1
|
Gong Z, Chen L, Zhou X, Zhang C, Matičić D, Vnuk D, You Z, Li L, Li H. MXene-Based Photothermal-Responsive Injectable Hydrogel Microsphere Modulates Physicochemical Microenvironment to Alleviate Osteoarthritis. SMART MEDICINE 2025; 4:e70006. [PMID: 40303871 PMCID: PMC11994158 DOI: 10.1002/smmd.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 05/02/2025]
Abstract
Osteoarthritis (OA) is a physical lubrication microenvironment-inadequate disease accompanied by a sustained chronic chemical inflammation microenvironment and the progression of articular cartilage destruction. Despite the promising OA treatment outcomes observed in the enhancement of lubrication inspired by ball bearings to reduce friction and support loads, the therapeutic effect of near-infrared (NIR) irradiation-based photothermal-responsive controlled release "smart hydrogel microspheres" on OA remains unclear. Here, we prepared MXene/NIPIAM-based photothermal-responsive injectable hydrogel microspheres encapsulating diclofenac sodium using a microfluidic system. Consequently, NIR irradiation-based photothermal-responsive controlled release "smart hydrogel microspheres" demonstrate beneficial therapeutic effects in the treatment of OA by modulating the physical lubrication and chemical chronic inflammation microenvironment, laying the foundation for the application of smart hydrogel microsphere delivery systems loaded with bioactive factors (including agents, cells, and factors) to regulate multiple pathological microenvironments in regenerative medicine.
Collapse
Affiliation(s)
- Zehua Gong
- Joint Research Centre on MedicineXiangshan Hospital of Wenzhou Medical UniversityNingboChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
- The Fifth Hospital of JinhuaJinhuaChina
| | - Linjie Chen
- Department of OrthopaedicsKey Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaolei Zhou
- Jiangxi Provincial Key Laboratory of Tissue EngineeringSchool of Rehabilitation MedicineGannan Medical UniversityGanzhouChina
| | - Chunwu Zhang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Dražen Matičić
- Clinic for Surgery, Orthopaedics and OphthalmologyFaculty of Veterinary MedicineUniversity of ZagrebZagrebCroatia
| | - Dražen Vnuk
- Clinic for Surgery, Orthopaedics and OphthalmologyFaculty of Veterinary MedicineUniversity of ZagrebZagrebCroatia
| | - Zhifeng You
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Linjin Li
- Department of UrologyThe Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai UniversityWenzhou People's HospitalWenzhouChina
| | - Huaqiong Li
- Joint Research Centre on MedicineXiangshan Hospital of Wenzhou Medical UniversityNingboChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| |
Collapse
|
2
|
Lin Y, Wu A, Zhang Y, Duan H, Zhu P, Mao Y. Recent progress of nanomaterials-based composite hydrogel sensors for human-machine interactions. DISCOVER NANO 2025; 20:60. [PMID: 40156703 PMCID: PMC11954787 DOI: 10.1186/s11671-025-04240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
Hydrogel-based flexible sensors have demonstrated significant advantages in the fields of flexible electronics and human-machine interactions (HMIs), including outstanding flexibility, high sensitivity, excellent conductivity, and exceptional biocompatibility, making them ideal materials for next-generation smart HMI sensors. However, traditional hydrogel sensors still face numerous challenges in terms of reliability, multifunctionality, and environmental adaptability, which limit their performance in complex application scenarios. Nanomaterial-based composite hydrogels significantly improve the mechanical properties, conductivity, and multifunctionality of hydrogels by incorporating conductive nanomaterials, thereby driving the rapid development of wearable sensors for HMIs. This review systematically summarizes the latest research progress on hydrogels based on carbon nanomaterials, metal nanomaterials, and two-dimensional MXene nanomaterials, and provides a comprehensive analysis of their sensing mechanisms in HMI, including triboelectric nanogenerator mechanism, stress-resistance response mechanism, and electrophysiological acquisition mechanism. The review further explores the applications of composite hydrogel-based sensors in personal electronic device control, virtual reality/augmented reality (VR/AR) game interaction, and robotic control. Finally, the current technical status and future development directions of nanomaterial composite hydrogel sensors are summarized. We hope that this review will provide valuable insights and inspiration for the future design of nanocomposite hydrogel-based flexible sensors in HMI applications.
Collapse
Affiliation(s)
- Yuyang Lin
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Aobin Wu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Yitao Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Haiyang Duan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Pengcheng Zhu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Wang H, Du J, Mao Y. Hydrogel-Based Continuum Soft Robots. Gels 2025; 11:254. [PMID: 40277689 PMCID: PMC12026835 DOI: 10.3390/gels11040254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
This paper comprehensively reviews the latest advances in hydrogel-based continuum soft robots. Hydrogels exhibit exceptional flexibility and adaptability compared to traditional robots reliant on rigid structures, making them ideal as biomimetic robotic skins and platforms for constructing highly accurate, real-time responsive sensory interfaces. The article systematically summarizes recent research developments across several key dimensions, including application domains, fabrication methods, actuator technologies, and sensing mechanisms. From an application perspective, developments span healthcare, manufacturing, and agriculture. Regarding fabrication techniques, the paper extensively explores crosslinking methods, additive manufacturing, microfluidics, and other related processes. Additionally, the article categorizes and thoroughly discusses various hydrogel-based actuators responsive to solute/solvent variations, pH, chemical reactions, temperature, light, magnetic fields, electric fields, hydraulic/electro-osmotic stimuli, and humidity. It also details the strategies for designing and implementing diverse sensors, including strain, pressure, humidity, conductive, magnetic, thermal, gas, optical, and multimodal sensors. Finally, the paper offers an in-depth discussion of the prospective applications of hydrogel-based continuum soft robots, particularly emphasizing their potential in medical and industrial fields. Concluding remarks include a forward-looking outlook highlighting future challenges and promising research directions.
