1
|
Wu L, Glebe U, Kwok KTK, Sun J, Lam JWY, Tang BZ. AIE Bottlebrush Polymers: Verification of Internal Crowdedness in Bottlebrush Polymers Using the AIE Effect. Angew Chem Int Ed Engl 2025; 64:e202500850. [PMID: 40051290 DOI: 10.1002/anie.202500850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Bottlebrush polymers, characterized by densely grafted side chains along a central backbone, have gained significant interest due to their unique properties in bulk and solution states. Despite extensive research, a comprehensive understanding of the internal crowdedness within single polymer chains in dilute solutions remains challenging, and direct evidence to visualize and manifest this effect is scarce. Aggregation-induced emission (AIE) offers a novel method to address this challenge. To achieve this, a vinyl-derivatized AIE monomer was polymerized using atom transfer radical polymerization (ATRP) in a controlled way. Afterward, the end group of the synthesized polymer chain was transformed to azide, which was coupled with an alkyne-derivatized norbornene unit using click chemistry to produce the macromonomer. Ring-opening metathesis polymerization (ROMP) of the norbornenyl macromonomer using Grubbs catalyst, (H2IMes)(pyr)2(Cl)2Ru = CHPh (G3), resulted in well-defined bottlebrush polymers in a highly efficient way. We studied the polymerization behavior and characterized the single chain conformation of the bottlebrush polymers in dilute solution together with coarse-grained molecular dynamics (CG-MD) simulation. Photoluminescence investigation of the bottlebrush polymers in dilute solution revealed the expected AIE phenomenon, thus verifying the steric crowding effects within bottlebrush polymers. This work bridges AIE technology with polymer science and especially bottlebrush polymers. By doing this, our research not only broadens the bottlebrush polymer library but also provides insights into bottlebrush polymer chain study for potential applications.
Collapse
Affiliation(s)
- Lei Wu
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Ulrich Glebe
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| | - Kyan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, P.R. China
| |
Collapse
|
2
|
Tatsi E, Nitti A, Pasini D, Griffini G. Aggregation-induced emissive nanoarchitectures for luminescent solar concentrators. NANOSCALE 2024; 16:15502-15514. [PMID: 39073376 DOI: 10.1039/d4nr01910e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Aggregation-induced emission (AIE), the phenomenon by which selected luminophores undergo the enhancement of emission intensity upon aggregation, has demonstrated potential in materials and biomaterials science, and in particular in those branches for which spectral management in the solid state is of fundamental importance. Its development in the area of luminescent spectral conversion devices like luminescent solar concentrators (LSCs) is instead still in its infancy. This account aims at summarizing relevant contributions made in this field so far, with a special emphasis on the design of molecular and macromolecular architectures capable of extending their spectral breadth to the deep-red (DR) and the near-infrared (NIR) wavelengths. Because of the many prospective advantages characterizing these spectral regions in terms of photon flux density and human-eye perception, it is anticipated that further development in the design, synthesis and engineering of advanced molecular and macromolecular DR/NIR-active AIE luminophores will enable faster and easier integration of LSCs into the built environment as highly transparent, active elements for unobtrusive light-to-electricity conversion.
Collapse
Affiliation(s)
- Elisavet Tatsi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Andrea Nitti
- Department of Chemistry and INSTM Research Unit, University of Pavia, Viale Taramelli 10, Pavia 27100, Italy.
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Viale Taramelli 10, Pavia 27100, Italy.
| | - Gianmarco Griffini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| |
Collapse
|
3
|
Sun T, Zhao H, Hu L, Shao X, Lu Z, Wang Y, Ling P, Li Y, Zeng K, Chen Q. Enhanced optical imaging and fluorescent labeling for visualizing drug molecules within living organisms. Acta Pharm Sin B 2024; 14:2428-2446. [PMID: 38828150 PMCID: PMC11143489 DOI: 10.1016/j.apsb.2024.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 06/05/2024] Open
Abstract
The visualization of drugs in living systems has become key techniques in modern therapeutics. Recent advancements in optical imaging technologies and molecular design strategies have revolutionized drug visualization. At the subcellular level, super-resolution microscopy has allowed exploration of the molecular landscape within individual cells and the cellular response to drugs. Moving beyond subcellular imaging, researchers have integrated multiple modes, like optical near-infrared II imaging, to study the complex spatiotemporal interactions between drugs and their surroundings. By combining these visualization approaches, researchers gain supplementary information on physiological parameters, metabolic activity, and tissue composition, leading to a comprehensive understanding of drug behavior. This review focuses on cutting-edge technologies in drug visualization, particularly fluorescence imaging, and the main types of fluorescent molecules used. Additionally, we discuss current challenges and prospects in targeted drug research, emphasizing the importance of multidisciplinary cooperation in advancing drug visualization. With the integration of advanced imaging technology and molecular design, drug visualization has the potential to redefine our understanding of pharmacology, enabling the analysis of drug micro-dynamics in subcellular environments from new perspectives and deepening pharmacological research to the levels of the cell and organelles.
Collapse
Affiliation(s)
- Ting Sun
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huanxin Zhao
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Luyao Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xintian Shao
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- School of Life Sciences, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Zhiyuan Lu
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yuli Wang
- Tianjin Pharmaceutical DA REN TANG Group Corporation Limited Traditional Chinese Pharmacy Research Institute, Tianjin 300457, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemistry Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Peixue Ling
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan 250098, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kewu Zeng
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qixin Chen
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| |
Collapse
|
4
|
Li B, Feng B, Wang J, Qin Y. Recent progress on polymerization-induced emission. LUMINESCENCE 2023. [PMID: 38013245 DOI: 10.1002/bio.4630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
The aggregate luminescence behaviors of polymeric luminescent materials have been attracting great attention. However, the importance of the polymerization process on luminescence, namely, polymerization-induced emission (PIE), has rarely been overviewed. In this review, recent advances in polymerization with PIE effects are summarized, including PIE with aromatic rings based on one-/two-/multi-component polymerizations, and PIE without aromatic rings according to disparate mechanisms of polymerizations. Typical examples are selected to elaborate the basic design principles, as well as the properties and potential applications of the luminous polymers. Moreover, the challenges and perspectives in this area are also discussed.
Collapse
Affiliation(s)
- Baixue Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, China
| | - Bingwen Feng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, China
| | - Jia Wang
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Yusheng Qin
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, China
| |
Collapse
|
5
|
Virat G, Maiti KK, Amal Raj RB, Gowd EB. Impact of polymer chain packing and crystallization on the emission behavior of curcumin-embedded poly(L-lactide)s. SOFT MATTER 2023; 19:6671-6682. [PMID: 37609667 DOI: 10.1039/d3sm00853c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The development of biodegradable and biocompatible fluorescent materials with tunable emission in the solid state has become increasingly relevant for smart packaging and biomedical applications. Molecular packing and conformations play a critical role in tuning the solid-state photophysical properties of fluorescent materials. In this work, tunable emission of bioactive curcumin was achieved through the manipulation of the crystallization conditions and the polymorphic form of covalently linked poly(L-lactide) in the curcumin-embedded poly(L-lactide) (curcumin-PLLA). In the melt-crystallized curcumin-PLLA, with the increase in the isothermal crystallization temperature, a bathochromic shift in the fluorescence of curcumin-PLLA was observed due to the change in the intramolecular conjugation length of curcumin. The change in the isothermal crystallization temperature of curcumin-PLLA resulted in the rotation of the terminal phenyl rings of curcumin with respect to the central keto-enol group due to the covalently linked helical PLLA chains. In addition, solvent-induced single crystals and a gel of curcumin-PLLA were prepared and the influence of the polymorphic form of PLLA on the emission behavior of curcumin-PLLA was investigated. The results suggest that the polymer chain packing, crystallization conditions, morphology, and polymorphic form could play an influential role in dictating the fluorescence properties of fluorophore-embedded polymers.
