1
|
Hakobyan K, Ishizuka F, Corrigan N, Xu J, Zetterlund PB, Prescott SW, Boyer C. RAFT Polymerization for Advanced Morphological Control: From Individual Polymer Chains to Bulk Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412407. [PMID: 39502004 DOI: 10.1002/adma.202412407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/27/2024] [Indexed: 01/11/2025]
Abstract
Control of the morphology of polymer systems is achieved through reversible-deactivation radical polymerization techniques such as Reversible Addition-Fragmentation chain Transfer (RAFT). Advanced RAFT techniques offer much more than just "living" polymerization - the RAFT toolkit now enables morphological control of polymer systems across many decades of length-scale. Morphological control is explored at the molecular-level in the context of syntheses where individual monomer unit insertion provides sequence-defined polymers (single unit monomer insertion, SUMI). By being able to define polymer architectures, the synthesis of bespoke shapes and sizes of nanostructures becomes possible by leveraging self-assembly (polymerization induced self-assembly, PISA). Finally, it is seen that macroscopic materials can be produced with nanoscale detail, based on phase-separated nanostructures (polymerization induced microphase separation, PIMS) and microscale detail based on 3D-printing technologies. RAFT control of morphology is seen to cross from molecular level to additive manufacturing length-scales, with complete morphological control over all length-scales.
Collapse
Affiliation(s)
- Karen Hakobyan
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Fumi Ishizuka
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Per B Zetterlund
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Stuart W Prescott
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| |
Collapse
|
2
|
Haque F, Thompson SW, Ishizuka F, Kuchel RP, Singh D, Sanjayan GJ, Zetterlund PB. Block Copolymer Self-assembly: Exploitation of Hydrogen Bonding for Nanoparticle Morphology Control via Incorporation of Triazine Based Comonomers by RAFT Polymerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401129. [PMID: 38837298 DOI: 10.1002/smll.202401129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/15/2024] [Indexed: 06/07/2024]
Abstract
Synthesis of polymeric nanoparticles of controlled non-spherical morphology is of profound interest for a wide variety of potential applications. Self-assembly of amphiphilic diblock copolymers is an attractive bottom-up approach to prepare such nanoparticles. In the present work, RAFT polymerization is employed to synthesize a variety of poly(N,N-dimethylacrylamide)-b-poly[butyl acrylate-stat-GCB] copolymers, where GCB represents vinyl monomer containing triazine based Janus guanine-cytosine nucleobase motifs featuring multiple hydrogen bonding arrays. Hydrogen bonding between the hydrophobic blocks exert significant influence on the morphology of the resulting nanoparticles self-assembled in water. The Janus feature of the GCB moieties makes it possible to use a single polymer type in self-assembly, unlike previous work exploiting, e.g., thymine-containing polymer and adenine-containing polymer. Moreover, the strength of the hydrogen bonding interactions enables use of a low molar fraction of GCB units, thereby rendering it possible to use the present approach for copolymers based on common vinyl monomers for the development of advanced nanomaterials.
Collapse
Affiliation(s)
- Farah Haque
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Steven W Thompson
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Fumi Ishizuka
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dharmendra Singh
- Organic Chemistry Division, Council of Scientific and Industrial Research, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific, Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gangadhar J Sanjayan
- Organic Chemistry Division, Council of Scientific and Industrial Research, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific, Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Rabiee H, Li M, Yan P, Wu Y, Zhang X, Dorosti F, Zhang X, Ma B, Hu S, Wang H, Zhu Z, Ge L. Rational Designing Microenvironment of Gas-Diffusion Electrodes via Microgel-Augmented CO 2 Availability for High-Rate and Selective CO 2 Electroreduction to Ethylene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402964. [PMID: 39206751 PMCID: PMC11515925 DOI: 10.1002/advs.202402964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Indexed: 09/04/2024]
Abstract
Efficient electrochemical CO2 reduction reaction (CO2RR) requires advanced gas-diffusion electrodes (GDEs) with tunned microenvironment to overcome low CO2 availability in the vicinity of catalyst layer. Herein, for the first time, pyridine-containing microgels-augmented CO2 availability is presented in Cu2O-based GDE for high-rate CO2 reduction to ethylene, owing to the presence of CO2-phil microgels with amine moieties. Microgels as three-dimensional polymer networks act as CO2 micro-reservoirs to engineer the GDE microenvironment and boost local CO2 availability. The superior ethylene production performance of the GDE modified by 4-vinyl pyridine microgels, as compared with the GDE with diethylaminoethyl methacrylate microgels, indicates the bifunctional effect of pyridine-based microgels to enhance CO2 availability, and electrocatalytic CO2 reduction. While the Faradaic efficiency (FE) of ethylene without microgels was capped at 43% at 300 mA cm-2, GDE with the pyridine microgels showed 56% FE of ethylene at 700 mA cm-2. A similar trend was observed in zero-gap design, and GDEs showed 58% FE of ethylene at -4.0 cell voltage (>350 mA cm-2 current density), resulting in over 2-fold improvement in ethylene production. This study showcases the use of CO2-phil microgels for a higher rate of CO2RR-to-C2+, opening an avenue for several other microgels for more selective and efficient CO2 electrolysis.
