favorable design, they can preferentially accumulate in the inflamed tissue, resulting in reduced side effects and lower dosage, and thus more effective and safer treatment.
Collapse
Affiliation(s)
- Markéta Frejková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic
| | - Kateřina Běhalová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic
| | - Daniela Rubanová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center - Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Pekařská 53, 602 00, Brno, Czech Republic
| | - Petr Chytil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic
| | - Alice Šimonová
- Department of Analytical Chemistry, Faculty of Science of Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science of Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Eva Randárová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic
| | - Kristýna Gunár
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic.
| |
Collapse
|
2
|
King O, Pérez-Madrigal MM, Murphy ER, Hmayed AAR, Dove AP, Weems AC. 4D Printable Salicylic Acid Photopolymers for Sustained Drug Releasing, Shape Memory, Soft Tissue Scaffolds. Biomacromolecules 2023; 24:4680-4694. [PMID: 37747816 DOI: 10.1021/acs.biomac.3c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
3D printing of pharmaceuticals offers a unique opportunity for long-term, sustained drug release profiles for an array of treatment options. Unfortunately, this approach is often limited by physical compounding or processing limitations. Modification of the active drug into a prodrug compound allows for seamless incorporation with advanced manufacturing methods that open the door to production of complex tissue scaffold drug depots. Here we demonstrate this concept using salicylic acids with varied prodrug structures for control of physical and chemical properties. The role of different salicylic acid derivatives (salicylic acid, bromosalicylic allyl ester, iodosalicylic allyl ester) and linker species (allyl salicylate, allyl 2-(allyloxy)benzoate, allyl 2-(((allyloxy)carbonyl)oxy)benzoate) were investigated using thiol-ene cross-linking in digital light processing (DLP) 3D printing to produce porous prodrug tissue scaffolds containing more than 50% salicylic acid by mass. Salicylic acid photopolymer resins were all found to be highly reactive (solidification within 5 s of irradiation at λ = 405 nm), while the cross-linked solids display tunable thermomechanical behaviors with low glass transition temperatures (Tgs) and elastomeric behaviors, with the carbonate species displaying an elastic modulus matching that of adipose tissue (approximately 65 kPa). Drug release profiles were found to be zero order, sustained release based upon hydrolytic degradation of multilayered scaffolds incorporating fluorescent modeling compounds, with release rates tuned through selection of the linker species. Cytocompatibility in 2D and 3D was further demonstrated for all species compared to polycarbonate controls, as well as salicylic acid-containing composites (physical incorporation), over a 2-week period using murine fibroblasts. The use of drugs as the matrix material for solid prodrug tissue scaffolds opens the door to novel therapeutic strategies, longer sustained release profiles, and even reduced complications for advanced medicine.
Collapse
Affiliation(s)
- Olivia King
- Biomedical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Maria M Pérez-Madrigal
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
- Departament d'Enginyeria Química, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019, Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019, Barcelona, Spain
| | - Erin R Murphy
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701, United States
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, United States
- Infectious and Tropical Diseases Institute, Ohio University, Athens, Ohio 45701, United States
| | | | - Andrew P Dove
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | - Andrew C Weems
- Biomedical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701, United States
- Mechanical Engineering, Russ College of Engineering, Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
3
|
Wang B, Liu H, Zhang S, Cheng A, Yan C, Xu B, Gao Y. Aspirin microcrystals deposited on high-density microneedle tips for the preparation of soluble polymer microneedles. Drug Deliv Transl Res 2023; 13:2639-2652. [PMID: 37040032 DOI: 10.1007/s13346-023-01343-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2023] [Indexed: 04/12/2023]
Abstract
To reduce mucosal damage in the gastrointestinal tract caused by aspirin, aspirin microcrystals were loaded in soluble polymeric microneedle (MN) tips. Aspirin was prepared into aspirin microcrystals by jet milling. Aspirin microcrystals with particle sizes of 0.5-5 μm were loaded on MN tips with a height of 250 µm or 300 µm. The aspirin microcrystals suspended in a polymer solution were concentrated in the MN tips under negative pressure. The aspirin microcrystals had high stability in the MNs since they were not dissolved in solution during the fabrication process. The MN patch packaged in an aluminum-plastic bag containing silica gel desiccant can be stored at 4 °C. The MN tips implanted in the skin of Institute of Cancer Research (ICR) mice dissolved within 30 min. Isolated porcine ear skin was punctured by MNs with heights of 300 μm and 250 μm to depths of 130 μm and 90 μm, respectively. The fluorescent red (FR) release from MNs reached 98.59% within 24 h. The MNs delivered aspirin microcrystals to the epidermis and dermis, providing a smooth plasma concentration in rats. The MNs loaded with aspirin microcrystals did not evoke primary irritation on the dorsal skin of Japanese white rabbits. In summary, MNs loaded with aspirin microcrystals provide a new approach to improve the stability of aspirin in MN patches.