Collapse
Affiliation(s)
- G Virat
- Materials Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - R B Amal Raj
- Materials Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
| | - E Bhoje Gowd
- Materials Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
6
|
Xu J, Wang J, Bakr OM, Hadjichristidis N. Controlling the Fluorescence Performance of AIE Polymers by Controlling the Polymer Microstructure. Angew Chem Int Ed Engl 2023; 62:e202217418. [PMID: 36652122 DOI: 10.1002/anie.202217418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 01/18/2023] [Indexed: 01/19/2023]
Abstract
Aggregation-induced emission (AIE) polymers with expected emission wavelength/color and fluorescence efficiency are valuable in applications. However, most AIE polymers exhibit irregular emission wavelength/color changes compared to the original AIE monomers. Here, we report the synthesis of AIE polymers with unchanged emission wavelength by ring-opening (co)polymerizations of 4-(triphenylethenyl)phenoxymethyloxirane (TPEO) and other epoxides or phthalic anhydride. The chemical structures/physical properties of all (co)polymers were characterized by NMR, SEC, MALDI-TOF, and DSC. The co-polyether microstructures were revealed by calculating the reactivity ratios and visualized by Monte Carlo simulation. The photoluminescence quantum yields of all the (co)polymers were determined in the solid state. We systematically correlated the fluorescence performance with molecular weights, crystallinity, monomer compositions, glass transition temperatures, side lengths, and flexibility/rigidity.
Collapse
Affiliation(s)
- Jiaxi Xu
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, Thuwal, 23955, Saudi Arabia
| | - Jiayi Wang
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Osman M Bakr
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
7
|
Dini VA, Gradone A, Villa M, Gingras M, Focarete ML, Ceroni P, Gualandi C, Bergamini G. A high-sensitivity long-lifetime phosphorescent RIE additive to probe free volume-related phenomena in polymers. Chem Commun (Camb) 2023; 59:1465-1468. [PMID: 36651351 DOI: 10.1039/d2cc05908h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The photophysical behaviour of phosphorescent rigidification-induced emission (RIE) dyes is highly affected by their micro- and nanoenvironment. The lifetime measure of RIE dyes dispersed in polymers represents an effective approach to gain valuable information on polymer free volume and thus develop materials potentially able to self-monitor physical ageing and mechanical stresses.
Collapse
Affiliation(s)
- Valentina Antonia Dini
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy.
| | - Alessandro Gradone
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy. .,CNR Institute for microelectronics and microsystems, Via Gobetti 101, 40129, Bologna, Italy.
| | - Marco Villa
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy.
| | - Marc Gingras
- Aix Marseille Univ, CNRS, CINAM, Marseille, France
| | - Maria Letizia Focarete
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy. .,Health Sciences and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum - Università di Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy
| | - Paola Ceroni
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy.
| | - Chiara Gualandi
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy. .,Health Sciences and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum - Università di Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy.,Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, 40136, Bologna, Italy
| | - Giacomo Bergamini
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy.
| |
Collapse
|
8
|
de la Cruz-Martínez F, Bresolí-Obach R, Bravo I, Alonso-Moreno C, Hermida-Merino D, Hofkens J, Lara-Sánchez A, Castro-Osma JA, Martín C. Unexpected luminescence of non-conjugated biomass-based polymers: new approach in photothermal imaging. J Mater Chem B 2023; 11:316-324. [PMID: 36353924 DOI: 10.1039/d2tb02033e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Population growth, depletion of world resources and persistent toxic chemical production underline the need to seek new smart materials from inexpensive, biodegradable, and renewable feedstocks. Hence, "metal-free" ring-opening copolymerization to convert biomass carvone-based monomers into non-conventional luminescent biopolymers is considered a sustainable approach to achieve these goals. The non-conventional emission was studied in terms of steady-state and time-resolved spectroscopy in order to unravel the structure-properties for different carvone-based copolymers. The results highlighted the importance of the final copolymer folding structure as well as its environment in luminescent behavior (cluster-triggered emission). In all cases, their luminescent behavior is sensitive to small temperature fluctuations (where the minimum detected temperature is Tm ∼ 2 °C and relative sensitivity is Sr ∼ 6% °C) even at the microscopic scale, which endows these materials a great potential as thermosensitive smart polymers for photothermal imaging.
Collapse
Affiliation(s)
- Felipe de la Cruz-Martínez
- Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-la Mancha, Avda. Camilo José Cela, 10, Ciudad Real 13071, Spain.
| | - Roger Bresolí-Obach
- Chem&Tech - Molecular Imaging and Photonics, KU Leuven, C/Celestijnenlaan 200F, Leuven 3001, Belgium.,AppLightChem, Institut Quimic de Sarria, Universitat Ramon Lull, Via Augusta 390, Barcelona 08007, Catalunya, Spain
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-la Mancha, Avda. Dr. José María Sánchez Ibáñez, s/n, Albacete 02071, Spain.
| | - Carlos Alonso-Moreno
- Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Farmacia, Universidad de Castilla-la Mancha, Avda. Dr. José María Sánchez Ibáñez, s/n, Albacete 02071, Spain.
| | - Daniel Hermida-Merino
- CINBIO, Departamento de Física Aplicada, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo 36310, Spain
| | - Johan Hofkens
- Chem&Tech - Molecular Imaging and Photonics, KU Leuven, C/Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Agustín Lara-Sánchez
- Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-la Mancha, Avda. Camilo José Cela, 10, Ciudad Real 13071, Spain.
| | - José A Castro-Osma
- Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Farmacia, Universidad de Castilla-la Mancha, Avda. Dr. José María Sánchez Ibáñez, s/n, Albacete 02071, Spain.
| | - Cristina Martín
- Chem&Tech - Molecular Imaging and Photonics, KU Leuven, C/Celestijnenlaan 200F, Leuven 3001, Belgium.,Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-la Mancha, Avda. Dr. José María Sánchez Ibáñez, s/n, Albacete 02071, Spain.
| |
Collapse
|
9
|
Huang S, Shan G, Qin C, Liu S. Polymerization-Enhanced Photophysical Performances of AIEgens for Chemo/Bio-Sensing and Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010078. [PMID: 36615271 PMCID: PMC9822127 DOI: 10.3390/molecules28010078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
AIE polymers have been extensively researched in the fields of OLEDs, sensing, and cancer treatment since its first report in 2003, which have achieved numerous breakthroughs during the years. In comparison with small molecules, it can simultaneously combine the unique advantages of AIE materials and the polymer itself, to further enhance their corresponding photophysical performances. In this review, we enumerate and discuss the common construction strategies of AIE-active polymers and summarize the progress of research on polymerization enhancing luminescence, photosensitization, and room-temperature phosphorescence (RTP) with their related applications in chemo/bio-sensing and therapy. To conclude, we also discuss current challenges and prospects of the field for future development.