Collapse
Affiliation(s)
- Honghong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China
| | - Jingli Du
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China
| | - Yi Mao
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
4
|
Roy A, Afshari R, Jain S, Zheng Y, Lin MH, Zenkar S, Yin J, Chen J, Peppas NA, Annabi N. Advances in conducting nanocomposite hydrogels for wearable biomonitoring. Chem Soc Rev 2025; 54:2595-2652. [PMID: 39927792 DOI: 10.1039/d4cs00220b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Recent advancements in wearable biosensors and bioelectronics have led to innovative designs for personalized health management devices, with biocompatible conducting nanocomposite hydrogels emerging as a promising building block for soft electronics engineering. In this review, we provide a comprehensive framework for advancing biosensors using these engineered nanocomposite hydrogels, highlighting their unique properties such as high electrical conductivity, flexibility, self-healing, biocompatibility, biodegradability, and tunable architecture, broadening their biomedical applications. We summarize key properties of nanocomposite hydrogels for thermal, biomechanical, electrophysiological, and biochemical sensing applications on the human body, recent progress in nanocomposite hydrogel design and synthesis, and the latest technologies in developing flexible and wearable devices. This review covers various sensor types, including strain, physiological, and electrochemical sensors, and explores their potential applications in personalized healthcare, from daily activity monitoring to versatile electronic skin applications. Furthermore, we highlight the blueprints of design, working procedures, performance, detection limits, and sensitivity of these soft devices. Finally, we address challenges, prospects, and future outlook for advanced nanocomposite hydrogels in wearable sensors, aiming to provide a comprehensive overview of their current state and future potential in healthcare applications.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Ronak Afshari
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Min-Hsuan Lin
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Shea Zenkar
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Junyi Yin
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| |
Collapse
|
5
|
Liu Y, Wang J, Sun Z. Aromatic Biobased Polymeric Materials Using Plant Polyphenols as Sustainable Alternative Raw Materials: A Review. Polymers (Basel) 2024; 16:2752. [PMID: 39408462 PMCID: PMC11479198 DOI: 10.3390/polym16192752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
In the foreseeable future, the development of petroleum-based polymeric materials may be limited, owing to the gradual consumption of disposable resources and the increasing emphasis on environmental protection policies. Therefore, it is necessary to focus on introducing environmentally friendly renewable biobased materials as a substitute for petroleum-based feed stocks in the preparation of different types of industrially important polymers. Plant polyphenols, a kind of natural aromatic biomolecule, exist widely in some plant species. Benefiting from their special macromolecular structure, high reactivity, and broad abundance, plant polyphenols are potent candidates to replace the dwindling aromatic monomers derived from petroleum-based resources in synthesizing high-quality polymeric materials. In this review, the most related and innovative methods for elaborating novel polymeric materials from plant polyphenols are addressed. After a brief historical overview, the classification, structural characteristics, and reactivity of plant polyphenols are summarized in detail. In addition, some interesting and innovative works concerning the chemical modifications and polymerization techniques of plant polyphenols are also discussed. Importantly, the main chemical pathways to create plant polyphenol-based organic/organic-inorganic polymeric materials as well as their properties and possible applications are systematically described. We believe that this review could offer helpful references for designing multifunctional polyphenolic materials.
Collapse
Affiliation(s)
- Yang Liu
- Tianjin Fire Science and Technology Research Institute of MEM, Tianjin 300381, China;
- Key Laboratory of Fire Protection Technology for Industry and Public Building, Ministry of Emergency Management, Tianjin 300381, China
- Tianjin Key Laboratory of Fire Safety Technology, Tianjin 300381, China
| | - Junsheng Wang
- Tianjin Fire Science and Technology Research Institute of MEM, Tianjin 300381, China;
- Key Laboratory of Fire Protection Technology for Industry and Public Building, Ministry of Emergency Management, Tianjin 300381, China
- Tianjin Key Laboratory of Fire Safety Technology, Tianjin 300381, China
| | - Zhe Sun
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Zhang M, Shen H, Hakobyan K, Jiang Z, Liang K, Xu J. Robust Hydrogel Actuators Functioning in Multi-Environments Enabled by Thermo-Responsive Polymer Nanoparticle Coatings on Hydrogel Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400534. [PMID: 38597736 DOI: 10.1002/smll.202400534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Hydrogel actuators with anisotropic structures exhibit reversible responsiveness upon the trigger of various external stimuli, rendering them promising for applications in many fields including artificial muscles and soft robotics. However, their effective operation across multiple environments remains a persistent challenge, even for widely studied thermo-responsive polymers like poly(N-isopropyl acrylamide) (PNIPAm). Current attempts to address this issue are hindered by complex synthetic procedures or specific substrates. This study introduces a straightforward methodology to grow a thin, dense PNIPAm nanoparticle layer on diverse hydrogel surfaces, creating a highly temperature-sensitive hydrogel actuator. This actuator demonstrates adaptability across various environments, including water, oil, and open air, owing to its distinct structure facilitating self-water circulation during actuation. The thin PNIPAm layer consists of interconnected PNIPAm nanoparticles synthesized via in situ interfacial precipitation polymerization, seamlessly bonded to the hydrogel substrate through an interfacial layer containing hybrid hydrogel/PNIPAm nanoparticles. This unique anisotropic structure ensures exceptional structural stability without interfacial delamination, even enduring harsh treatments such as freezing, ultrasonic irradiation, and prolonged water immersion. Remarkably, PNIPAm films on hydrogel surfaces which enable programmable 3D actuation can also be precisely patterned. This synthetic approach opens a novel pathway for fabricating advanced hydrogel actuators with broad-ranging applications.