Collapse
Affiliation(s)
- Baorui Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China
- Beijing CAS Microneedle Technology Ltd, Beijing, 102609, China
| | - Aguo Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenxin Yan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China
| | - Bo Xu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing CAS Microneedle Technology Ltd, Beijing, 102609, China.
| |
Collapse
|
4
|
Wang H, Tang G, Zhou Z, Chen X, Liu Y, Yan G, Zhang X, Li X, Huang Y, Wang J, Cao Y. Stable Fluorescent Nanoparticles Based on Co-assembly of Acifluorfen and Poly(salicylic acid) for Enhancing Herbicidal Activity and Reducing Environmental Risks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4303-4314. [PMID: 36631294 DOI: 10.1021/acsami.2c18642] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Herbicides are widely used in modern agricultural production for their advantages of high efficiency, convenience, and speed. However, there have been many problems caused by herbicide formulations, such as volatilization, leaching, and rain-washing loss in the process of agricultural application. Self-assembled nanotechnology is a promising strategy to solve these existing problems due to the environmentally friendly preparation process and high delivery efficiency. In this study, the stable fluorescent nanoparticles (AP NPs) based on co-assembly of acifluorfen (ACI) and poly(salicylic acid) (PSA) are constructed by using non-covalent bond interactions. The results indicate that the obtained nanoparticles with a stable fluorescence characteristic show improved physiochemical properties, such as uniform morphology, good thermal stability, low surface tension, and high retention on plants. The co-assembly can produce singlet oxygen to enhance the herbicidal activity under irradiation of light and reduce the leaching property of ACI to minimize the adverse impact on the aquatic environment. The safety evaluation of soybean seedlings indicates that AP NPs have no damage to non-target plants. In summary, the co-assembled herbicidal nano-formulation composed of ACI and PSA has high bioactivity and low environmental risks, which can be widely used in agricultural production.
Collapse
Affiliation(s)
- Huachen Wang
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193Beijing, China
| | - Gang Tang
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193Beijing, China
| | - Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193Beijing, China
| | - Xi Chen
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193Beijing, China
| | - Yulu Liu
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193Beijing, China
| | - Guangyao Yan
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193Beijing, China
| | - Xiaohong Zhang
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193Beijing, China
| | - Xuan Li
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193Beijing, China
| | - Yuqi Huang
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193Beijing, China
| | - Jialu Wang
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193Beijing, China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193Beijing, China
| |
Collapse
|
5
|
Zhang X, Zhu Y, Fan L, Ling J, Yang LY, Wang N, Ouyang XK. Delivery of curcumin by fucoidan-coated mesoporous silica nanoparticles: Fabrication, characterization, and in vitro release performance. Int J Biol Macromol 2022; 211:368-379. [PMID: 35577185 DOI: 10.1016/j.ijbiomac.2022.05.086] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023]
Abstract
Mesoporous silica nanoparticles (MSN) are effective drug delivery carriers because of their adjustable large pore size and high porosity. In this study, complex nanoparticles containing disulfide bonds (SS) were designed and prepared as curcumin (Cur) carriers by using fucoidan (FUC) and MSN as the polymer matrix. The product was characterized using scanning electron microscopy, transmission electron microscopy, dynamic light scattering, Fourier-transform infrared spectroscopy, and an N2 adsorption and desorption test. When the mass ratio of MSN to FUC was 2:1, the nanospheres particle size was the smallest (295.6 ± 0.98 nm, -35.2 ± 0.8 mV). Furthermore, the curcumin encapsulation rate by MSN-Cur-SS-FUC was over 90%, and the cumulative release rate in 24 h was over 80% due to the combined effect of weak acidity and high glutathione concentration in the tumor site microenvironment. When the Cur concentration was 50 μg/mL, the cell viability of free Cur was 63.8%, the cell viability of MSN-Cur-SS-FUC was 14.5%, and the cell viability of MSN-SS-FUC at the same concentration remained above 74.6%. MSN-SS-FUC composite nanoparticles showed a good delivery of Cur, a lipid-soluble active compound, and provides a new delivery route for other lipid-soluble and poorly bioavailable active compounds.