Collapse
Affiliation(s)
- Shanshan Huang
- National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Guogang Shan
- National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun 130024, China
- Correspondence: (G.S.); (C.Q.); (S.L.)
| | - Chao Qin
- National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun 130024, China
- Correspondence: (G.S.); (C.Q.); (S.L.)
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Correspondence: (G.S.); (C.Q.); (S.L.)
| |
Collapse
|
10
|
Raichure PC, Kachwal V, Sengottuvelu D, Laskar IR. Achieving Single-Component Solid-State White-Light Emission through Polymerization-Induced Phosphorescent Emission. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Pramod C. Raichure
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Vishal Kachwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | - Dineshkumar Sengottuvelu
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
- Center for Graphene Research and Innovation, C06 Jackson Avenue Center, University of Mississippi, University, Mississippi 38677, United States
| | - Inamur Rahaman Laskar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
11
|
Fluorescent Organic Small Molecule Probes for Bioimaging and Detection Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238421. [PMID: 36500513 PMCID: PMC9737913 DOI: 10.3390/molecules27238421] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
Abstract
The activity levels of key substances (metal ions, reactive oxygen species, reactive nitrogen, biological small molecules, etc.) in organisms are closely related to intracellular redox reactions, disease occurrence and treatment, as well as drug absorption and distribution. Fluorescence imaging technology provides a visual tool for medicine, showing great potential in the fields of molecular biology, cellular immunology and oncology. In recent years, organic fluorescent probes have attracted much attention in the bioanalytical field. Among various organic fluorescent probes, fluorescent organic small molecule probes (FOSMPs) have become a research hotspot due to their excellent physicochemical properties, such as good photostability, high spatial and temporal resolution, as well as excellent biocompatibility. FOSMPs have proved to be suitable for in vivo bioimaging and detection. On the basis of the introduction of several primary fluorescence mechanisms, the latest progress of FOSMPs in the applications of bioimaging and detection is comprehensively reviewed. Following this, the preparation and application of fluorescent organic nanoparticles (FONPs) that are designed with FOSMPs as fluorophores are overviewed. Additionally, the prospects of FOSMPs in bioimaging and detection are discussed.
Collapse
|
12
|
A cyclopolymer incorporating tetraphenylethene groups in its cyclic repeating units. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Kachwal V, Tan J. Stimuli-Responsive Electrospun Fluorescent Fibers Augmented with Aggregation-Induced Emission (AIE) for Smart Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204848. [PMID: 36373688 PMCID: PMC9811457 DOI: 10.1002/advs.202204848] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/05/2022] [Indexed: 06/16/2023]
Abstract
This review addresses the latest advancements in the integration of aggregation-induced emission (AIE) materials with polymer electrospinning, to accomplish fine-scale electrospun fibers with tunable photophysical and photochemical properties. Micro- and nanoscale fibers augmented with AIE dyes (termed AIEgens) are bespoke composite systems that can overcome the limitation posed by aggregation-caused quenching, a critical deficiency of conventional luminescent materials. This review comprises three parts. First, the reader is exposed to the basic concepts of AIE and the fundamental mechanisms underpinning the restriction of intermolecular motions. This is followed by an introduction to electrospinning techniques pertinent to AIE-based fibers, and the core parameters for controlling fiber architecture and resultant properties. Second, exemplars are drawn from latest research to demonstrate how electrospun nanofibers and porous films incorporating modified AIEgens (especially tetraphenylethylene and triphenylamine derivatives) can yield enhanced photostability, photothermal properties, photoefficiency (quantum yield), and improved device sensitivity. Advanced applications are drawn from several promising sectors, encompassing optoelectronics, drug delivery and biology, chemosensors and mechanochromic sensors, and innovative photothermal devices, among others. Finally, the outstanding challenges together with potential opportunities in the nascent field of electrospun AIE-active fibers are presented, for stimulating frontier research and explorations in this exciting field.
Collapse
Affiliation(s)
- Vishal Kachwal
- Multifunctional Materials & Composites (MMC) LaboratoryDepartment of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Jin‐Chong Tan
- Multifunctional Materials & Composites (MMC) LaboratoryDepartment of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| |
Collapse
|
14
|
Chowdhury P, Banerjee A, Saha B, Bauri K, De P. Stimuli-Responsive Aggregation-Induced Emission (AIE)-Active Polymers for Biomedical Applications. ACS Biomater Sci Eng 2022; 8:4207-4229. [PMID: 36054823 DOI: 10.1021/acsbiomaterials.2c00656] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At high concentration or in the aggregated state, most of the traditional luminophores suffer from the general aggregation-caused quenching (ACQ) effect, which significantly limits their biomedical applications. On the contrary, a few fluorophores exhibit an aggregation-induced emission (AIE) feature which is just the opposite of ACQ. The luminophores with aggregation-induced emission (AIEgens) have exhibited noteworthy advantages to get tunable emission, excellent photostability, and biocompatibility. Incorporating AIEgens into polymer design has yielded diversified polymer systems with fascinating photophysical characteristics. Again, stimuli-responsive polymers are capable of undergoing chemical and/or physical property changes on receiving signals from single or multiple stimuli. The combination of the AIE property and stimuli responses in a single polymer platform provides a feasible and effective strategy for the development of smart polymers with promising biomedical applications. Herein, the advancements in stimuli-responsive polymers with AIE characteristics for biomedical applications are summarized. AIE-active polymers are first categorized into conventional π-π conjugated and nonconventional fluorophore systems and then subdivided based on various stimuli, such as pH, redox, enzyme, reactive oxygen species (ROS), and temperature. In each section, the design strategies of the smart polymers and their biomedical applications, including bioimaging, cancer theranostics, gene delivery, and antimicrobial examples, are introduced. The current challenges and future perspectives of this field are also stated at the end of this review article.