Collapse
Affiliation(s)
- Mengnan Zhang
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Haokun Shen
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Karen Hakobyan
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Zhen Jiang
- School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Sydney, NSW, 2522, Australia
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
7
|
Wang F, Song D, Zhou C, Li X, Huang Y, Xu W, Liu G, Zhou S. MXene-Based Skin-Like Hydrogel Sensor and Machine Learning-Assisted Handwriting Recognition. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39046871 DOI: 10.1021/acsami.4c10043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Conductive hydrogels are widely used in flexible sensors owing to their adjustable structure, good conductivity, and flexibility. The performance of excellent mechanical properties, high sensitivity, and elastic modulus compatible with human tissues is of great interest in the field of flexible sensors. In this paper, the functional groups of trisodium citrate dihydrate (SC) and MXene form multiple hydrogen bonds in the polymer network to prepare a hydrogel with mechanical properties (Young's modulus (23.5-92 kPa) of similar human tissue (0-100 kPa)), sensitivity (stretched GF is 4.41 and compressed S1 is 5.15 MPa-1), and durability (1000 cycles). The hydrogel is able to sensitively detect deformations caused by strain and stress and can be used in flexible sensors to detect human movement in real time such as fingers, wrists, and walking. In addition, the combination of matrix sensing and machine learning was successfully used for handwriting recognition with an accuracy of 0.9744. The combination of machine learning and flexible sensors shows great potential in areas such as healthcare, information security, and smart homes.
Collapse
Affiliation(s)
- Fengying Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Dengke Song
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Can Zhou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xusheng Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yang Huang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, China
| | - Guijing Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Song Zhou
- Basic Teaching Department, Yantai Vocational College, Yantai 264670, China
| |
Collapse
|
8
|
Tian Y, Xu Z, Qi H, Lu X, Jiang T, Wang L, Zhang G, Xiao R, Wu H. Magnetic-field induced shape memory hydrogels for deformable actuators. SOFT MATTER 2024; 20:5314-5323. [PMID: 38712600 DOI: 10.1039/d4sm00248b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Magnetic hydrogel actuators exhibit promising applications in the fields of soft robotics, bioactuators, and flexible sensors owing to their inherent advantages such as remote control capability, untethered deformation and motion control, as well as easily manipulable behavior. However, it is still a challenge for magnetic hydrogels to achieve adjustable stiffness and shape fixation under magnetic field actuation deformation. Herein, a simple and effective approach is proposed for the design of magnetic shape memory hydrogels to accomplish this objective. The magnetic shape memory hydrogels, consisting of methacrylamide, methacrylic acid, polyvinyl alcohol and Fe3O4 magnetic particles, which crosslinked by hydrogen bonds, are facilely prepared via one-pot polymerization. The dynamic nature of noncovalent bonds offers the magnetic hydrogels with excellent mechanical properties, precisely controlled stiffness, and effective shape fixation. The presence of Fe3O4 particles renders the hydrogels soft when subjected to an alternating current field, facilitating their deformation under the influence of an actuation magnetic field. After the elimination of the alternating current magnetic field, the hydrogels stiffen and attain a fixed actuated shape in the absence of any external magnetic field. Moreover, this remarkable magnetic shape memory hydrogel is effectively employed as an underwater soft gripper for lifting heavy objects. This work provides a novel strategy for fabricating magnetic hydrogels with non-contact reversible actuation deformation, tunable stiffness and shape locking.