Collapse
Affiliation(s)
- Hesamoddin Rabiee
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfieldQLD4300Australia
| | - Mengran Li
- Department of Chemical EngineeringThe University of MelbourneMelbourneVIC3052Australia
| | - Penghui Yan
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
| | - Yuming Wu
- School of EngineeringMacquarie UniversitySydneyNSW2109Australia
| | - Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology (ACWEB)The University of QueenslandSt. LuciaQLD4072Australia
| | - Fatereh Dorosti
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
| | - Xi Zhang
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
| | - Beibei Ma
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB)The University of QueenslandSt. LuciaQLD4072Australia
| | - Hao Wang
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfieldQLD4300Australia
| | - Zhonghua Zhu
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
| | - Lei Ge
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfieldQLD4300Australia
- School of EngineeringUniversity of Southern QueenslandSpringfieldQLD4300Australia
| |
Collapse
|
4
|
Kim HJ, Ishizuka F, Kuchel RP, Chatani S, Niino H, Zetterlund PB. RAFT Dispersion PISA with Poly(methyl methacrylate) as Stabilizer Block in Alcohol/Water: Unconventional PISA Morphology Transitions. Biomacromolecules 2024; 25:6135-6145. [PMID: 39158737 DOI: 10.1021/acs.biomac.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization-induced self-assembly (PISA) was conducted in the presence of poly(methyl methacrylate) (PMMA) stabilizer in ethanol/water mixture (80/20 by volume). Two different systems were explored by utilizing (i) 2-ethylhexyl methacrylate (EHMA) and (ii) n-butyl methacrylate (BMA). The morphology transitions of these systems were investigated by varying the polymerization conditions, i.e., the presence of the solvophilic comonomer MMA, the solids content, and the target degree of polymerization (DP). As observed in conventional PISA, the presence of solvophilic comonomer, increase in solids content and target DP promoted the formation of high-order morphology. However, unusual morphology transitions were observed whereby the morphology transformed from high-order morphologies to a mixture of spherical nanoparticles, worms, and vesicles and finally to vesicles with increasing target DP. This unusual evolution may be attributed to the limited solubility of PMMA in the ethanol/water solvent mixture, whereby PMMA is soluble at the polymerization temperature but insoluble at lower temperatures.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Fumi Ishizuka
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Shunsuke Chatani
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima 739-0693, Japan
| | - Hiroshi Niino
- Polymer Laboratory, Science & Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-8502, Japan
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Shape-Shifting Thermoresponsive Block Copolymer Nano-Objects. J Colloid Interface Sci 2023; 634:906-920. [PMID: 36566636 DOI: 10.1016/j.jcis.2022.12.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
In this Feature Article, we review our recent progress in the design of shape-shifting thermoresponsive diblock copolymer nano-objects, which are prepared using various hydroxyl-functional (meth)acrylic monomers (e.g. 2‑hydroxypropyl methacrylate, 4‑hydroxybutyl acrylate or hydroxybutyl methacrylate) to generate the thermoresponsive block. Unlike traditional thermoresponsive polymers such as poly(N-isopropylacrylamide), there is no transition between soluble and insoluble polymer chains in aqueous solution. Instead, thermally driven transitions between a series of copolymer morphologies (e.g. spheres, worms, vesicles or lamellae) occur on adjusting the aqueous solution temperature owing to a subtle change in the partial degree of hydration of the permanently insoluble thermoresponsive block. Such remarkable self-assembly behavior is unprecedented in colloid science: no other amphiphilic diblock copolymer or surfactant system undergoes such behavior at a fixed chemical composition and concentration. Such shape-shifting nano-objects are characterized by transmission electron microscopy, dynamic light scattering, small-angle X-ray scattering, rheology and variable temperature 1H NMR spectroscopy. Potential applications for this fascinating new class of amphiphiles are briefly considered.
