1
|
Clapperton AM, Hood C, Tran H. Sequence-defined peptoids via iterative exponential growth. Chem Sci 2025:d5sc01296a. [PMID: 40303452 PMCID: PMC12035749 DOI: 10.1039/d5sc01296a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
Synthetic control over polymer sequence, composition, and stereochemistry is critical to understanding their influence on the intramolecular and intermolecular interactions of polymers. We report an iterative exponential growth (IEG) strategy for peptoids, a class of sequence-defined peptidomimetics, relying on orthogonally protected monomers. The IEG technique enables the synthesis of monodisperse peptoids with varied sequences, side chains, and stereoconfigurations on a scale that is useful for material science applications. The method allows for direct monitoring of the reaction progress without the need for cleavage from a solid-support. This IEG strategy offers higher molecular weights than other solution-phase sequence-defined synthetic strategies for peptoids and seeks to mimic the precise structural organization of sequence-defined biopolymers for a synthetic polymer system, which we anticipate will enable the rational design of functional polymer materials.
Collapse
Affiliation(s)
| | - Christine Hood
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
| | - Helen Tran
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto Ontario M5S 3E5 Canada
- Acceleration Consortium, University of Toronto Toronto Ontario M5G 1Z5 Canada
| |
Collapse
|
2
|
Bhumij M, Ambule MD, Sinha S, Prabhat S, Kant R, Srivastava AK. Enantioselective Synthesis of Azatricycles via Post-Ugi Cyclizations. J Org Chem 2024; 89:16679-16696. [PMID: 39497236 DOI: 10.1021/acs.joc.4c01970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We report a new method to create enantioenriched azatricycles using chiral α-amino acids in a two-step process after an Ugi reaction. Amino acids are great building blocks for making pure chiral molecules. Using chiral natural molecules in multicomponent reactions (MCRs) helps increase their variety by adding new chiral centers. The Ugi reaction, discovered by Ivar Karl Ugi in 1959, is a versatile MCR that helps create complex molecular structures and natural products through additional transformations called post-Ugi modifications. Designing these modifications requires selecting the right amine, acid, aldehyde/ketone, and isocyanide. Amino acids, with their primary amine and carboxylic acid groups and a pre-existing chiral center, are ideal for making diverse and selective post-Ugi modifications. Our method uses ipso-cyclization and aza-Michael cyclization with hypervalent iodine to create various azaspirotricyclic structures with high stereocontrol. This approach works well with different substrates and shows promise for further development in drug discovery.
Collapse
Affiliation(s)
- Mandweep Bhumij
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Mayur D Ambule
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sagar Sinha
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Surbhi Prabhat
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ajay Kumar Srivastava
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Xu M, Wu Z. Preparation of small peptoid-modified zwitterion-exchange/reversed-phase mixed-mode chromatography stationary phases for the separation of arenes and antibiotics. Anal Chim Acta 2024; 1296:342335. [PMID: 38401942 DOI: 10.1016/j.aca.2024.342335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
In this study, three small peptoids with different structures, named Sil-peptoids, were developed to improve the separation selectivity of zwitterion-exchange/reversed-phase mixed-mode chromatography stationary phases for multi-component complex drugs. Nonpolar, amphoteric, and alkaline drugs were used as test samples to demonstrate their retention behaviors in reversed-phase, ionic, and mixed-mode interactions. It was observed that different carboxyl anions in the small peptoids of the Sil-peptoids had vast differences in their stereo-selectivity. The stereo-selectivity and the influence of Sil-peptoids on the retention behavior of complex drugs and their interaction mechanism for the drug molecules were effectively evaluated through the combination of chromatographic analysis and molecular modeling. Finally, a mixture of drugs consisting of two polar and six non-polar drugs was used to obtain a separation effect with a resolution >1.5. Two other groups of polar antibiotics were used to verify the separation ability of the Sil-peptoids. The results indicated that the Sil-peptoids could separate multiple substances simultaneously. These novel stationary phases can be applied to the analysis of complex multi-component drugs.