Collapse
Affiliation(s)
- Ye Tian
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China
- Collaborative Innovation Center of High-end Laser Manufacturing Equipment (National "2011 Plan"), Zhejiang University of Technology, Hangzhou, China
| | - Zhirui Xu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China
- Collaborative Innovation Center of High-end Laser Manufacturing Equipment (National "2011 Plan"), Zhejiang University of Technology, Hangzhou, China
| | - Hao Qi
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China
- Collaborative Innovation Center of High-end Laser Manufacturing Equipment (National "2011 Plan"), Zhejiang University of Technology, Hangzhou, China
| | - Xiaojun Lu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China
- Collaborative Innovation Center of High-end Laser Manufacturing Equipment (National "2011 Plan"), Zhejiang University of Technology, Hangzhou, China
| | - Ting Jiang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China
- Collaborative Innovation Center of High-end Laser Manufacturing Equipment (National "2011 Plan"), Zhejiang University of Technology, Hangzhou, China
| | - Liqian Wang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China.
| | - Guang Zhang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Rui Xiao
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China.
| | - Huaping Wu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China
- Collaborative Innovation Center of High-end Laser Manufacturing Equipment (National "2011 Plan"), Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
9
|
Boland CS. Performance analysis of solution-processed nanosheet strain sensors-a systematic review of graphene and MXene wearable devices. NANOTECHNOLOGY 2024; 35:202001. [PMID: 38324912 DOI: 10.1088/1361-6528/ad272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Nanotechnology has led to the realisation of many potentialInternet of Thingsdevices that can be transformative with regards to future healthcare development. However, there is an over saturation of wearable sensor review articles that essentially quote paper abstracts without critically assessing the works. Reported metrics in many cases cannot be taken at face value, with researchers overly fixated on large gauge factors. These facts hurt the usefulness of such articles and the very nature of the research area, unintentionally misleading those hoping to progress the field. Graphene and MXenes are arguably the most exciting organic and inorganic nanomaterials for polymer nanocomposite strain sensing applications respectively. Due to their combination of cost-efficient, scalable production and device performances, their potential commercial usage is very promising. Here, we explain the methods for colloidal nanosheets suspension creation and the mechanisms, metrics and models which govern the electromechanical properties of the polymer-based nanocomposites they form. Furthermore, the many fabrication procedures applied to make these nanosheet-based sensing devices are discussed. With the performances of 70 different nanocomposite systems from recent (post 2020) publications critically assessed. From the evaluation of these works using universal modelling, the prospects of the field are considered. Finally, we argue that the realisation of commercial nanocomposite devices may in fact have a negative effect on the global climate crisis if current research trends do not change.
Collapse
Affiliation(s)
- Conor S Boland
- School of Mathematical and Physical Sciences, University of Sussex, Brighton, BN1 9QH, United Kingdom
| |
Collapse
|
10
|
Muñoz J. Rational Design of Stimuli-Responsive Inorganic 2D Materials via Molecular Engineering: Toward Molecule-Programmable Nanoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305546. [PMID: 37906953 DOI: 10.1002/adma.202305546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/10/2023] [Indexed: 11/02/2023]
Abstract
The ability of electronic devices to act as switches makes digital information processing possible. Succeeding graphene, emerging inorganic 2D materials (i2DMs) have been identified as alternative 2D materials to harbor a variety of active molecular components to move the current silicon-based semiconductor technology forward to a post-Moore era focused on molecule-based information processing components. In this regard, i2DMs benefits are not only for their prominent physiochemical properties (e.g., the existence of bandgap), but also for their high surface-to-volume ratio rich in reactive sites. Nonetheless, since this field is still in an early stage, having knowledge of both i) the different strategies for molecularly functionalizing the current library of i2DMs, and ii) the different types of active molecular components is a sine qua non condition for a rational design of stimuli-responsive i2DMs capable of performing logical operations at the molecular level. Consequently, this Review provides a comprehensive tutorial for covalently anchoring ad hoc molecular components-as active units triggered by different external inputs-onto pivotal i2DMs to assess their role in the expanding field of molecule-programmable nanoelectronics for electrically monitoring bistable molecular switches. Limitations, challenges, and future perspectives of this emerging field which crosses materials chemistry with computation are critically discussed.
Collapse
Affiliation(s)
- Jose Muñoz
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| |
Collapse
|
11
|
Wu J, Jiang W, Gu M, Sun F, Han C, Gong H. Flexible Actuators with Hygroscopic Adaptability for Smart Wearables and Soft Grippers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59989-60001. [PMID: 38085924 DOI: 10.1021/acsami.3c16532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Flexible actuators have garnered significant interest in the domains of biomedical devices, human-machine interfaces, and smart wearables. However, the mechanical properties of existing materials are not sufficiently robust, and the expensive and time-consuming pretreatment process and the ambiguous high-degree-of-freedom deformation mechanism make it difficult to meet the demands of industrialized production. Hence, drawing inspiration from the adaptable movement of living organisms in the natural world, this research created and engineered a fully textile-based humidity-sensitive flexible actuator (TbHs-FA) using high-cost-effective viscose/PET fibers as raw materials. The breakthrough development in actuation performance is covered, including substantial contraction force (92.53 cN), high actuation curvature (16.78 cm-1), and fast response (264 cN s-1 and 46.61 cm-1 s-1). Additionally, the programmable stiffness system and weave structure give TbHs-FAs low hysteresis and fatigue resistance, narrowing the gap between the conceptual laboratory-scale design of existing fully textile-based humidity-sensitive flexible actuators and actual textiles. The high-degree-of-freedom and large bending deformation mechanisms are elucidated for the first time by combining microscopic mechanical structure simulation and macroscopic energy conversion analysis. The novel humidity-sensitive flexible actuator possesses strong mechanical qualities, making it suitable for applications such as flexible robots, medicinal devices, and smart wearables.