Collapse
Affiliation(s)
- Pampa Chowdhury
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Arnab Banerjee
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Biswajit Saha
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Kamal Bauri
- Department of Chemistry, Raghunathpur College, Raghunathpur, 723133 Purulia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| |
Collapse
|
15
|
Plouzeau M, Piogé S, Peilleron F, Fontaine L, Pascual S. Polymer/dye blends: Preparation and optical performance: A short review. J Appl Polym Sci 2022. [DOI: 10.1002/app.52861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Maud Plouzeau
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS – Le Mans Université Le Mans Cedex 9 France
- CASCADE Light Technologies Clamart France
- Polyvia Formation, Pôle universitaire d'Alençon Campus de Damigny Damigny France
| | - Sandie Piogé
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS – Le Mans Université Le Mans Cedex 9 France
| | | | - Laurent Fontaine
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS – Le Mans Université Le Mans Cedex 9 France
| | - Sagrario Pascual
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS – Le Mans Université Le Mans Cedex 9 France
| |
Collapse
|
16
|
Lou K, Li Q, Zhang R, Sun H, Ji X. Metal-ligand Interactions and Oligo(p-Phenylene Vinylene) Derivatives Based Supramolecular Polymer Possessing Variable Fluorescence Colors. Macromol Rapid Commun 2022; 43:e2200242. [PMID: 35411978 DOI: 10.1002/marc.202200242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/28/2022] [Indexed: 11/09/2022]
Abstract
Fluorescent supramolecular polymers combine the benefits of supramolecular polymers in terms of dynamic nature with the optoelectronic features of incorporated fluorophores. However, the majority of fluorescent supramolecular polymers can only exhibit a single fluorescent state, restricting their applications. Incorporating J-type dyes into supramolecular monomers is expected to impart supramolecular polymers with variable fluorescence colors, because the aggregation mode of J-type dyes is closely related to the formation of supramolecular polymers. Herein, we report a supramolecular polymer [M1·Zn(OTf)2 ]n , in which the monomer M1 contains a J-type dye, oligo(p-phenylene vinylene) (OPV) derivative, and two terpyridine ends. The M1 + Zn(OTf)2 solutions exhibit fluorescence color changes varying from cyan to yellow-green in the monomer concentration ranging from 0.04 to 1.00 mM. Moreover, based on the outputs from laser scanning confocal microscopy (LSCM), the fluorescence color transition during the formation of supramolecular polymers is intuitively proven. Additionally, considering the close relationship between the supramolecular polymer structure and the fluorescence color, the fluorescence color can be regulated by introducing tetraethylammonium hydroxide (TBAOH) that can bind with Zn2+ competitively to break up the structure of the supramolecular polymer. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kai Lou
- School of Chemistry and Chemical Engineering, Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qingyun Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruiyan Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haibo Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
17
|
Ge S, Wang E, Li J, Tang BZ. Aggregation-Induced Emission Boosting the Study of Polymer Science. Macromol Rapid Commun 2022; 43:e2200080. [PMID: 35320607 DOI: 10.1002/marc.202200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/09/2022] [Indexed: 11/07/2022]
Abstract
The past one hundred years witness the great development of polymer science. The advancement of polymer science is closely related with the developing of characterization techniques and methods, from viscometry in molecular weight determination to advanced techniques including differential scanning calorimetry, nuclear magnetic resonance and scanning electron microscopy. However, these techniques are normally constrained to tedious sample preparation, high cost, harsh experimental condition, or ex-situ characterization. Fluorescence technology has the merits of high sensitivity and direct visualization. Contrary to conventional aggregation-causing quenching fluorophores, those dyes with aggregation-induced emission characteristic show high emission efficiency in aggregate states. Based on the restriction of intramolecular motions for AIE properties, the AIE materials are very sensitive to the surrounding microenvironments owing to the twisted propeller-like structures and therefore reveal great potentials in polymer's study. The AIE concept has been successfully used in polymer's study and provides us a deeper understanding on polymer structure and properties. In this review, the applications of AIEgens in polymer science for visualizing polymerization, glass transition, dissolution, crystallization, gelation, self-assembly, phase separation, cracking and self-healing were exemplified and summarized. Lastly, the challenges and perspectives in the study of polymer science using AIEgens are addressed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sheng Ge
- S. Ge, Dr. E. Wang, Prof. J. Li, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Erjing Wang
- S. Ge, Dr. E. Wang, Prof. J. Li, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Jinhua Li
- S. Ge, Dr. E. Wang, Prof. J. Li, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Ben Zhong Tang
- Prof. B. Z. Tang, Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
18
|
Chen L, Jiang H, Li N, Meng Q, Li Z, Han Q, Liu X. A Schiff-based AIE fluorescent probe for Zn 2+ detection and its application as "fluorescence paper-based indicator". SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120704. [PMID: 34896683 DOI: 10.1016/j.saa.2021.120704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/04/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
A Schiff-based aggregation induced emission (AIE) fluorescent probe with excited intramolecular proton transfer (ESIPT) mechanism was synthesized by grafting 2-hydrazinobenzothiazole onto 2,6-diformyl-4-methylphenol. The probe recognizes Zn2+ selectively and sensitively, accompanied by a significant fluorescence emission increasement change from light yellow-green to strong green. Additionally, a stabilization time of at least 30 min was kept in the recognition process. Besides, a linear relationship was observed between the concentration of Zn2+ and the fluorescence intensity at 525 nm (0.05-10 µM). And thus, the probe can detect Zn2+ quantitatively in aqueous solution with a low detection limit of 1.9 × 10-8 M. Based on the AIE property and the selective recognition of Zn2+, SCH was strategically loaded on the filter paper to develop a novel paper-based indicator for on-site and high-efficiency detection of Zn2+. The results showed that the paper-based indicator could be conveniently applied to the visual inspection of Zn2+ as expected and SCH in the paper-based indicators fortunately exhibited a better stability. Furthermore, our comprehensive application evaluations have confirmed that SCH was capable of detecting Zn2+ in real water samples and imaging Zn2+ in living cells roundly.
Collapse
Affiliation(s)
- Lijuan Chen
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Huie Jiang
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Nihao Li
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Qingjun Meng
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Zhijian Li
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Qingxin Han
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xinhua Liu
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| |
Collapse
|
19
|
Zhang XJ, Gao RT, Kang SM, Wang XJ, Jiang RJ, Li GW, Zhou L, Liu N, Wu ZQ. Hydrogen-bonding dependent nontraditional fluorescence polyphenylallenes: Controlled synthesis and aggregation-induced emission behaviors. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Tavakoli J, Shrestha J, Bazaz SR, Rad MA, Warkiani ME, Raston CL, Tipper JL, Tang Y. Developing Novel Fabrication and Optimisation Strategies on Aggregation-Induced Emission Nanoprobe/Polyvinyl Alcohol Hydrogels for Bio-Applications. Molecules 2022; 27:1002. [PMID: 35164268 PMCID: PMC8840180 DOI: 10.3390/molecules27031002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
The current study describes a new technology, effective for readily preparing a fluorescent (FL) nanoprobe-based on hyperbranched polymer (HB) and aggregation-induced emission (AIE) fluorogen with high brightness to ultimately develop FL hydrogels. We prepared the AIE nanoprobe using a microfluidic platform to mix hyperbranched polymers (HB, generations 2, 3, and 4) with AIE (TPE-2BA) under shear stress and different rotation speeds (0-5 K RPM) and explored the FL properties of the AIE nanoprobe. Our results reveal that the use of HB generation 4 exhibits 30-times higher FL intensity compared to the AIE alone and is significantly brighter and more stable compared to those that are prepared using HB generations 3 and 2. In contrast to traditional methods, which are expensive and time-consuming and involve polymerization and post-functionalization to develop FL hyperbranched molecules, our proposed method offers a one-step method to prepare an AIE-HB nanoprobe with excellent FL characteristics. We employed the nanoprobe to fabricate fluorescent injectable bioadhesive gel and a hydrogel microchip based on polyvinyl alcohol (PVA). The addition of borax (50 mM) to the PVA + AIE nanoprobe results in the development of an injectable bioadhesive fluorescent gel with the ability to control AIEgen release for 300 min. When borax concentration increases two times (100 mM), the adhesion stress is more than two times bigger (7.1 mN/mm2) compared to that of gel alone (3.4 mN/mm2). Excellent dimensional stability and cell viability of the fluorescent microchip, along with its enhanced mechanical properties, proposes its potential applications in mechanobiology and understanding the impact of microstructure in cell studies.