Collapse
|
6
|
Gong Z, Wang Y, Yan Q. Polymeric partners breathe together: using gas to direct polymer self-assembly via gas-bridging chemistry. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Clothier GKK, Guimarães TR, Moad G, Zetterlund PB. Expanding the Scope of RAFT Multiblock Copolymer Synthesis Using the Nanoreactor Concept: The Critical Importance of Initiator Hydrophobicity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Glenn K. K. Clothier
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thiago R. Guimarães
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Kim HJ, Ishizuka F, Kuchel RP, Chatani S, Niino H, Zetterlund PB. Synthesis of low glass transition temperature worms comprising a poly(styrene- stat-n-butyl acrylate) core segment via polymerization-induced self-assembly in RAFT aqueous emulsion polymerization. Polym Chem 2022. [DOI: 10.1039/d1py01636a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Synthesis of nanodimensional polymeric worms of low glass transition temperature using aqueous polymerization-induced self-assembly.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Fumi Ishizuka
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rhiannon P. Kuchel
- Electron Microscope Unit, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shunsuke Chatani
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima 739-0693, Japan
| | - Hiroshi Niino
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima 739-0693, Japan
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
9
|
Ishizuka F, Kim HJ, Kuchel RP, Yao Y, Chatani S, Niino H, Zetterlund PB. Nano-dimensional Spheres and Worms as Fillers in Polymer Nanocomposites: Effect of Filler Morphology. Polym Chem 2022. [DOI: 10.1039/d1py01661j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymeric nanofillers are prepared via polymerization induced self-assembly (PISA). Nano-dimensional spheres and worms are used to reinforce polymer nanocomposite film to investigate the effect of filler morphology and the effect...
Collapse
|
10
|
Zhu R, Yang C, Chang Z, Pan C, Zhang W, Hong C. Synchronous Synthesis of Polymeric Vesicles with Controllable Size and
Low‐Polydispersity
by
Polymerization‐Induced Self‐Assembly. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ren‐Man Zhu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Cheng‐Lin Yang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Zi‐Xuan Chang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Cai‐Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Wen‐Jian Zhang
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
| | - Chun‐Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
11
|
Beattie DL, Mykhaylyk OO, Ryan AJ, Armes SP. Rational synthesis of novel biocompatible thermoresponsive block copolymer worm gels. SOFT MATTER 2021; 17:5602-5612. [PMID: 33998622 DOI: 10.1039/d1sm00460c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is well known that reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) enables the rational design of diblock copolymer worm gels. Moreover, such hydrogels can undergo degelation on cooling below ambient temperature as a result of a worm-to-sphere transition. However, only a subset of such block copolymer worms exhibit thermoresponsive behavior. For example, PMPC26-PHPMA280 worm gels prepared using a poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC26) precursor do not undergo degelation on cooling to 6 °C (see S. Sugihara et al., J. Am. Chem. Soc., 2011, 133, 15707-15713). Informed by our recent studies (N. J. Warren et al., Macromolecules, 2018, 51, 8357-8371), we decided to reduce the mean degrees of polymerization of both the PMPC steric stabilizer block and the structure-directing PHPMA block when targeting a pure worm morphology. This rational approach reduces the hydrophobic character of the PHPMA block and hence introduces the desired thermoresponsive character, as evidenced by the worm-to-sphere transition (and concomitant degelation) that occurs on cooling a PMPC15-PHPMA150 worm gel from 40 °C to 6 °C. Moreover, worms are reconstituted on returning to 40 °C and the original gel modulus is restored. This augurs well for potential biomedical applications, which will be examined in due course. Finally, small-angle X-ray scattering studies indicated a scaling law exponent of 0.67 (≈2/3) for the relationship between the worm core cross-sectional diameter and the PHPMA DP for a series of PHPMA-based worms prepared using a range of steric stabilizer blocks, which is consistent with the strong segregation regime for such systems.
Collapse
Affiliation(s)
- Deborah L Beattie
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK.
| | - Oleksandr O Mykhaylyk
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK.
| | - Anthony J Ryan
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK.
| | - Steven P Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK.
| |
Collapse
|
12
|
Xu XF, Zhu RM, Pan CY, You YZ, Zhang WJ, Hong CY. Polymerization-Induced Self-Assembly Driven by the Synergistic Effects of Aromatic and Solvophobic Interactions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02882] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiao-Fei Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ren-Man Zhu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ye-Zi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
13
|
Rocha-Ortiz JS, Insuasty A, Madrid-Usuga D, Mora-León AG, Ortiz A. Optical and electrochemical effects of triarylamine inclusion to alkoxy BODIPY-based derivatives. NEW J CHEM 2021. [DOI: 10.1039/d1nj02610k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new triphenylamine-BODIPY dyads BDPT1–3 have been designed and synthesized.