Collapse
Affiliation(s)
- Meng Xu
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Zhenwei Wu
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| |
Collapse
|
4
|
Weigel RK, Rangamani A, Alabi CA. Synthetically encoded complementary oligomers. Nat Rev Chem 2023; 7:875-888. [PMID: 37973830 DOI: 10.1038/s41570-023-00556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Creating the next generation of advanced materials will require controlling molecular architecture to a degree typically achieved only in biopolymers. Sequence-defined polymers take inspiration from biology by using chain length and monomer sequence as handles for tuning structure and function. These sequence-defined polymers can assemble into discrete structures, such as molecular duplexes, via reversible interactions between functional groups. Selectivity can be attained by tuning the monomer sequence, thereby creating the need for chemical platforms that can produce sequence-defined polymers at scale. Developing sequence-defined polymers that are specific for their complementary sequence and achieve their desired binding strengths is critical for producing increasingly complex structures for new functional materials. In this Review Article, we discuss synthetic platforms that produce sequence-defined, duplex-forming oligomers of varying length, strength and association mode, and highlight several analytical techniques used to characterize their hybridization.
Collapse
Affiliation(s)
- R Kenton Weigel
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Adithya Rangamani
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Christopher A Alabi
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Hooshmand SE, Zhang W. Ugi Four-Component Reactions Using Alternative Reactants. Molecules 2023; 28:molecules28041642. [PMID: 36838630 PMCID: PMC9961709 DOI: 10.3390/molecules28041642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The Ugi four-component reaction (Ugi-4CR) undoubtedly is the most prominent multicomponent reaction (MCRs) that has sparked organic chemists' interest in the field. It has been widely used in the synthesis of diverse heterocycle molecules such as potential drugs, natural product analogs, pseudo peptides, macrocycles, and functional materials. The Ugi-4CRs involve the use of an amine, an aldehyde or ketone, an isocyanide, and a carboxylic acid to produce an α-acetamido carboxamide derivative, which has significantly advanced the field of isocyanide-based MCRs. The so-called intermediate nitrilium ion could be trapped by a nucleophile such as azide, N-hydroxyphthalimide, thiol, saccharin, phenol, water, and hydrogen sulfide instead of the original carboxylic acid to allow for a wide variety of Ugi-type reactions to occur.β In addition to isocyanide, there are alternative reagents for the other three components: amine, isocyanide, and aldehyde or ketone. All these alternative components render the Ugi reaction an aptly diversity-oriented synthesis of a myriad of biologically active molecules and complex scaffolds. Consequently, this review will delve deeper into alternative components used in the Ugi MCRs, particularly over the past ten years.
Collapse
Affiliation(s)
- Seyyed Emad Hooshmand
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran 1993893973, Iran
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
- Correspondence: ; Tel.: +1-617-287-6147
| |
Collapse
|
6
|
Ren X, Guo C, Li X, Wu Y, Zhang Y, Li S, Zhang K. Protecting-Group-Free Iterative Divergent/Convergent Method for Preparing Sequence-Defined Polymers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xiangzhu Ren
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changjuan Guo
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xijuan Li
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ying Wu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yu Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shumu Li
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ke Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Lu D, Zou X, Li C. Advances in the application of named reactions in polymer synthesis. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221143691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With the development of polymer science, more and more named reactions have been applied to synthesizing polymers. Introducing new reactions into polymer synthesis is undoubtedly an excellent expansion for monomer and polymer libraries. In this review, the named reactions employed in polymer-chain synthesis were divided into seven types: electrophilic reactions, nucleophilic reactions, transition metal-mediated cross-coupling reactions, free radical reactions, pericyclic reactions, multi-component reactions and rearrangement reactions. The discussion was mainly focused on the progress in the utilization of these named reactions in polymer synthesis, which could be a valuable reference for researchers in the polymer field.