Collapse
Affiliation(s)
- Jing Wu
- MOE Key Laboratory of Eco-textiles, Jiangnan University, Wuxi 214122, China
| | - Wenjie Jiang
- Textile Intelligent Manufacture, Jiangnan University, Wuxi 214122, China
| | - Mengshang Gu
- Textile Intelligent Manufacture, Jiangnan University, Wuxi 214122, China
| | - Fengxin Sun
- MOE Key Laboratory of Eco-textiles, Jiangnan University, Wuxi 214122, China
- Laboratory of Soft Fibrous Materials, College of Textiles Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Chenchen Han
- MOE Key Laboratory of Eco-textiles, Jiangnan University, Wuxi 214122, China
| | - Hugh Gong
- University of Manchester, Manchester M139PL, U.K
| |
Collapse
|
12
|
Wang J, Liu Z, Zhou Y, Zhu S, Gao C, Yan X, Wei K, Gao Q, Ding C, Luo T, Yang R. A multifunctional sensor for real-time monitoring and pro-healing of frostbite wounds. Acta Biomater 2023; 172:330-342. [PMID: 37806374 DOI: 10.1016/j.actbio.2023.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Flexible epidermal sensors based on conductive hydrogels hold great promise for various applications, such as wearable electronics and personal healthcare monitoring. However, the integration of conductive hydrogel epidermal sensors into multiple applications remains challenging. In this study, a multifunctional PAAm/PEG/hydrolyzed keratin (Hereinafter referred to as HK)/MXene conductive hydrogel (PPHM hydrogel) was designed as a high-performance therapeutic all-in-one epidermal sensor. This sensor not only accelerates wound healing but also provides wearable human-computer interaction. The developed sensor possesses highly sensitive sensing properties (Gauge Factor = 4.82 at high strain), strong mechanical tensile properties (capable of achieving a maximum elongation at break of 600 %), rapid self-healing capability, stable self-adhesive capability, biocompatibility, freeze resistance at -20 °C, and adjustable photo-thermal conversion capability. This therapeutic all-in-one sensor can sensitively monitor human movements, enabling the detection of small electrophysiological signals for diagnosing relevant activities and diseases. Furthermore, using a rat frostbite model, we demonstrated that the composite hydrogel sensor can serve as an effective wound dressing to accelerate the healing process. This study serves as a valuable reference for the development of multifunctional flexible epidermal sensors for personal smart health monitoring. STATEMENT OF SIGNIFICANCE: Accelerated wound healing reduces the risk of wound infection, and conductive hydrogel-based sensors can monitor physiological signals. The multifunctional application of conductive hydrogel sensors combined with wound diagnostic and therapeutic capabilities can meet personalized medical requirements for wound healing and sensor monitoring. The aim of this study is to develop a multifunctional hydrogel patch. The multifunctional hydrogel can be assembled into a flexible wearable high-performance diagnostic and therapeutic integrated sensor that can effectively accelerate the healing of frostbite wounds and satisfy the real-time monitoring of multi-application scenarios. We expect that this study will inform efforts to integrate wound therapy and sensor monitoring.
Collapse
Affiliation(s)
- Jian Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Zhenyu Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Yang Zhou
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Shilu Zhu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Chen Gao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xinze Yan
- School of Life Science, Anhui Medical University, Hefei, 230032, China
| | - Kun Wei
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Qian Gao
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| | - Chengbiao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Tingting Luo
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
13
|
Roopsung N, Sugawara A, Hsu YI, Asoh TA, Uyama H. Cellulose Nanocrystal-Based Gradient Hydrogel Actuators with Controllable Bending Properties. Macromol Rapid Commun 2023; 44:e2300205. [PMID: 37335985 DOI: 10.1002/marc.202300205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Stimuli-responsive hydrogel actuators are being increasingly used in microtechnology, but typical bilayer hydrogel actuators have significant drawbacks due to weak adhesive interface between the two layers. In this study, thermoresponsive single-layer hydrogel actuators are produced by generating a gradient distribution of cellulose nanocrystals (CNCs) in a poly(N-isopropylacrylamide) (PNIPAAm) hydrogel network by electrophoresis. Tunable bending properties of the composite hydrogels, such as the thermoresponsive bending speed and angle, are realized by varying the electrophoresis time, applied voltage, and CNC concentration. By varying these conditions, the gradient distribution of the CNCs can be optimized, leading to fast bending and large bending angles of the hydrogels. Bending properties are attributed to the gradient distribution of CNCs causing different deswelling rates across the hydrogel network owing to reinforcing effects. Bending ability is also influenced by differences in the CNC dimensions based on the sources of cellulose, which determine the rigidity of the CNC-rich layer of the polymer composite. It is thus shown that thermoresponsive single-layer gradient hydrogels with tunable bending properties can be realized.