Collapse
Affiliation(s)
- Juan S. Rocha-Ortiz
- Grupo de Investigación de Compuestos Heterociclicos, Department of Chemistry, Universidad del Valle, Calle 13 No. 100-00, Edifice E20, No. 1009-4027, Cali, Colombia
| | - Alberto Insuasty
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Duvalier Madrid-Usuga
- Quantum Technologies, Information and Complexity Group—QuanTIC, Department of Physic, Universidad del Valle, 760032 Cali, Colombia
| | - Ana G. Mora-León
- Engineering and Environmental Management Research Group, School of Engineering, Universidad de Antioquia, 050010 Medellin, Colombia
| | - Alejandro Ortiz
- Grupo de Investigación de Compuestos Heterociclicos, Department of Chemistry, Universidad del Valle, Calle 13 No. 100-00, Edifice E20, No. 1009-4027, Cali, Colombia
| |
Collapse
|
14
|
Kadirkhanov J, Yang CL, Chang ZX, Zhu RM, Pan CY, You YZ, Zhang WJ, Hong CY. In situ cross-linking polymerization-induced self-assembly not only generates cross-linked structures but also promotes morphology transition by the cross-linker. Polym Chem 2021. [DOI: 10.1039/d1py00046b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Not only cross-linked structures but also a promoting effect on morphology transition has been observed during the in situ cross-linking PISA by RAFT dispersion copolymerization of 2-(diisopropylamino)ethyl methacrylate and cystaminebismethacrylamide.
Collapse
Affiliation(s)
- Jamshid Kadirkhanov
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Cheng-Lin Yang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Zi-Xuan Chang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Ren-Man Zhu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Ye-Zi You
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| |
Collapse
|
15
|
Dao TPT, Vezenkov L, Subra G, Ladmiral V, Semsarilar M. Nano-assemblies with core-forming hydrophobic polypeptide via polymerization-induced self-assembly (PISA). Polym Chem 2021. [DOI: 10.1039/d0py00793e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aim of this study is to produce self-assembled structures with hydrophobic polypeptide cores via Reversible Addition–Fragmentation chain Transfer (RAFT) – mediated Polymerisation-Induced Self-Assembly (PISA).
Collapse
Affiliation(s)
| | - Lubomir Vezenkov
- Institut des Biomolécules Max Mousseron
- IBMM
- Univ Montpellier
- CNRS
- ENSCM
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron
- IBMM
- Univ Montpellier
- CNRS
- ENSCM
| | - Vincent Ladmiral
- Institut Charles Gerhardt Montpellier
- ICGM
- Univ Montpellier
- CNRS
- ENSCM
| | | |
Collapse
|
16
|
Preparation of switchable polymer latexes under elevated CO2 pressure by using 4,4'-(diazene-1,2-diyl) bis(N-(3-(dimethylamino)propyl)-4-methylpentanamide) as a novel CO2-switchable inistab. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Xu S, Corrigan N, Boyer C. Forced gradient copolymerisation: a simplified approach for polymerisation-induced self-assembly. Polym Chem 2021. [DOI: 10.1039/d0py00889c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, a novel and versatile gradient copolymerisation approach to simplify polymeric nanoparticle synthesis through polymerisation-induced self-assembly (PISA) is reported.
Collapse
Affiliation(s)
- Sihao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
18
|
Guimarães TR, Bong YL, Thompson SW, Moad G, Perrier S, Zetterlund PB. Polymerization-induced self-assembly via RAFT in emulsion: effect of Z-group on the nucleation step. Polym Chem 2021. [DOI: 10.1039/d0py01311k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
It is demonstrated that the nature of the Z-group of trithiocarbonate RAFT agents can have a major effect on the nucleation step of aqueous RAFT PISA performed as emulsion polymerization.
Collapse
Affiliation(s)
- Thiago R. Guimarães
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Y. Loong Bong
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Steven W. Thompson
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Graeme Moad
- CSIRO Manufacturing Flagship
- Clayton South
- Australia
| | - Sébastien Perrier
- Department of Chemistry
- University of Warwick
- Coventry
- UK
- Warwick Medical School
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
19
|
Chen Q, Liu W, Liu H, Huang X, Shang Y, Liu H. Molecular Dynamics Simulations and Density Functional Theory on Unraveling Photoresponsive Behavior of Wormlike Micelles Constructed by 12-2-12·2Br - and trans- ortho-Methoxy Cinnamate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9499-9509. [PMID: 32683870 DOI: 10.1021/acs.langmuir.0c01476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photoresponsive systems with controllable self-assembly morphologies and adjustable rheological properties have attracted widespread interest by researchers in the past few years. Among them, the photoresponsive systems consisting of ortho-methoxycinnamic (OMCA) and Gemini surfactants are endowed with rich self-assemblies with different states and in different scales including spherical micelles, wormlike micelles, vesicles, aqueous two-phase system (ATPS), etc. All these self-assemblies display excellent photoresponsive behavior. However, the mechanism of these photoresponsive behaviors has not been unraveled systematically so far. In this study, molecular dynamics (MD) simulations, density functional theory (DFT) calculations, transmission electron microscopy, and rheology are employed to investigate the photoresponsive behaviors of wormlike micelles caused by photoisomerization of trans-OMCA in 12-2-12·2Br-/trans-OMCA solutions and to unravel the underlying mechanisms of these photoresponsive behaviors. The experimental results show that 12-2-12·2Br-/trans-OMCA micelles display photoresponsiveness after UV-light irradiation, with the transformation of micellar morphologies from wormlike micelle to spherical micelles. In MD simulations, certain micelle morphologies in experiments and the specific packing between 12-2-12·2Br-/OMCA were successfully captured. The larger three-dimensional structure and steric hindrance of cis-OMCA disturb the interior structure of micelles. The stronger hydrophilicity of cis-OMCA induces the escape of cis-OMCA from the interval of micelles to the solution. The energy results prove that trans-OMCA associates more strongly with 12-2-12·2Br- than cis-OMCA. These causes lead to the fission and repacking of wormlike micelles.