Collapse
Affiliation(s)
- Javad Tavakoli
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Jesus Shrestha
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Sajad R. Bazaz
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Maryam A. Rad
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Majid E. Warkiani
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Colin L. Raston
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
| | - Joanne L. Tipper
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
21
|
Ma C, Han T, Niu N, Al-Shok L, Efstathiou S, Lester D, Huband S, Haddleton D. Well-defined polyacrylamides with AIE properties via rapid Cu-mediated living radical polymerization in aqueous solution: thermoresponsive nanoparticles for bioimaging. Polym Chem 2022. [DOI: 10.1039/d1py01432c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a requirement for the development of methods for the preparation of well-controlled polymers with aggregation-induced emission (AIE) properties.
Collapse
Affiliation(s)
- Congkai Ma
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Ting Han
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Niu Niu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lucas Al-Shok
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Daniel Lester
- Polymer Characterisation Research Technology Platform, University of Warwick, Coventry, CV4 7AL, UK
| | - Steven Huband
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - David Haddleton
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
22
|
Wang P, Liu X, Liu H, He X, Zhang D, Chen J, Li Y, Feng W, Jia K, Lin J, Li K, Yang X. Combining aggregation-induced emission and instinct high-performance of polyarylene ether nitriles via end-capping with tetraphenylethene. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Raichure PC, Bhatt R, Kachwal V, Sharma TC, Laskar IR. Multi-stimuli distinct responsive D–A based fluorogen oligomeric tool and efficient detection of TNT vapor. NEW J CHEM 2022. [DOI: 10.1039/d1nj05314k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
P1 shows distinct emission responses with multi-stimuli, i.e., quenching for TNT sensing, red shifting for acid and base vapors, blue shifting against MFC behavior, and solvent polarity-dependent emission.
Collapse
Affiliation(s)
- Pramod C. Raichure
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Ramprasad Bhatt
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Vishal Kachwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | | | - Inamur Rahaman Laskar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
24
|
Meng X, Zhang D, Zhao R, Zhou Z, Zhang P, Zhao J, Wang M, Guo H, Deng K. Aggregation-induced emission (AIE) from poly(1,4-dihydropyridine)s synthesized by Hantzsch polymerization and their specific detection of Fe 2+ ions. Polym Chem 2022. [DOI: 10.1039/d2py00950a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As an important metal element widely existing in nature and the human body, the simple and specific detection of Fe2+ ions has always been of interest.
Collapse
Affiliation(s)
- Xue Meng
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Da Zhang
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Ronghui Zhao
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
- Affiliated Hospital of Hebei University, Baoding 071002, China
| | - Zhixia Zhou
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Pengfei Zhang
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Jingyuan Zhao
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Meng Wang
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Huiying Guo
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Kuilin Deng
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
25
|
Virat G, Gowd EB. Poly(l-lactide)s with tetraphenylethylene: role of polymer chain packing in aggregation-induced emission behavior of tetraphenylethylene. Polym Chem 2022. [DOI: 10.1039/d1py01539g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The AIE behavior of tetraphenylethylene in biocompatible poly(l-lactide)s is found to be sensitive to the polymer chain packing, polymer crystal structure, solvent, and temperature.
Collapse
Affiliation(s)
- G. Virat
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - E. Bhoje Gowd
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
26
|
Wang J, Jiang Q, Cao S, Sun C, Zhang Y, Qiu Y, Wang H, Yin G, Liao Y, Xie X. Z/E Effect on Phase Behavior of Main-Chain Liquid Crystalline Polymers Bearing AIEgens. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qian Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuang Cao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenchen Sun
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuping Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan Qiu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guochuan Yin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yonggui Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaolin Xie
- National Anti-counterfeit Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
27
|
Nile R, Rajput H, Sims C, Jin K. Sensing the melting transition of semicrystalline polymers via a novel fluorescence technique. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Zhang J, Liang W, Wen L, Lu Z, Xiao Y, Lang M. Antibacterial AIE polycarbonates endowed with selective imaging capabilities by adjusting the electrostaticity of the mixed-charge backbone. Biomater Sci 2021; 9:5293-5301. [PMID: 34180921 DOI: 10.1039/d1bm00894c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining rapid microbial discrimination with antibacterial properties, multi-functional biomacromolecules allow the timely diagnosis and effective treatment of infectious diseases. Through a two-step approach involving organocatalytic ring-opening copolymerization and thiol-ene modification, aggregation-induced emission (AIE) polycarbonates decorated with tertiary amines were prepared. After being ionized using acetic acid, the obtained cationic AIE polycarbonate with excellent water solubility showed bacteria imaging capabilities and antibacterial activities toward both Gram-positive S. aureus and Gram-negative E. coli. It was indicated via scanning electron microscope images that the bactericidal mechanism involved membrane lysis, consistent with most cationic polymers. Through further co-grafting carboxyl and tertiary amine groups, mixed-charge AIE polycarbonates were obtained. The isoelectric points of such mixed-charge AIE polycarbonates could be simply tuned based on the grafting ratio of positive and negative moieties. Compared with the cationic AIE polycarbonate, mixed-charge AIE polycarbonates allowed the rapid and selective imaging of S. aureus, but not E. coli. The selectivity probably arose from the lower binding forces between the mixed-charge AIE polycarbonates and the low-negative-charge components of the E. coli surface. Therefore, these biodegradable polycarbonates, which integrated selective bacteria imaging and antibiotic abilities, potentially suggest a precision medicine approach for infectious diseases. The overall synthesis approach and mixed-charge AIE polycarbonates provide new references for the design and application of bio-related AIE polymers.
Collapse
Affiliation(s)
- Junyong Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Wencheng Liang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Lianlei Wen
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhimin Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yan Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
29
|
Guan L, Liu W, Kang H, Tian D. Fabrication and cell imaging of konjac glucomannan-copper nanocluster conjugates with aggregation-induced emission. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
Rodrigues ACB, Seixas de Melo JS. Aggregation-Induced Emission: From Small Molecules to Polymers-Historical Background, Mechanisms and Photophysics. Top Curr Chem (Cham) 2021; 379:15. [PMID: 33725207 DOI: 10.1007/s41061-021-00327-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/12/2021] [Indexed: 12/26/2022]
Abstract
The enhancement of photoluminescence through formation of molecular aggregates in organic oligomers and conjugated organic polymers is reviewed. A historical contextualization of aggregation-induced emission (AIE) phenomena is presented. This includes the loose bolt or free rotor effect and J-aggregation phenomena, and discusses their characteristic features, including structures and mechanisms. The basis of both effects is examined in key molecules, with a particular emphasis on the AIE effect occurring in conjugated organic polymers with a polythiophene (PT) skeleton with triphenylethylene (TPE) units. Rigidification of the excited state structure is one of the defining conditions required to obtain AIE, and thus, by changing from a flexible ground state to rigid (quinoidal-like) structures, oligo and PTs are among the most promising emerging molecules alongside with the more extensively used TPE derivatives. Molecular structures moving away from the domination of aggregation-caused quenching to AIE are presented. Future perspectives for the rational design of AIEgen structures are discussed.