Collapse
Affiliation(s)
- Nontarin Roopsung
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akihide Sugawara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taka-Aki Asoh
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
14
|
Abstract
MXenes with their unique electronic, optical, chemical, and mechanical properties have shown great promise in soft robotics. MXene-based soft actuators have been designed to display ultrafast actuations and recovery speeds as well as angle-independent structural colors in response to vapor. Several studies have developed soft actuators by combining MXenes with other materials to mimic the movement of natural organisms. Thus, MXene-based soft actuators have the potential to revolutionize the field of soft robotics and flexible electronics (e.g., wearable devices and artificial muscles). MXene-based artificial muscles have been explored for use in kinetic soft robotics as actuators in microsystems requiring exceptional compliance. MXene-based sensors and actuators have already been developed for human-like sensors and photodetection. However, there are still challenges that need to be addressed in such applications, such as the design of stretchable and compliant robotic skins with a high-level functional integration for soft robotics. The integration of various devices, such as power sources, sensors, and actuators, into soft robotics is another crucial challenge. Despite the excellent stretchability and tensile strength of MXene-based composites, there is a vital need to develop their mechanical and electrochemical features and grant them multi-functionalities. Herein, recent developments pertaining to the applications of MXenes and their composites in soft robotics are discussed with a focus on the important challenges and future perspectives.
Collapse
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| |
Collapse
|
15
|
Lyu C, Wen B, Bai Y, Luo D, Wang X, Zhang Q, Xing C, Kong T, Diao D, Zhang X. Bone-inspired (GNEC/HAPAAm) hydrogel with fatigue-resistance for use in underwater robots and highly piezoresistive sensors. MICROSYSTEMS & NANOENGINEERING 2023; 9:99. [PMID: 37502758 PMCID: PMC10368655 DOI: 10.1038/s41378-023-00571-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/17/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023]
Abstract
A novel bone-inspired fatigue-resistant hydrogel with excellent mechanical and piezoresistive properties was developed, and it exhibited great potential as a load and strain sensor for underwater robotics and daily monitoring. The hydrogel was created by using the high edge density and aspect ratio of graphene nanosheet-embedded carbon (GNEC) nanomaterials to form a three-dimensional conductive network and prevent the expansion of microcracks in the hydrogel system. Multiscale progressive enhancement of the organic hydrogels (micrometer scale) was realized with inorganic graphene nanosheets (nanometer scale). The graphene nanocrystals inside the GNEC film exhibited good electron transport properties, and the increased distances between the graphene nanocrystals inside the GNEC film caused by external forces increased the resistance, so the hydrogel was highly sensitive and suitable for connection to a loop for sensing applications. The hydrogels obtained in this work exhibited excellent mechanical properties, such as tensile properties (strain up to 1685%) and strengths (stresses up to 171 kPa), that make them suitable for use as elastic retraction devices in robotics and provide high sensitivities (150 ms) for daily human monitoring.
Collapse
Affiliation(s)
- Chaoyang Lyu
- Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Bo Wen
- Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Yangzhen Bai
- Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Daning Luo
- Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Xin Wang
- Research Center of Medical Plasma Technology, Shenzhen University, 518060 Shenzhen, China
| | - Qingfeng Zhang
- Research Center of Medical Plasma Technology, Shenzhen University, 518060 Shenzhen, China
| | - Chenyang Xing
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, 518000 Shenzhen, China
| | - Dongfeng Diao
- Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Xi Zhang
- Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, 518060 Shenzhen, China
| |
Collapse
|
16
|
Dediu V, Ghitman J, Gradisteanu Pircalabioru G, Chan KH, Iliescu FS, Iliescu C. Trends in Photothermal Nanostructures for Antimicrobial Applications. Int J Mol Sci 2023; 24:9375. [PMID: 37298326 PMCID: PMC10253355 DOI: 10.3390/ijms24119375] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The rapid development of antimicrobial resistance due to broad antibiotic utilisation in the healthcare and food industries and the non-availability of novel antibiotics represents one of the most critical public health issues worldwide. Current advances in nanotechnology allow new materials to address drug-resistant bacterial infections in specific, focused, and biologically safe ways. The unique physicochemical properties, biocompatibility, and wide range of adaptability of nanomaterials that exhibit photothermal capability can be employed to develop the next generation of photothermally induced controllable hyperthermia as antibacterial nanoplatforms. Here, we review the current state of the art in different functional classes of photothermal antibacterial nanomaterials and strategies to optimise antimicrobial efficiency. The recent achievements and trends in developing photothermally active nanostructures, including plasmonic metals, semiconductors, and carbon-based and organic photothermal polymers, and antibacterial mechanisms of action, including anti-multidrug-resistant bacteria and biofilm removal, will be discussed. Insights into the mechanisms of the photothermal effect and various factors influencing photothermal antimicrobial performance, emphasising the structure-performance relationship, are discussed. We will examine the photothermal agents' functionalisation for specific bacteria, the effects of the near-infrared light irradiation spectrum, and active photothermal materials for multimodal synergistic-based therapies to minimise side effects and maintain low costs. The most relevant applications are presented, such as antibiofilm formation, biofilm penetration or ablation, and nanomaterial-based infected wound therapy. Practical antibacterial applications employing photothermal antimicrobial agents, alone or in synergistic combination with other nanomaterials, are considered. Existing challenges and limitations in photothermal antimicrobial therapy and future perspectives are presented from the structural, functional, safety, and clinical potential points of view.