Collapse
Affiliation(s)
- Qizhou Chen
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxiu Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hengjiang Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiangrong Huang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
20
|
Dao TPT, Vezenkov L, Subra G, Amblard M, In M, Le Meins JF, Aubrit F, Moradi MA, Ladmiral V, Semsarilar M. Self-Assembling Peptide—Polymer Nano-Objects via Polymerization-Induced Self-Assembly. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- T. P. Tuyen Dao
- Institut Européen des Membranes, IEM, University Montpellier, CNRS, ENSCM, Montpellier 34095, France
- Institut Charles Gerhardt Montpellier, ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
- Institut des Biomolécules Max Mousseron, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Lubomir Vezenkov
- Institut des Biomolécules Max Mousseron, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Martin In
- Laboratoire Charles Coulomb, L2C, Univ Montpellier, CNRS, Montpellier 34095, France
| | - Jean-François Le Meins
- Laboratoire de Chimie des Polymères Organiques, LCPO UMR 5629, Université Bordeaux, CNRS, Pessac 33607, France
| | - Florian Aubrit
- Laboratoire de Chimie des Polymères Organiques, LCPO UMR 5629, Université Bordeaux, CNRS, Pessac 33607, France
| | - Mohammad-Amin Moradi
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Vincent Ladmiral
- Institut Charles Gerhardt Montpellier, ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Mona Semsarilar
- Institut Européen des Membranes, IEM, University Montpellier, CNRS, ENSCM, Montpellier 34095, France
| |
Collapse
|
21
|
Su X, Jiang Y, Jessop PG, Cunningham MF, Feng Y. Photoinitiated TERP Emulsion Polymerization: A New Member of the Large Family of Preparation Approaches for CO2-Switchable Latexes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xin Su
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
- Department of Chemical Engineering, Queen’s University, 19 Division Street, Kingston K7L3N6, Ontario, Canada
| | - Yuting Jiang
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Philip G. Jessop
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston K7L3N6, Ontario, Canada
| | - Michael F. Cunningham
- Department of Chemical Engineering, Queen’s University, 19 Division Street, Kingston K7L3N6, Ontario, Canada
| | - Yujun Feng
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
22
|
Thompson SW, Guimarães TR, Zetterlund PB. RAFT Emulsion Polymerization: MacroRAFT Agent Self-Assembly Investigated Using a Solvachromatic Dye. Biomacromolecules 2020; 21:4577-4590. [DOI: 10.1021/acs.biomac.0c00685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Steven W. Thompson
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Thiago R. Guimarães
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
23
|
D'Agosto F, Rieger J, Lansalot M. RAFT‐vermittelte polymerisationsinduzierte Selbstorganisation (PISA). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911758] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Franck D'Agosto
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne Frankreich
| | - Jutta Rieger
- Sorbonne Université and CNRS UMR 8232 Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team (ECP) 4 Place Jussieu 75005 Paris Frankreich
| | - Muriel Lansalot
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne Frankreich
| |
Collapse
|
24
|
D'Agosto F, Rieger J, Lansalot M. RAFT‐Mediated Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2020; 59:8368-8392. [DOI: 10.1002/anie.201911758] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Franck D'Agosto
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| | - Jutta Rieger
- Sorbonne Université and CNRS UMR 8232 Institut Parisien de Chimie Moléculaire (IPCM) Polymer Chemistry Team (ECP) 4 Place Jussieu 75005 Paris France
| | - Muriel Lansalot
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| |
Collapse
|
25
|
Deane OJ, Musa OM, Fernyhough A, Armes SP. Synthesis and Characterization of Waterborne Pyrrolidone-Functional Diblock Copolymer Nanoparticles Prepared via Surfactant-free RAFT Emulsion Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02394] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Oliver J. Deane
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Osama M. Musa
- Ashland Specialty Ingredients, 1005 US 202/206, Bridgewater, New Jersey 08807, United States
| | - Alan Fernyhough
- Ashland Specialty Ingredients, Listers Mills, Heaton Road, Bradford, West Yorkshire BD9 4SH, U.K