Collapse
Affiliation(s)
- Xu Zhang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yanfei Zhu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Lihong Fan
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Li-Ye Yang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
6
|
Han S, Yao S, Meng W, Yang J. Rapid, controlled ring-opening polymerization of salicylic acid o-carboxyanhydride for poly(salicylate) synthesis. Polym Chem 2021. [DOI: 10.1039/d1py01309b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fast synthesis pathway of poly(salicylate) in mild conditions was explored, in which the combination of Lewis base and alcohol enables salicylic acid o-carboxyanhydride polymerize in seconds to afford well-defined hompolymers with high Tg.
Collapse
Affiliation(s)
- Song Han
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shiman Yao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
7
|
Williams GT, Sedgwick AC, Sen S, Gwynne L, Gardiner JE, Brewster JT, Hiscock JR, James TD, Jenkins ATA, Sessler JL. Boronate ester cross-linked PVA hydrogels for the capture and H 2O 2-mediated release of active fluorophores. Chem Commun (Camb) 2020; 56:5516-5519. [PMID: 32296797 PMCID: PMC7497407 DOI: 10.1039/d0cc01904f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/06/2020] [Indexed: 01/01/2023]
Abstract
A new set of PVA hydrogels were formed using the boronate ester fluorescent probe PF1 and the novel boronate fluorescent probe PT1 as the covalent crosslinkers. Treatment with aqueous H2O2 allowed triggered release of the fluorescent dye accompanied by complete dissolution of the hydrogel.
Collapse
Affiliation(s)
- George T Williams
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. and School of Physical Sciences, University of Kent, Canterbury, CT2 7NH, UK.
| | - Adam C Sedgwick
- Department of Chemistry, University of Texas at Austin, 105 E 24th street A5300, Austin, TX 78712-1224, USA.
| | - Sajal Sen
- Department of Chemistry, University of Texas at Austin, 105 E 24th street A5300, Austin, TX 78712-1224, USA.
| | - Lauren Gwynne
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | | | - James T Brewster
- Department of Chemistry, University of Texas at Austin, 105 E 24th street A5300, Austin, TX 78712-1224, USA.
| | - Jennifer R Hiscock
- School of Physical Sciences, University of Kent, Canterbury, CT2 7NH, UK.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | | | - Jonathan L Sessler
- Department of Chemistry, University of Texas at Austin, 105 E 24th street A5300, Austin, TX 78712-1224, USA.
| |
Collapse
|
8
|
Birchall LT, Shehata S, McCarthy S, Shepherd HJ, Clark ER, Serpell CJ, Biagini SCG. Supramolecular behaviour and fluorescence of rhodamine-functionalised ROMP polymers. Polym Chem 2020. [DOI: 10.1039/d0py00799d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A ROMP platform leading to rhodamine B containing amphiphilic block copolymers, which self-assemble into micelles which are able to sequester molecular dyes and interact with them by energy transfer. The polymer micelles do not interact with DNA.
Collapse
Affiliation(s)
- Lee T. Birchall
- Supramolecular
- Interfacial
- and Synthetic Chemistry Group
- School of Physical Sciences
- Ingram Building
| | - Sara Shehata
- Supramolecular
- Interfacial
- and Synthetic Chemistry Group
- School of Physical Sciences
- Ingram Building
| | - Sean McCarthy
- Supramolecular
- Interfacial
- and Synthetic Chemistry Group
- School of Physical Sciences
- Ingram Building
| | - Helena J. Shepherd
- Supramolecular
- Interfacial
- and Synthetic Chemistry Group
- School of Physical Sciences
- Ingram Building
| | - Ewan R. Clark
- Supramolecular
- Interfacial
- and Synthetic Chemistry Group
- School of Physical Sciences
- Ingram Building
| | - Christopher J. Serpell
- Supramolecular
- Interfacial
- and Synthetic Chemistry Group
- School of Physical Sciences
- Ingram Building
| | - Stefano C. G. Biagini
- Supramolecular
- Interfacial
- and Synthetic Chemistry Group
- School of Physical Sciences
- Ingram Building
| |
Collapse
|