Collapse
Affiliation(s)
- Ana Clara B Rodrigues
- Department of Chemistry, Coimbra Chemistry Centre, University of Coimbra, 3004-535, Coimbra, Portugal
| | - J Sérgio Seixas de Melo
- Department of Chemistry, Coimbra Chemistry Centre, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
31
|
Zhang P, Rešetič A, Behl M, Lendlein A. Multifunctionality in Polymer Networks by Dynamic of Coordination Bonds. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Pengfei Zhang
- Institute of Biomaterial Science Helmholtz‐Zentrum Geesthacht Kantstr. 55 Teltow 14513 Germany
- Institute of Chemistry University of Potsdam Potsdam 14476 Germany
| | - Andraž Rešetič
- Institute of Biomaterial Science Helmholtz‐Zentrum Geesthacht Kantstr. 55 Teltow 14513 Germany
| | - Marc Behl
- Institute of Biomaterial Science Helmholtz‐Zentrum Geesthacht Kantstr. 55 Teltow 14513 Germany
- Joint Laboratory for Biomaterials and Regenerative Medicine Weijin Road 92 Tianjin 300072 China
- Joint Laboratory for Biomaterials and Regenerative Medicine Kantstr. 55 Teltow 14513 Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science Helmholtz‐Zentrum Geesthacht Kantstr. 55 Teltow 14513 Germany
- Institute of Chemistry University of Potsdam Potsdam 14476 Germany
- Joint Laboratory for Biomaterials and Regenerative Medicine Weijin Road 92 Tianjin 300072 China
- Joint Laboratory for Biomaterials and Regenerative Medicine Kantstr. 55 Teltow 14513 Germany
| |
Collapse
|
32
|
Zheng Z, Zhou T, Hu R, Huang M, Ao X, Chu J, Jiang T, Qin A, Zhang Z. A specific aggregation-induced emission-conjugated polymer enables visual monitoring of osteogenic differentiation. Bioact Mater 2020; 5:1018-1025. [PMID: 32695933 PMCID: PMC7355993 DOI: 10.1016/j.bioactmat.2020.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/10/2020] [Accepted: 06/28/2020] [Indexed: 01/10/2023] Open
Abstract
Osteogenic differentiation is the basis of bone growth and repair related to many diseases, in which evaluating the degree and ability of osteogenic transformation is quite important and highly desirable. However, fixing or stopping the growth of cells is required for conventional methods to monitor osteogenic differentiation, which cannot realize the full investigation of the dynamic process. Herein, a new anion conjugated polymer featuring aggregation-induced emission (AIE) characteristics is developed with excellent solubility for in-situ monitoring the process of osteogenic differentiation. This novel polymer can bind with osteogenic differentiated cells, and the intracellular fluorescence increases gradually with the enhancement of osteogenic differentiation. Moreover, it possesses good biosafety with negligible effect on cell activity and osteogenic differentiation, which cannot be realized by the typical method of Alizarin Red S staining. Further study shows that the polymer crosses the cell membrane through endocytosis and enriches in lysosomes, whereas no obvious fluorescence is detected with other cells, including non-differentiated osteoblast cells, under the same conditions, demonstrating the high selectivity. This is the first fluorescent probe with excellent specificity to realize real-time observation of the process of osteogenic differentiation. Therefore, PTB-EDTA shows great promise in the study of osteogenic differentiation and related applications.
Collapse
Affiliation(s)
- Zhenyu Zheng
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangdong Province, Guangzhou, 510630, China
| | - Taotao Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Minjun Huang
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangdong Province, Guangzhou, 510630, China
| | - Xiang Ao
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangdong Province, Guangzhou, 510630, China
| | - Jun Chu
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangdong Province, Guangzhou, 510630, China
| | - Tao Jiang
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangdong Province, Guangzhou, 510630, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Zhongmin Zhang
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangdong Province, Guangzhou, 510630, China
| |
Collapse
|
33
|
Liu B, Wang K, Lu H, Huang M, Shen Z, Yang J. Thermally responsive AIE-active polyurethanes based on a tetraaniline derivative. RSC Adv 2020; 10:41424-41429. [PMID: 35516579 PMCID: PMC9057807 DOI: 10.1039/d0ra06193j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/31/2020] [Indexed: 11/21/2022] Open
Abstract
Polyurethanes with different soft–hard segment ratios were successfully synthesized, with an aggregation-induced-emission (AIE)-active tetraaniline derivative (NH2–B3–Ani4–NH2) as the hard segment. The resulting polyurethanes exhibited typical AIE features. The fluorescence intensities of polyurethane films changed with heat treatments. The fluorescence intensities of the polyurethane films decreased sharply after quenching treatment, yet their fluorescence intensities exceeded the original intensities of the films after thermal annealing at 80 °C for 24 h. Differential Scanning Calorimetry (DSC) results implied that the melting peaks in polyurethane films disappeared after quenching treatment, but the melting peaks appeared again after thermal annealing. These results proved that the arrangement of the structure had an important effect on the AIE properties of the polyurethane films. Meanwhile, the fluorescence intensities of these polyurethanes decreased with the increase of temperature, indicating that all three polyurethanes exhibited temperature-dependent fluorescent characteristics. Based on the above investigations, the AIE-active polyurethanes may provide a platform for the development of stimuli-responsive fluorescent materials. Polyurethanes with an AIE fluorophore (tetraaniline derivative) are thermo-responsive, demonstrating that AIE-active polyurethane films have promising applications in stimuli-responsive materials.![]()
Collapse
Affiliation(s)
- Beibei Liu
- Beijing Key Laboratory for Powder Technology Research & Development, School of Aeronautical Science and Engineering, Beihang University Beijing 100191 China
| | - Kun Wang
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University Beijing 100191 China
| | - Hao Lu
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University Beijing 100191 China
| | - Mingming Huang
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University Beijing 100191 China
| | - Zhigang Shen
- Beijing Key Laboratory for Powder Technology Research & Development, School of Aeronautical Science and Engineering, Beihang University Beijing 100191 China
| | - Jiping Yang
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University Beijing 100191 China
| |
Collapse
|
34
|
Rakshit S, Das S, Govindaraj V, Maini R, Kumar A, Datta A. Morphological Evolution of Strongly Fluorescent Water Soluble AIEEgen-Triblock Copolymer Mixed Aggregates with Shape-Dependent Cell Permeability. J Phys Chem B 2020; 124:10282-10291. [PMID: 33135898 DOI: 10.1021/acs.jpcb.0c07820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dimethyl-2,5-bis(4-methoxyphenylamino)terephthalate (DBMPT) is a water-insoluble fluorogenic molecule, which has been rendered water-soluble in physiological conditions, by the addition of triblock copolymers (TBPs), P123 (PEO19PPO69PEO19), and F127 (PEO100PPO65PEO100). DBMPT-TBP mixed aggregates, formed in the process, exhibit significant aggregation-induced enhancement of emission, with nanosecond fluorescence lifetimes. Dynamics involved in suppression of nonradiative pathways and consequent enhancement of fluorescence are followed by femtosecond transient absorption and time-resolved fluorescence spectroscopic techniques. Interestingly, shapes of the aggregates formed with the two TBPs are found to be very different, even though they differ only in the length of hydrophilic blocks. DBMPT-P123 aggregates are micrometer-sized and spherical, while DBMPT-F127 aggregates form nanorods. Evolution of their morphologies, as a function of TBP concentration, is monitored using cryo-TEM, FESEM, and fluorescence lifetime imaging microscopy. Fluorescence lifetime distribution provides useful insight into microheterogeneity in these mixed aggregates. Excellent cell permeability is observed for DBMPT-F127 nanorods, in contrast to DBMPT-P123 microspheres. These fluorescent nanorods exhibit the ability to mark lipid droplets within the cell and hence bear the promise for application in intracellular imaging.