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
26
|
Shieh YT, Yeh YC, Cheng CC. Two-Way CO 2-Responsive Polymer Particles with Controllable Amphiphilic Properties. ACS OMEGA 2020; 5:1862-1869. [PMID: 32039322 PMCID: PMC7003192 DOI: 10.1021/acsomega.9b03319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Multiple stimuli-responsive amphiphilic block copolymers of poly(methacrylic acid) (PMAA) and poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) were used as emulsifiers to prepare two-way CO2 stimuli-responsive poly(methyl methacrylate) (PMMA) latex particles via aqueous emulsion polymerization. The polymerization at pH 2 and 50 °C produced mainly PDMAEMA-surfaced PMMA latex particles, whereas the polymerization at pH 12 and 50 °C produced mainly PMAA-surfaced particles. Both types of latex particles appeared to precipitate at higher pH values from the emulsifier of a longer PDMAEMA block length. The direction from precipitation to dispersion for PDMAEMA-surfaced particles or from dispersion to precipitation for PMAA-surfaced particles in response to CO2 bubbling of the pH 12 dispersion of particles depended on the PDMAEMA block length. Together, this study reveals that-by tuning the PDMAEMA block length in PMAA-b-PDMAEMA used as an emulsifier and polymerization at pH 2 or 12-PMMA latex particles can exhibit two-way CO2 responsiveness between dispersion and precipitation. Thus, due to their simple preparation and unique dual pH and CO2 responsiveness, these newly developed PMAA-b-PDMAEMA emulsifiers provide a highly efficient approach for the development of smart PMMA latex nanoparticles with desirable multifunctional properties.
Collapse
Affiliation(s)
- Yeong-Tarng Shieh
- Department
of Chemical and Materials Engineering, National
University of Kaohsiung, 700 Kaohsiung University Road, Nanzih District, Kaohsiung 81148, Taiwan
| | - Yao-Chuan Yeh
- Department
of Chemical and Materials Engineering, National
University of Kaohsiung, 700 Kaohsiung University Road, Nanzih District, Kaohsiung 81148, Taiwan
| | - Chih-Chia Cheng
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43, Keelung Road, Section 4, Da’an District, Taipei 10607, Taiwan
| |
Collapse
|
27
|
Qiu L, Zhang H, Wang B, Zhan Y, Xing C, Pan CY. CO 2-Responsive Nano-Objects with Assembly-Related Aggregation-Induced Emission and Tunable Morphologies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1348-1358. [PMID: 31815411 DOI: 10.1021/acsami.9b18792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CO2-responsive polymeric nano-objects with assembly-related aggregation-induced emission (AIE) are obtained via polymerization-induced self-assembly (PISA) of 2-(dimethylamino)ethyl methacrylate (DMAEMA), 2-(4-formylphenoxy)ethyl methacrylate (MAEBA), and 4-(1,2,2-triphenylvinyl)phenyl methacrylate (TPEMA). These nano-objects exhibit, depending on the feed of MAEBA, a morphology evolution process from spherical micelles to vesicles. Due to the presence of DMAEMA units, CO2 promotes morphology transformation of the nano-objects from spheres to a mixture of "jellyfish" and vesicles and vesicles to complex vesicles. Moreover, TPEMA endows the AIE feature to these nano-objects, offering a strategy to monitor the morphology evolution process in real time. Thus, this approach is significant for exploring the assembly mechanism of copolymer in polymerization-induced self-assembly and designing multistimuli-responsive polymeric nanomaterials with tunable morphologies and sizes.
Collapse
Affiliation(s)
| | | | | | | | | | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , People's Republic of China
| |
Collapse
|
28
|
Abstract
Mother Nature produces a perfectly defined architecture that inspires researchers to make polymeric macromolecules for an array of functions. The present article describes recent development in the PISA to synthesize polymeric nano-objects.
Collapse
Affiliation(s)
- Shivshankar R. Mane
- Polymer Science and Engineering Division
- CSIR – National Chemical Laboratory
- Pune 411008
- India
| |
Collapse
|
29
|
Zhang WJ, Kadirkhanov J, Wang CH, Ding SG, Hong CY, Wang F, You YZ. Polymerization-induced self-assembly for the fabrication of polymeric nano-objects with enhanced structural stability by cross-linking. Polym Chem 2020. [DOI: 10.1039/d0py00368a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses the strategies of core-cross-linking in most of the PISA literatures (including post-polymerization cross-linking, photo-cross-linking and in situ cross-linking) and the applications of the cross-linked nano-objects.