Collapse
Affiliation(s)
- Violeta Dediu
- National Research and Development Institute in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania;
| | - Jana Ghitman
- eBio-hub Research-Center, University “Politehnica” of Bucharest, 6 Iuliu Maniu Boulevard, Campus Building, 061344 Bucharest, Romania; (J.G.); (G.G.P.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- eBio-hub Research-Center, University “Politehnica” of Bucharest, 6 Iuliu Maniu Boulevard, Campus Building, 061344 Bucharest, Romania; (J.G.); (G.G.P.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
- Research Institute of University of Bucharest, University of Bucharest, 050095 Bucharest, Romania
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore 138527, Singapore;
- NUS College, National University of Singapore, 18 College Avenue East, Singapore 138593, Singapore
| | - Florina Silvia Iliescu
- National Research and Development Institute in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania;
| | - Ciprian Iliescu
- National Research and Development Institute in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania;
- eBio-hub Research-Center, University “Politehnica” of Bucharest, 6 Iuliu Maniu Boulevard, Campus Building, 061344 Bucharest, Romania; (J.G.); (G.G.P.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| |
Collapse
|
17
|
Lai QT, Sun QJ, Tang Z, Tang XG, Zhao XH. Conjugated Polymer-Based Nanocomposites for Pressure Sensors. Molecules 2023; 28:1627. [PMID: 36838615 PMCID: PMC9964060 DOI: 10.3390/molecules28041627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Flexible sensors are the essential foundations of pressure sensing, microcomputer sensing systems, and wearable devices. The flexible tactile sensor can sense stimuli by converting external forces into electrical signals. The electrical signals are transmitted to a computer processing system for analysis, realizing real-time health monitoring and human motion detection. According to the working mechanism, tactile sensors are mainly divided into four types-piezoresistive, capacitive, piezoelectric, and triboelectric tactile sensors. Conventional silicon-based tactile sensors are often inadequate for flexible electronics due to their limited mechanical flexibility. In comparison, polymeric nanocomposites are flexible and stretchable, which makes them excellent candidates for flexible and wearable tactile sensors. Among the promising polymers, conjugated polymers (CPs), due to their unique chemical structures and electronic properties that contribute to their high electrical and mechanical conductivity, show great potential for flexible sensors and wearable devices. In this paper, we first introduce the parameters of pressure sensors. Then, we describe the operating principles of resistive, capacitive, piezoelectric, and triboelectric sensors, and review the pressure sensors based on conjugated polymer nanocomposites that were reported in recent years. After that, we introduce the performance characteristics of flexible sensors, regarding their applications in healthcare, human motion monitoring, electronic skin, wearable devices, and artificial intelligence. In addition, we summarize and compare the performances of conjugated polymer nanocomposite-based pressure sensors that were reported in recent years. Finally, we summarize the challenges and future directions of conjugated polymer nanocomposite-based sensors.
Collapse
Affiliation(s)
- Qin-Teng Lai
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou 511400, China
| | - Qi-Jun Sun
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou 511400, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 518060, China
| | - Zhenhua Tang
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou 511400, China
| | - Xin-Gui Tang
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou 511400, China
| | - Xin-Hua Zhao
- Department of Chemistry, South University of Science and Technology of China, Shenzhen 518060, China
| |
Collapse
|
18
|
He S, Guo B, Sun X, Shi M, Zhang H, Yao F, Sun H, Li J. Bio-Inspired Instant Underwater Adhesive Hydrogel Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45869-45879. [PMID: 36165460 DOI: 10.1021/acsami.2c13371] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Underwater adhesion plays an essential role in soft electronics for the underwater interface. Although hydrogel-based electronics are of great interest, because of their versatility, water molecules prevent hydrogels from adhering to substrates, thus bottlenecking further applications. Herein, inspired by the barnacle proteins, MXene/PHMP hydrogels with strong repeatable underwater adhesion are developed through the random copolymerization of 2-phenoxyethyl acrylate, 2-methoxyethyl acrylate, and N-(2-hydroxyethyl) acrylamide with the presence of MXene nanosheets. The hydrogels are mechanically tough (elastic modulus of 32 kPa, fracture stress of 0.11 MPa), and 2-phenoxyethyl acrylate (PEA) with aromatic groups endows the hydrogel with nonswelling property and prevents water molecules from invading the adhesive interface, rendering the hydrogels an outstanding adhesive behavior toward various substrates (including glass, iron, polyethylene terephthalate (PET), porcine). Besides, dynamic physical interactions allow for instant and repeatable underwater adhesion. Furthermore, the MXene/PHMP hydrogels exhibit a high conductivity (0.016 S/m), fast responsiveness, and superior sensitivity as a strain sensor (gauge factor = 7.17 at 200%-500% strain) and pressure sensor (0.63 kPa-1 at 0-70 kPa). The underwater applications of bionic hydrogel-based sensors have been demonstrated, such as human motion, pressure sensing, and holding objects. It is anticipated that the instant and repeatable underwater adhesive hydrogel-based sensors extend the underwater applications of hydrogel electronics.