Collapse
Affiliation(s)
- Dawei Lu
- Beijing University of Chemical Technology, Beijing, China
| | - Xudong Zou
- Beijing University of Chemical Technology, Beijing, China
| | | |
Collapse
|
8
|
Sustainable Polyamides Enabled by Controlled Ring-Opening Polymerization of 4-Hydroxyproline-derived Lactams. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2871-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Clapperton A, Babi J, Tran H. A Field Guide to Optimizing Peptoid Synthesis. ACS POLYMERS AU 2022; 2:417-429. [PMID: 36536890 PMCID: PMC9756346 DOI: 10.1021/acspolymersau.2c00036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 12/19/2022]
Abstract
N-Substituted glycines (peptoids) are a class of peptidomimetic molecules used as materials for health, environmental, and drug delivery applications. Automated solid-phase synthesis is the most widely used approach for preparing polypeptoids, with a range of published protocols and modifications for selected synthetic targets. Simultaneously, emerging solution-phase syntheses are being leveraged to overcome limitations in solid-phase synthesis and access high-molecular weight polypeptoids. This Perspective aims to outline strategies for the optimization of both solid- and solution-phase synthesis, provide technical considerations for robotic synthesizers, and offer an outlook on advances in synthetic methodologies. The solid-phase synthesis sections explore steps for protocol optimization, accessing complex side chains, and adaptation to robotic synthesizers; the sections on solution-phase synthesis cover the selection of initiators, side chain compatibility, and strategies for controlling polymerization efficiency and scale. This text acts as a "field guide" for researchers aiming to leverage the flexibility and adaptability of peptoids in their research.
Collapse
Affiliation(s)
- Abigail
Mae Clapperton
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada
| | - Jon Babi
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada
| | - Helen Tran
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada,Department
of Chemical Engineering, University of Toronto, 200 College St, Toronto, Toronto, ON M5S
3E5, Canada,
| |
Collapse
|
10
|
Bagheri M, Mohammadsaeed S, Gholamzadeh P. Annulation of the Ugi Products Using Palladium Catalysts. ChemistrySelect 2022. [DOI: 10.1002/slct.202104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maedeh Bagheri
- Department of Physics and Chemistry Alzahra University, Vanak Square Tehran Iran
| | - Shirin Mohammadsaeed
- Department of Physics and Chemistry Alzahra University, Vanak Square Tehran Iran
| | - Parisa Gholamzadeh
- Young Researchers and Elites Club Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
11
|
Design and synthesis of amphiphilic alternating peptides with lower critical solution temperature behaviors. Polym J 2022. [DOI: 10.1038/s41428-022-00639-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Precise Pentamers with Diverse Monomer Sequences and Their Thermal Properties. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Stiernet P, Debuigne A. Imine-Based Multicomponent Polymerization: Concepts, Structural Diversity and Applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
One-Pot Synthesis of Amphiphilic Biopolymers from Oxidized Alginate and Self-Assembly as a Carrier for Sustained Release of Hydrophobic Drugs. Polymers (Basel) 2022; 14:polym14040694. [PMID: 35215606 PMCID: PMC8879484 DOI: 10.3390/polym14040694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