Collapse
Affiliation(s)
- Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Jamshid Kadirkhanov
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Chang-Hui Wang
- Department of Cardiology
- First Affiliated Hospital of Anhui Medical University
- Hefei 230026
- China
| | - Sheng-Gang Ding
- Department of Pediatrics
- First Affiliated Hospital of Anhui Medical University
- Hefei 230026
- China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Fei Wang
- Neurosurgical Department
- The First Affiliated Hospital of USTC
- Division of Life Sciences and Medicine
- University of Science and Technology of China
- Hefei
| | - Ye-Zi You
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
30
|
Zeng R, Chen Y, Zhang L, Tan J. Uncontrolled polymerization that occurred during photoinitiated RAFT dispersion polymerization of acrylic monomers promotes the formation of uniform raspberry-like polymer particles. Polym Chem 2020. [DOI: 10.1039/d0py00678e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Uniform raspberry-like polymer particles are prepared by a different type of photoinitiated RAFT dispersion polymerization.
Collapse
Affiliation(s)
- Ruiming Zeng
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
- Guangzhou 510006
- China
| | - Li Zhang
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| |
Collapse
|
31
|
Hu W, He X, Bai Y, Zheng L, Hu Y, Wang P, Liu X, Jia K. Synthesis and self-assembly of polyethersulfone-based amphiphilic block copolymers as microparticles for suspension immunosensors. Polym Chem 2020. [DOI: 10.1039/c9py01701a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polyethersulfone (PES) based amphiphilic block copolymer has been synthesized and transformed into immunological microparticles via confined emulsion self-assembly and surface biomodification, opens the in-vitro diagnostic application of PES.
Collapse
Affiliation(s)
- Weibin Hu
- Research Branch of Advanced Functional Materials
- School of Materials and Energy
- University of Electronic Science and Technology of China
- 610054 Chengdu
- China
| | - Xiaohong He
- Research Branch of Advanced Functional Materials
- School of Materials and Energy
- University of Electronic Science and Technology of China
- 610054 Chengdu
- China
| | - Yun Bai
- Research Branch of Advanced Functional Materials
- School of Materials and Energy
- University of Electronic Science and Technology of China
- 610054 Chengdu
- China
| | - Li Zheng
- State Key Laboratory of Biotherapy
- Sichuan University
- 610051 Chengdu
- China
| | - Yiguo Hu
- State Key Laboratory of Biotherapy
- Sichuan University
- 610051 Chengdu
- China
| | - Pan Wang
- School of Mechanical Engineering
- Chengdu University
- 610106 Chengdu
- China
| | - Xiaobo Liu
- Research Branch of Advanced Functional Materials
- School of Materials and Energy
- University of Electronic Science and Technology of China
- 610054 Chengdu
- China
| | - Kun Jia
- Research Branch of Advanced Functional Materials
- School of Materials and Energy
- University of Electronic Science and Technology of China
- 610054 Chengdu
- China
| |
Collapse
|
32
|
Liu R, Zhang L, Huang Z, Xu J. Sequential and alternating RAFT single unit monomer insertion: model trimers as the guide for discrete oligomer synthesis. Polym Chem 2020. [DOI: 10.1039/d0py00390e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A complete set of model trimers and their synthetic kinetics are established to guide the synthesis of diverse sequence-defined polymers.
Collapse
Affiliation(s)
- Ruizhe Liu
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW Sydney
- NSW 2052
- Australia
| | - Lei Zhang
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW Sydney
- NSW 2052
- Australia
| | - Zixuan Huang
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW Sydney
- NSW 2052
- Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW Sydney
- NSW 2052
- Australia
| |
Collapse
|
33
|
Shieh YT, Yeh YC, Cheng CC. Multistimuli-Responsive Emulsifiers Based on Two-Way Amphiphilic Diblock Polymers. ACS OMEGA 2019; 4:15479-15487. [PMID: 31572848 PMCID: PMC6761613 DOI: 10.1021/acsomega.9b01728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Diblock copolymers of poly(tert-butyl methacrylate) (PtBuMA) and poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) of four different block lengths were prepared by sequential two-step reversible addition-fragmentation chain transfer radical polymerization, followed by hydrolysis of the PtBuMA blocks to obtain poly(methacrylic acid)-b-PDMAEMA (PMAA-b-PDMAEMA). The effect of the PDMAEMA block length on the multistimuli-responsive amphiphilic features of both types of diblock copolymers was investigated as CO2-switchable emulsifiers for emulsification/demulsification of n-octane (an oil) in water in response to CO2/N2 bubbling. The amphiphilicity of PtBuMA-b-PDMAEMA was switched on, and the amphiphilicity of PMAA-b-PDMAEMA was switched off by CO2 bubbling at pH 12 and 25 °C to achieve emulsification/demulsification. A longer PDMAEMA block length in PMAA-b-PDMAEMA conferred more sensitive CO2-responsive amphiphilicity but reduced the extent of recovery of emulsification ability on N2 bubbling. This newly developed diblock copolymer system could potentially serve as a "multifunctional surfactant" for CO2-switchable emulsification/demulsification of oil-in-water and water-in-oil mixtures.