Collapse
Affiliation(s)
- Shaoshuai He
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Bingyan Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xia Sun
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mingyue Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Hong Sun
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
19
|
Wu H, Zhu C, Li X, Hu X, Xie H, Lu X, Qu JP. Layer-by-Layer Assembly of Multifunctional NR/MXene/CNTs Composite Films with Exceptional Electromagnetic Interference Shielding Performances and Excellent Mechanical Properties. Macromol Rapid Commun 2022; 43:e2200387. [PMID: 35689512 DOI: 10.1002/marc.202200387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/29/2022] [Indexed: 11/06/2022]
Abstract
With the rapid advance of electronics, the light, flexible, and multifunctional composite films with high electromagnetic interference (EMI) shielding effectiveness and excellent thermal management are highly desirable for next-generation portable and wearable electronic devices. Herein, a series of flexible and ultrathin natural rubber/MXene/carbon nanotubes (NR/MXene/CNTs) composite films with sandwich structure are constructed layer by layer through a facile vacuum-assisted filtration method for EMI shielding and Joule heating application. The fabricated NR/MXene/CNTs-50 composite film, with NR/MXene as inner layer and NR/CNTs as out layers, not only has high EMI shielding efficient, but also has excellent comprehensive mechanical properties at the thickness of only 200 µm. In addition, the superior environmental durability, high electrothermal conversion efficiency, hydrophobicity, and fine performance stability after periodic cyclic bending make the film possess more value in practical application.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China.,Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China.,Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, Guangzhou, 510641, China
| | - Chuanbiao Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China.,Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Xiaolong Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China.,Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Xinpeng Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China.,Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Heng Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China.,Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Xiang Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China.,Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Jin-Ping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China.,Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China.,Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, Guangzhou, 510641, China.,National Engineering Research Center of Novel Equipment for Polymer Processing, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
20
|
Yu L, Xu L, Lu L, Alhalili Z, Zhou X. Thermal Properties of MXenes and Relevant Applications. Chemphyschem 2022; 23:e202200203. [PMID: 35674280 DOI: 10.1002/cphc.202200203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Indexed: 11/10/2022]
Abstract
The properties and applications of MXenes (a family of layered transition metal carbides, nitrides, and carbonitrides) have aroused enormous research interests for a decade since the successful synthesis of few-layer transition metal carbides in 2011. Though MXenes, as the building blocks, have already been applied in various fields (such as wearable electronics) owing to the distinctive optical, mechanical and electrical properties, their thermal stability and intrinsic thermal properties were less thoroughly investigated compared to other characteristics in early reports. The pioneering theoretical prediction of the thermoelectric nature of MXenes was performed in 2013 while the first experiment-based report concerning the degradation behavior of the 2D structure at elevated temperatures in a controlled atmosphere was published in 2015, followed by numerous discoveries regarding the thermal properties of MXenes. Herein, after a brief description of the synthesis, this Review summarized the latest insights into the thermal stability and thermophysical properties of MXenes, and further associated these unique properties with relevant applications by multiple examples. Finally, current hurdles and challenges in this field were provided along with some advices on potential research directions in the future.
Collapse
Affiliation(s)
- LePing Yu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Lyu Xu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Lu Lu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Zahrah Alhalili
- College of Sciences and Arts, Shaqra University, Sajir, Riyadh, Saudi Arabia
| | - XiaoHong Zhou
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| |
Collapse
|
21
|
Habibi N, Pourjavadi A. Thermally Conductive and Superhydrophobic Polyurethane Sponge for Solar-Assisted Separation of High-Viscosity Crude Oil from Water. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7329-7339. [PMID: 35089699 DOI: 10.1021/acsami.1c22594] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rapid and effective separation of high-viscosity heavy crude oil from seawater is a worldwide challenge. Herein, an ultralow density, photothermal, superhydrophobic, and thermally conductive polyurethane/polyaniline/hexagonal boron nitride@Fe3O4/polyacrylic-oleic acid resin sponge (PU/PANI/h-BN@Fe3O4/AR) was fabricated with a water contact angle (WCA) of 158°, thermal conductivity of 0.76 W m-1 K-1, density of 0.038 g cm-3, limited oxygen index (LOI) of 28.82%, and porosity of 97.97% and used for solar-assisted separation of high-viscosity crude oil from water. Photothermal components were composed of PANI and Fe3O4, while h-BN particles were used as thermally conductive and flame retardant fillers. Therefore, the illuminated sunlight irradiation on the modified sponge was converted to heat due to the activity of photothermal components. The produced heat was rapidly transferred to the environment due to the presence of h-BN for increasing the temperature of the high-viscosity crude oil and reducing oil viscosity that helped to promote its fluidity and effective absorption. The crude oil absorption capacity of this sponge increased from 4 to 57 g g-1 under irradiation of a sunlight simulator (power: 1 sun: 1 kW m-2) for 17 min due to oil viscosity reduction from 2.46 × 104 to below 100 mPa s followed by an increase in the surface temperature from 26 to 89 °C. Also, the oil absorption capacity was evaluated in a static state (172 g g-1 for chloroform), under different external magnetic fields (140.7 g g-1 for gasoline), and in a continuous state, which was 65,100 times of its own weight in the gasoline filtration process. The PU/PANI/h-BN@Fe3O4/AR sponge exhibited excellent stability against 20 times of reusing, mechanical compression, abrasion, immersing in various pH solutions, seawater, and high temperature. In all, the results confirmed that the prepared sponge is an excellent absorbent for organic solvents and highly viscous crude oil in the absence and presence of sunlight irradiation.
Collapse
Affiliation(s)
- Navid Habibi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran 11365-9516, Iran
| | - Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran 11365-9516, Iran
| |
Collapse
|