In this paper, we developed an organic solvent-free, eco-friendly, simple and efficient one-pot approach for the preparation of amphiphilic conjugates (Ugi-OSAOcT) by grafting octylamine (OCA) to oxidized sodium alginate (OSA). The optimum reaction parameters that were obtained based on the degree of substitution (DS) of Ugi-OSAOcT were a reaction time of 12 h, a reaction temperature of 25 °C and a molar ratio of 1:2.4:3:3.3 (OSA:OCA:HAc:TOSMIC), respectively. The chemical structure and composition were characterized by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR), X-ray diffraction (XRD), thermogravimetry analyser (TGA), gel permeation chromatography (GPC) and elemental analysis (EA). It was found that the Ugi-OSAOcT conjugates with a CMC value in the range of 0.30–0.085 mg/mL could self-assemble into stable and spherical micelles with a particle size of 135.7 ± 2.4–196.5 ± 3.8 nm and negative surface potentials of −32.8 ± 0.4–−38.2 ± 0.8 mV. Furthermore, ibuprofen (IBU), which served as a model poorly water-soluble drug, was successfully incorporated into the Ugi-OSAOcT micelles by dialysis method. The drug loading capacity (%DL) and encapsulation efficiency (%EE) of the IBU-loaded Ugi-OSAOcT micelles (IBU/Ugi-OSAOcT = 3:10) reached as much as 10.9 ± 0.4–14.6 ± 0.3% and 40.8 ± 1.6–57.2 ± 1.3%, respectively. The in vitro release study demonstrated that the IBU-loaded micelles had a sustained and pH-responsive drug release behavior. In addition, the DS of the hydrophobic segment on an OSA backbone was demonstrated to have an important effect on IBU loading and drug release behavior. Finally, the in vitro cytotoxicity assay demonstrated that the Ugi-OSAOcT conjugates exhibited no significant cytotoxicity against RAW 264.7 cells up to 1000 µg/mL. Therefore, the amphiphilic Ugi-OSAOcT conjugates synthesized by the green method exhibited great potential to load hydrophobic drugs, acting as a promising nanocarrier capable of responding to pH for sustained release of hydrophobic drugs.
Collapse
|
15
|
Liu H, Yang H, Zhu K, Peng F, Guo L, Qi H. Facile fabrication of a polyvinyl alcohol-based hydrophobic fluorescent film via the Hantzsch reaction for broadband UV protection. MATERIALS HORIZONS 2022; 9:815-824. [PMID: 34908090 DOI: 10.1039/d1mh01783g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Excessive exposure to ultraviolet (UV) light is harmful to human health. However, the traditional preparation of anti-UV films through the doping of UV absorbers leads to unstable products. Chemical modification of polyvinyl alcohol (PVA) to fabricate functional derivatives expand the application of these materials. Herein, a 1,4-dihydropyridine (DHP) fluorescent ring with a conjugated structure as a strong UV-absorber group was introduced onto a polyvinyl alcohol acetoacetate (PVAA) film to improve its UV-blocking performance. Firstly, PVAA was prepared via transesterification using tert-butyl acetoacetate (t-BAA). Then, the Hantzsch reaction was carried out on the surface of the PVAA film at room temperature. The resulting film showed high transparency, bright fluorescence emission, good mechanical properties, and outstanding stability. The introduction of the hydrophobic carbon chain reduced the hydrophilicity and swelling capacity of the PVAA film. In addition, the conjugated structure endowed the fluorescent film with excellent UV-blocking performance, where almost 100% UVA and UVB spectra could be shielded. The UV-blocking properties of the prepared films were persistent when they were exposed to UV irradiation, solvents, and subjected to thermal treatment. This work presents a facile and environmentally-friendly strategy by which to fabricate a multifunctional PVA-based film, which holds great potential for application in the anti-counterfeiting and UV-blocking fields.
Collapse
Affiliation(s)
- Hongchen Liu
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China.
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Hongying Yang
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China.