Collapse
Affiliation(s)
- Soumyadipta Rakshit
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sharmistha Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Vinodhini Govindaraj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ratika Maini
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anil Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
35
|
Su X, Gao Q, Wang D, Han T, Tang BZ. One-Step Multicomponent Polymerizations for the Synthesis of Multifunctional AIE Polymers. Macromol Rapid Commun 2020; 42:e2000471. [PMID: 33000896 DOI: 10.1002/marc.202000471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/15/2020] [Indexed: 01/01/2023]
Abstract
As a new class of functional luminescent materials, polymers with aggregation-induced emission (AIE) feature attract much attention because of their advantages of efficient solid-state fluorescence, excellent processability, structural diversity, and multifunctionalities. Among all polymerization methods toward AIE polymers, multicomponent polymerizations (MCPs) exhibit the merits of simple operation, good atom economy, high polymerization efficiency, broad functional-group tolerance, etc. In this feature article, the recent progress on the development of one-step MCPs for the synthesis of AIE polymers is highlighted. The representative functionalities of the resulting AIE polymers are illustrated. Perspectives on the challenges and future development directions of this field are also discussed.
Collapse
Affiliation(s)
- Xiang Su
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qingqing Gao
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute of Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,School of Materials Science and Engineering, Xiamen University of Technology, Ligong Road No. 600, Jimei District, Xiamen, 361024, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute of Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
36
|
Qiang Z, Wang M. 100th Anniversary of Macromolecular Science Viewpoint: Enabling Advances in Fluorescence Microscopy Techniques. ACS Macro Lett 2020; 9:1342-1356. [PMID: 35638626 DOI: 10.1021/acsmacrolett.0c00506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past few decades there has been a revolution in the field of optical microscopy with emerging capabilities such as super-resolution and single-molecule fluorescence techniques. Combined with the classical advantages of fluorescence imaging, such as chemical labeling specificity, and noninvasive sample preparation and imaging, these methods have enabled significant advances in our polymer community. This Viewpoint discusses several of these capabilities and how they can uniquely offer information where other characterization techniques are limited. Several examples are highlighted that demonstrate the ability of fluorescence microscopy to understand key questions in polymer science such as single-molecule diffusion and orientation, 3D nanostructural morphology, and interfacial and multicomponent dynamics. Finally, we briefly discuss opportunities for further advances in techniques that may allow them to make an even greater contribution in polymer science.
Collapse
Affiliation(s)
- Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Muzhou Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
37
|
An AIE polymer prepared via aldehyde-hydrazine step polymerization and the application in Cu2+ and S2− detection. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122663] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Tavakoli J, Raston CL, Tang Y. Tuning Surface Morphology of Fluorescent Hydrogels Using a Vortex Fluidic Device. Molecules 2020; 25:E3445. [PMID: 32751141 PMCID: PMC7435964 DOI: 10.3390/molecules25153445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
In recent decades, microfluidic techniques have been extensively used to advance hydrogel design and control the architectural features on the micro- and nanoscale. The major challenges with the microfluidic approach are clogging and limited architectural features: notably, the creation of the sphere, core-shell, and fibers. Implementation of batch production is almost impossible with the relatively lengthy time of production, which is another disadvantage. This minireview aims to introduce a new microfluidic platform, a vortex fluidic device (VFD), for one-step fabrication of hydrogels with different architectural features and properties. The application of a VFD in the fabrication of physically crosslinked hydrogels with different surface morphologies, the creation of fluorescent hydrogels with excellent photostability and fluorescence properties, and tuning of the structure-property relationship in hydrogels are discussed. We conceive, on the basis of this minireview, that future studies will provide new opportunities to develop hydrogel nanocomposites with superior properties for different biomedical and engineering applications.
Collapse
Affiliation(s)
- Javad Tavakoli
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo NSW 2007, Australia;
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia;
| | - Colin L. Raston
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia;
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia;
| |
Collapse
|
39
|
Han T, Liu L, Wang D, Yang J, Tang BZ. Mechanochromic Fluorescent Polymers Enabled by AIE Processes. Macromol Rapid Commun 2020; 42:e2000311. [PMID: 32648346 DOI: 10.1002/marc.202000311] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/28/2020] [Indexed: 02/06/2023]
Abstract
Polymeric materials are susceptible to the chain re-conformation, reorientation, slippage, and bond cleavage upon mechanical stimuli, which are likely to further grow into macro-damages and eventually lead to the compromise or loss of materials performance. Therefore, it is of great academic importance and practical significance to sensitively detect the local mechanical states in polymers and monitor the dynamic variations in polymer structures and properties under external forces. Mechanochromic fluorescent polymers (MFP) are a class of smart materials by utilizing sensitive fluorescent motifs to detect polymer chain events upon mechanical stimuli. Taking advantage of the unique aggregation-induced emission (AIE) effect, a variety of MFP systems that can self-report their mechanical states and mechano-induced structural and property changes through fluorescence signals have been developed. In this feature article, an overview of the recent progress on MFP systems enabled by AIE process is presented. The main design principles, including physically doping dispersed or microencapsulated AIE luminogens (AIEgens) into polymer matrix, chemically linking AIEgens in polymer backbones, and utilizing the clusterization-triggered emission of polymers containing nonconventional luminogens, are discussed with representative examples. Perspectives on the existing challenges and problems in this field are also discussed to guide future development.