Collapse
Affiliation(s)
- Yeong-Tarng Shieh
- Department
of Chemical and Materials Engineering, National
University of Kaohsiung, No. 700, Kaohsiung University Road, Nanzih District, Kaohsiung 81148, Taiwan
| | - Yao-Chuan Yeh
- Department
of Chemical and Materials Engineering, National
University of Kaohsiung, No. 700, Kaohsiung University Road, Nanzih District, Kaohsiung 81148, Taiwan
| | - Chih-Chia Cheng
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Da’an District, Taipei 10607, Taiwan
| |
Collapse
|
34
|
Penfold NJW, Yeow J, Boyer C, Armes SP. Emerging Trends in Polymerization-Induced Self-Assembly. ACS Macro Lett 2019; 8:1029-1054. [PMID: 35619484 DOI: 10.1021/acsmacrolett.9b00464] [Citation(s) in RCA: 366] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this Perspective, we summarize recent progress in polymerization-induced self-assembly (PISA) for the rational synthesis of block copolymer nanoparticles with various morphologies. Much of the PISA literature has been based on thermally initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. Herein, we pay particular attention to alternative PISA protocols, which allow the preparation of nanoparticles with improved control over copolymer morphology and functionality. For example, initiation based on visible light, redox chemistry, or enzymes enables the incorporation of sensitive monomers and fragile biomolecules into block copolymer nanoparticles. Furthermore, PISA syntheses and postfunctionalization of the resulting nanoparticles (e.g., cross-linking) can be conducted sequentially without intermediate purification by using various external stimuli. Finally, PISA formulations have been optimized via high-throughput polymerization and recently evaluated within flow reactors for facile scale-up syntheses.
Collapse
Affiliation(s)
- Nicholas J. W. Penfold
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, United Kingdom
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2051, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2051, Australia
| | - Steven P. Armes
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, United Kingdom
| |
Collapse
|
35
|
Xu XF, Pan CY, Zhang WJ, Hong CY. Polymerization-Induced Self-Assembly Generating Vesicles with Adjustable pH-Responsive Release Performance. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00144] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao-Fei Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
36
|
Affiliation(s)
- Muriel Lansalot
- Chemistry, Catalysis, Polymers and Processes (C2P2); Univ Lyon, Université Claude Bernard Lyon 1; CPE Lyon, CNRS, UMR 5265; 43 Bd du 11 Novembre 1918; 69616 Villeurbanne France
| | - Jutta Rieger
- Institut Parisien de Chimie Moléculaire (IPCM); Polymer Chemistry Team; Sorbonne Université, CNRS, UMR 82324, Place Jussieu 75005 Paris France
| |
Collapse
|
37
|
Shieh YT, Tai PY, Cheng CC. Dual CO2/temperature-responsive diblock copolymers confer controlled reversible emulsion behavior. Polym Chem 2019. [DOI: 10.1039/c9py00325h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dual-stimuli responsive diblock copolymers possessing unique temperature-sensitive and CO2/N2-switching ability were successfully developed to promote efficient manipulation of reversible emulsification processes.
Collapse
Affiliation(s)
- Yeong-Tarng Shieh
- Department of Chemical and Materials Engineering
- National University of Kaohsiung
- Kaohsiung 81148
- Taiwan
| | - Pei-Yu Tai
- Department of Chemical and Materials Engineering
- National University of Kaohsiung
- Kaohsiung 81148
- Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
- Advanced Membrane Materials Research Center
| |
Collapse
|
38
|
Tkachenko V, Matei Ghimbeu C, Vaulot C, Vidal L, Poly J, Chemtob A. RAFT-photomediated PISA in dispersion: mechanism, optical properties and application in templated synthesis. Polym Chem 2019. [DOI: 10.1039/c9py00209j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diblock copolymer nanoparticles were prepared by photomediated polymerization-induced self-assembly (“photo-PISA”) in dispersion.
Collapse
Affiliation(s)
| | | | - Cyril Vaulot
- Université de Haute-Alsace
- CNRS
- IS2M UMR7361
- F-68100 Mulhouse
- France
| | - Loïc Vidal
- Université de Haute-Alsace
- CNRS
- IS2M UMR7361
- F-68100 Mulhouse
- France
| | - Julien Poly
- Université de Haute-Alsace
- CNRS
- IS2M UMR7361
- F-68100 Mulhouse
- France
| | - Abraham Chemtob
- Université de Haute-Alsace
- CNRS
- IS2M UMR7361
- F-68100 Mulhouse
- France
| |
Collapse
|