| | - Kunkun Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Fang Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Lei Guo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
16
|
Liu H, Kanjilal P, Thayumanavan S. Self‐assembly of polymers from multicomponent reactions. POLYM INT 2022. [DOI: 10.1002/pi.6352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hongxu Liu
- Department of Chemistry University of Massachusetts Amherst Amherst MA USA
| | - Pintu Kanjilal
- Department of Chemistry University of Massachusetts Amherst Amherst MA USA
| | - S Thayumanavan
- Department of Chemistry University of Massachusetts Amherst Amherst MA USA
| |
Collapse
|
17
|
Miyajima M, Satoh K, Kamigaito M. Periodically Functionalized Sequence‐Regulated Vinyl Polymers via Iterative Atom Transfer Radical Additions and Acyclic Diene Metathesis Polymerization. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Masato Miyajima
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo‐cho, Chikusa‐ku Nagoya 464‐8603 Japan
| | - Kotaro Satoh
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 2‐12‐1‐H120 Ookayama, Meguro‐ku Tokyo 152‐8550 Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo‐cho, Chikusa‐ku Nagoya 464‐8603 Japan
| |
Collapse
|
18
|
Huang P, Qi M, Chen C, Xu F, Li S, Xu Q, Pan H, Wang Y, Yu C, Zhang S, Zhou Y. Asymmetric Vesicles Self-Assembled by Amphiphilic Sequence-Controlled Polymers. ACS Macro Lett 2021; 10:894-900. [PMID: 35549185 DOI: 10.1021/acsmacrolett.1c00301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The asymmetric distribution of lipids on the inner and outer membranes of a cell plays a pivotal role in the physiological and immunological activities of life. It has inspired the elaboration of synthetic asymmetric vesicles for the discovery of advanced materials and functions. The asymmetric vesicles were generally prepared by amphiphilic block copolymers. We herein report on the formation of asymmetric vesicles self-assembled by amphiphilic sequence-controlled polymers with two hydrophilic segments SU and TEO. We also developed an efficient fluorescence titration method with europium(III) ions (Eu3+) to determine the uneven distribution of SU and TEO. SU units are preferentially located on the outer membrane and TEO on the inner membrane of the resulting vesicles, which is facilitated by the electrostatic repulsion of SU and the U-shaped folding of the hydrophobic backbone of the resulting polymers. This work shows that sequence-controlled polymers with alternating monomer sequence provide a powerful toolbox for the elaboration of important yet challenging self-assembled structures for emerging functions and properties.
Collapse
Affiliation(s)
- Pei Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meiwei Qi
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanshuang Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanlong Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingsong Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuling Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
19
|
Mao T, Zhu C, Tao L. Multifunctional Polymer–Protein Conjugates Generated by Multicomponent Reactions†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tengfei Mao
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 China
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry Tsinghua University Beijing 100084 China
| | - Chongyu Zhu
- Department of Materials Science Fudan University Shanghai 200433 China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
20
|
Geng C, Wang S, Wang H. Recent Advances in Thermoresponsive OEGylated Poly(amino acid)s. Polymers (Basel) 2021; 13:1813. [PMID: 34072769 PMCID: PMC8198699 DOI: 10.3390/polym13111813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/15/2021] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
Thermoresponsive polymers have been widely studied in the past decades due to their potential applications in biomedicine, nanotechnology, and so on. As is known, poly(N-isopropylacrylamide) (PNIPAM) and poly(oligo(ethylene glycol)methacrylates) (POEGMAs) are the most popular thermoresponsive polymers, and have been studied extensively. However, more advanced thermoresponsive polymers with excellent biocompatibility, biodegradability, and bioactivity also need to be developed for biomedical applications. OEGylated poly(amino acid)s are a kind of novel polymer which are synthesized by attaching one or multiple oligo(ethylene glycol) (OEG) chains to poly(amino acid) (PAA).These polymers combine the great solubility of OEG, and the excellent biocompatibility, biodegradability and well defined secondary structures of PAA. These advantages allow them to have great application prospects in the field of biomedicine. Therefore, the study of OEGylated poly(amino acid)s has attracted more attention recently. In this review, we summarized the development of thermoresponsive OEGylated poly(amino acid)s in recent years, including the synthesis method (such as ring-opening polymerization, post-polymerization modification, and Ugi reaction), stimuli-response behavior study, and secondary structure study. We hope that this periodical summary will be more conducive to design, synthesis and application of OEGylated poly(amino acid)s in the future.
Collapse
Affiliation(s)
| | - Shixue Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin 130022, China; (C.G.); (H.W.)
| | | |
Collapse
|