Collapse
Affiliation(s)
- Ting Han
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lijie Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jinglei Yang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
40
|
Modulation of the solid-state luminescent properties of conjugated polymers by changing the connecting points of flexible boron element blocks. Polym J 2020. [DOI: 10.1038/s41428-020-0316-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
41
|
Li G, Zhou Z, Yuan C, Guo Z, Liu Y, Zhao D, Liu K, Zhao J, Tan H, Yan X. Trackable Supramolecular Fusion: Cage to Cage Transformation of Tetraphenylethylene‐Based Metalloassemblies. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Guangfeng Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhixuan Zhou
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Chang Yuan
- Department of ChemistryBeijing Normal University Beijing 100050 P. R. China
| | - Zhewen Guo
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yuhang Liu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Dong Zhao
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Kai Liu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hongwei Tan
- Department of ChemistryBeijing Normal University Beijing 100050 P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
42
|
Li G, Zhou Z, Yuan C, Guo Z, Liu Y, Zhao D, Liu K, Zhao J, Tan H, Yan X. Trackable Supramolecular Fusion: Cage to Cage Transformation of Tetraphenylethylene‐Based Metalloassemblies. Angew Chem Int Ed Engl 2020; 59:10013-10017. [DOI: 10.1002/anie.202000078] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/19/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Guangfeng Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhixuan Zhou
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Chang Yuan
- Department of ChemistryBeijing Normal University Beijing 100050 P. R. China
| | - Zhewen Guo
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yuhang Liu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Dong Zhao
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Kai Liu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hongwei Tan
- Department of ChemistryBeijing Normal University Beijing 100050 P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
43
|
Tavakoli J, Joseph N, Raston CL, Tang Y. A hyper-branched polymer tunes the size and enhances the fluorescent properties of aggregation-induced emission nanoparticles. NANOSCALE ADVANCES 2020; 2:633-641. [PMID: 36133251 PMCID: PMC9417821 DOI: 10.1039/d0na00044b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/29/2020] [Indexed: 05/05/2023]
Abstract
The host-guest interaction approach, specifically via the formation of hydrogen bonds, is an effective strategy for preparing luminescent hyper-branched polymers. The challenge here is how to optimize the binding strength and particle size to tune fluorescence properties. The aim of the current study was to optimize the guest (aggregation-induced emission molecule, AIE)-host (hyper-branched polymer, HBP) interaction in the development of an HBP/AIE complex (AIE-HBP) with tunable luminescence properties via the formation of strong hydrogen bonds. Overall, a simple one-step method for the preparation of AIE-HBP was demonstrated. The method was based on the formation of hydrogen bonds among AIE molecules and HBP molecules, resulting in the development of a stable AIE-polymer complex. Compared to other techniques (direct polymerization or post-functionalization), the proposed technique was much simpler. The fluorescence properties of AIE-HBP were significantly enhanced compared to AIE alone and could be tuned during the formation of AIE-HBP by using a novel vortex fluidic device (VFD). The as-prepared AIE-HBP can be used to simultaneously enhance the mechanical properties of hydrogels while increasing the fluorescence properties.
Collapse
Affiliation(s)
- Javad Tavakoli
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University South Australia Australia +61-8-82012138
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney Sydney Australia
| | - Nikita Joseph
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University South Australia Australia +61-8-82012138
| | - Colin L Raston
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University South Australia Australia +61-8-82012138
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University South Australia Australia +61-8-82012138
| |
Collapse
|
44
|
|
45
|
Kopeć M, Pikiel M, Vancso GJ. Surface-grafted polyacrylonitrile brushes with aggregation-induced emission properties. Polym Chem 2020. [DOI: 10.1039/c9py01213c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polyacrylonitrile (PAN) brushes were grafted from silicon wafers by photoinduced ATRP and shown to exhibit aggregation-induced emission (AIE) properties.
Collapse
Affiliation(s)
- Maciej Kopeć
- Materials Science and Technology of Polymers
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Marcin Pikiel
- Materials Science and Technology of Polymers
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - G. Julius Vancso
- Materials Science and Technology of Polymers
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| |
Collapse
|
46
|
Guo Y, Pan X, Zhang W, Hu Z, Wong KW, He Z, Li HW. Label-free probes using DNA-templated silver nanoclusters as versatile reporters. Biosens Bioelectron 2019; 150:111926. [PMID: 31929081 DOI: 10.1016/j.bios.2019.111926] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
DNA-templated silver nanoclusters (DNA-AgNCs) have demonstrated pervasive applications in analytical chemistry recently. As a way of signal output in DNA-based detection methods, DNA-AgNCs have prominent advantages: first, the recognition and synthesizing sequences are naturally integrated in one DNA probe without any chemical modification or connection; second, the emissive wavelength of DNA-AgNCs can be adjusted in a wide range by employing different sequences; third, DNA-AgNCs can be utilized for producing not only fluorescence, also electrochemiluminescence and electrochemical signals. Besides, they also show potential applications for cell imaging, and are considered to be one of the most ideal nanomaterials for in-vivo imaging due to their ultra-small particle size. In this review, a brief and comprehensive introduction of DNA-AgNCs is firstly given, then label-free probes using DNA-AgNCs are classified and summarized, lastly concluding perspectives are provided on the defects and application potentials.
Collapse
Affiliation(s)
- Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xinyue Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wenya Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhigang Hu
- Wuxi Children's Hospital, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ka-Wang Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
47
|
Khan IM, Niazi S, Iqbal Khan MK, Pasha I, Mohsin A, Haider J, Iqbal MW, Rehman A, Yue L, Wang Z. Recent advances and perspectives of aggregation-induced emission as an emerging platform for detection and bioimaging. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115637] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Wei X, Zhu MJ, Yan H, Lu C, Xu JJ. Recent Advances in Aggregation-Induced Electrochemiluminescence. Chemistry 2019; 25:12671-12683. [PMID: 31283848 DOI: 10.1002/chem.201902465] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 12/31/2022]
Abstract
The emergence of the rising alliance between aggregation-induced emission (AIE) and electrochemiluminescence (ECL) is defined as aggregation-induced electrochemiluminescence (AIECL). The booming science of AIE has proved to be not only distinguished in luminescent materials but could also inject new possibility into ECL analysis. Especially in the aqueous phase and solid state for hydrophobic materials, AIE helps ECL circumvent the dilemma between substantial emission intensity and biocompatible media. The wide range of analytes makes ECL an overwhelmingly interesting analytical technique. Therefore, AIECL has gained potential in clinical diagnostics, environmental assays, and biomarker detections. This review will focus on introduction of the novel concept of AIECL, current applied luminophores, and related applications developed in recent years.
Collapse
Affiliation(s)
- Xing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Meng-Jiao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
49
|
Synthesis and Properties of Photodegradable Poly(furan-amine)s by a Catalyst-free Multicomponent Cyclopolymerization. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2281-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Li M, Li X, An X, Chen Z, Xiao H. Clustering-Triggered Emission of Carboxymethylated Nanocellulose. Front Chem 2019; 7:447. [PMID: 31281810 PMCID: PMC6596105 DOI: 10.3389/fchem.2019.00447] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/03/2019] [Indexed: 12/23/2022] Open
Abstract
Non-conjugated polymers with luminescence emission property have recently drawn great attention due to their promising applications in different areas. Most traditional organic synthetic non-conjugated polymers required complicated synthesis. Herein, we report a non-conjugated biomass material, carboxymethylated nanocellulose (C-CNC), which is found to be practically non-luminescent in dilute solutions, while being highly emissive when aggregated as nanosuspensions. We propose that the luminescence of C-CNC originates from the through-space conjugation of oxygen atoms and carboxyl groups of C-CNC. Thus, a clearer mechanism of clusteroluminescence was provided with the subsequent experiments. The effects of concentration of C-CNC, solvent, temperature and pH have also been investigated. In addition, ethylenediamine (EDA) has been employed to "lock" C-CNC material via the bonding of amide groups with carboxylic groups. As prepared C-CNC/EDA confirmed that the clusteroluminescence was attributed to the amide moieties and through-space conjugation between oxygen and carbonyl moieties. Density functional theory (DFT) calculations have also been employed to confirm the luminescence mechanism. It is believed that such clustering-triggered emission mechanism is instructive for further development of unconventional luminogens.
Collapse
Affiliation(s)
- Meng Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, China
| | - Xiaoning Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, China
| | - Xuefei An
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, China
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|